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1 Thermodynamic Systems

§ 1.1 Temperature

§§ 1.1.1 Macroscopic and Microscopic Systems

The study of any branch of natural science must begin with the definition of system

Definition 1.1.1 (System). A system is a finite region of space containing matter inside a closed surface,
known as the wall.
Everything outside of the system, even other systems, that are in interaction with the system are known
as the surroundings of the system.
A system is said to be closed if there’s no matter flux between itself and its surroundings.
The set of the system, surroundings and all the rest is known as universe, and it’s usually indicated with
Ω.

All systems can be studied with two points of view

1. A microscopic point of view (molecular or less)

2. A macroscopic point of view (human scale or more)

Taking as our example system the cylinder chamber of a car, we can define the following macroscopic
coordinates, i.e. descriptors of the system in a macroscopic point of view

1. Mass of gas contained

2. Volume of the chamber

3. Pressure of the gas

4. Temperature of the gas

These coordinates are macroscopic also because

• Do not involve assumptions about the structure of matter, fields or radiation

• Are low in number

• Are fundamental

3
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• Can be, generally, directly measured

If we instead consider a system from the microscopic point of view, we can define the system as

1. N particles with energy states Ei

2. Particle interactions with fields and through collisions

And more.
Microscopic systems that can be considered isolated or embedded in other systems are known as
ensemble systems. In microscopic systems, the equilibrium state is defined as the state with the highest
probability, i.e. the state which will have a higher occupation number or population.
In general, microscopic coordinates

1. Consider the structure of matter, fields and radiation

2. Are many in number

3. Are described by mathematical models and usually not directly measurable

4. Must be calculated using the previous models

In the study of thermodynamics, in the next chapter or two, we will use the macroscopic description.
The major difference with the other branches of science lays in the fact that in thermodynamics, a
macroscopic quantity is always present and defined, known as temperature.
Generally, in thermodynamics the quantities chosen are known as thermodynamic coordinates, which
are macroscopic coordinates that determine the internal state of the system. Systems for which
thermodynamic coordinates can be defined are known as thermodynamic systems

§§ 1.1.2 Zeroth Law of Thermodynamics

Consider a thermodynamic system A, for which we can define two independent coordinates, (X,Y ),
the first being a generalized force and the other being a generalized displacement. We define:

Definition 1.1.2 (Equilibrium State). A state for which the coordinates (X,Y ) are constant as long as
the external conditions don’t change, is known as an equilibrium state

Equilibrium states depend on proximity of other systems and nature of the boundary, if we put A in
contact with another system B with coordinates (X ′, Y ′) we then can define two types of walls:

Definition 1.1.3 (Adiabatic Walls). If the walls between the system A and B are adiabatic, then the
equilibrium states are independent and possible for each value of (X,Y ) and (X ′, Y ′)

Definition 1.1.4 (Diathermal Walls). If the walls between the system A and B are diathermal, the
equilibrium states of the two systems aren’t independent anymore, and thus are defined only for a set
of coordinates (X,Y,X ′, Y ′)

We subsequently define

Definition 1.1.5 (Thermal Equilibrium). Thermal equilibrium is defined as the state achieved by two or
more systems, characterized by a restricted amount of values of system coordinates, after being put in
contact through a diathermal wall.
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From the definition of thermal equilibrium, an important law follows

Law 1 (0th Law of Thermodynamics). Suppose that two thermodynamic systems A and B are separated
by an adiabatic wall and simultaneously in contact with a third system C through a diathermal wall. It
follows that if:

• A is in thermal equilibrium with C

• B is in thermal equilibrium with C

Then, A must be in thermal equilibrium with B

Suppose that now that the system A and B are at equilibrium with each other at some coordinates
(XA, YA) and (XB , YB). If we remove the system A, the system B will undergo a change of state to
coordinates (X2, Y2) which must be in thermal equilibrium with the state (XB , YB). It must follow
then that there’s a quantity, known as temperature, which remains constant during this transformation,
thus:

Definition 1.1.6 (Temperature). We define the temperature as the property in common between states
in thermal equilibrium. A change of state with constant temperature (i.e. in thermal equilibrium) is
known as an isothermal transformation or an isothermal process.
Temperature must be a scalar quantity, and it’s usually indicated with T . For each possible value of T
there exists a defined family of isothermal processes.

§§ 1.1.3 Temperature Measurements

In order to define a temperature scale, we choose a thermodynamic system for which are known its
properties, known as the thermometer, and define a set of empirical rules for assigning a value of T
for each isotherm.
Suppose that the system is well described by the generalized force X and the generalized displacement
Y . Then, for defining a temperature scale we will

• Choose a convenient path in the (X,Y ) plane, like Y = const. Then, since one of the two
quantities is fixed, we must have that if the system undergoes an isothermal process, we must
have that

θ = θ(X)

Where θ is our temperature scale

• We suppose, arbitrarily, that θ(X) ∝ X, thus

θA(X) = aX

The scale that we defined previously has, in particular, that

lim
X→0

θA(X) = 0

I.e. it’s an absolute temperature scale. Examples of absolute scales are the Kelvin and Rankine
temperature scales.
Experimentally, the standard gas for thermometric evaluations is molecular hydrogen H2.
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For most thermodynamic scales, being Y = const completely arbitrary, it’s convenient to define
Y = Y1 = const as the triple point of water, it being the point in which liquid water, ice and vapor
exist in the same place and time. This point is measured to be at a temperature of

TTP = 0.01◦C = 273.16K

From the absolute arbitrary temperature scale we have defined before, defined XTP the coordinate at
which we have the triple point, we have

θA(XTP ) = aXTP = 273.16K=⇒a =
273.16K

XTP

Thus, in general, an absolute thermometric scale can be defined as follows

θA(X) = 273.16
X

XTP
K (1.1)

Thus, it’s possible to define this scale in terms of pressures (generalized forces) or volumes (generalized
displacements), using the triple point coordinates as reference point.

§§§ 1.1.3.1 Temperature Scales

The most common temperature scales are two in the metric system of units and two in the imperial
system. If we use the definition (1.1) for the Kelvin scale, we have

Definition 1.1.7 (Celsius Temperature Scale). Defined by Anders Celsius (SWE), used in the metric
system of units

T (◦C) = T (K)− 273.15

Definition 1.1.8 (Rankine Temperature Scale). Absolute temperature scale defined by William Rankine
(UK), used in the imperial system of units

T (R) =
9

5
T (K)

Definition 1.1.9 (Fahrenheit Temperature Scale). Temperature scale define by Daniel G. Fahrenheit
(GER), used in the imperial system of units

T (◦F ) =
9

5
T (R)− 459.67

With these definitions we can find conversions between these scales, and for commonly used scales
like Fahrenheit and Celsius we get the following conversion formula

T (◦F ) =
9

5
R (◦C) + 32 (1.2)

Note that the Celsius temperature scale has the same dimensions of intervals of the Kelvin scale, thus, a
temperature difference in Celsius degrees is the same in Kelvins. Thanks to future concepts, the Kelvin
scale will be defined as the absolute scale of temperature, since it’s tied to energetic properties of the
system itself.
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§ 1.2 Thermodynamic Equilibrium

§§ 1.2.1 Definition of Equilibrium

Given a thermodynamic system A, any change of coordinates defines a change of state for the system.
A non-influenced system is known as an isolated system, but these kinds of systems aren’t important in
the study of classical thermodynamics, since these systems can’t be studied macroscopically.
There are various kinds of equilibrium, namely

• Mechanical equilibrium: equilibrium of forces in the system

• Chemical equilibrium: the system is in mechanical equilibrium and it doesn’t undergo in sponta-
neous chemical reactions

• Thermal equilibrium: the system is in mechanical and chemical equilibrium, and there is no change
of coordinates when the system is separated from its surroundings via a diathermal wall

• Thermodynamic equilibrium: the system is in mechanical, chemical, thermal equilibrium contem-
poraneously

Note that for having thermodynamic equilibrium, all the previously stated equilibriums must be satisfied,
and the system doesn’t undergo in changes of state.
In fact, if a system is not in mechanical equilibrium then the system is in a non equilibrium state
and therefore thermodynamic coordinates cannot be defined, and so goes for the other equilibriums.
Specifically, when the system is in thermodynamic equilibrium, it does not change state, note instead
how instead thermal equilibrium is defined via changes of state, since in order for a system to be
defined in thermal equilibrium undergoes an isothermal change of state, but still a change of state.

§§ 1.2.2 Thermodynamic Relationships at Equilibrium

Given any mole of gas, it’s experimentally verifiable that if:

• Fixed volumes and temperature imply that the pressure can’t be chosen

• Fixed pressure and temperature imply that the volume can’t be chosen

• Fixed pressure and volume imply that the temperature can’t be chosen

Clearly, if we use these three coordinates to describe a thermodynamic system, only one of the two
can be chosen.
These relations were found empirically by Gay-Lussac and Boyle.
The first experiment, done by Gay-Lussac deals with the relationship between V and T . It has been
found that, heating a solid with linear length l0 at rest, that

l(T ) = l0 +

∞∑
i=1

ail0∆T
i (1.3)

With ai being numerical coefficients depending on the material composition of the system. For small
temperature variations ∆T , it can be said that

l(T ) ' l0 + al0∆T (1.4)
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Here a, is known as the linear thermal dilatation coefficient. In general a > 0, but in nature materials
with a < 0 are found, one of these is water, and all oxides.
Keeping the first order approximation, and using V0 = l30, we can say

V (T ) ' l30 (1 + 3a∆T ) = V0 (1 + β∆T ) (1.5)

The coefficient β = 3a is the volumetric thermal dilatation coefficient. This experiment, when repeated
with fluids, thanks to their incompressibility, gives

T H E O R E M 1.1 (First Law of Gay-Lussac). Given a fluid with volumetric compressibility β, con-
tained in a volume V0, when undergoing a change of temperature ∆T expands or contracts following
this equation

V (T ) = V0 (1 + β∆T ) (1.6)

If we define the absolute zero of the kelvin scale as the temperature such that V (T0) = 0, we get

V (T ) = V0
T

T0
(1.7)

If the volume is kept constant and instead the variation of pressure is measured, we have

T H E O R E M 1.2 (Second Law of Gay-Lussac). Given a fluid with compressibility β, if it undergoes
a change of temperature at constant volume, the pressure will follow this equation

p (T ) = p0 (1 + β∆T ) (1.8)

If we use the kelvin scale as defined before, we get

p (T ) = p0
T

T0
(1.9)

Both these laws were derived empirically through experimentation, and give the behavior of volume
and pressure with respect to changes of temperature. One might ask what happens when temperature
is constant, and that’s what has been found by Boyle

T H E O R E M 1.3 (Boyle’s Law). Given a fluid undergoing pressure and volume changes in thermal
equilibrium, then

pV = p0V0 (1.10)

Note that if a gas verifies all the previous laws, we have

pV =
p0V0
T0

T (1.11)

This equation gives the empirical dependencies of the three thermodynamic coordinates, (p, V, T ) and
is for this known as the equation of state.
If we also consider that the volume of the gas is V ∝ n, where n are the moles of gas, one has

pV = nRT (1.12)

Where R = 8.31J/Kmol is a conversion constant known as the gas constant.
All previous experiments considered that we specifically had what’s called a hydrostatic system, i.e. a
system which has
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• Uniform pressure

• Constant mass

• Surface, gravitational and electromagnetic effects can be considered negligible

§§ 1.2.3 Thermodynamic Diagrams

The previous relations can be used to determine what are known as thermodynamic diagrams, which
permit the graphical description of changes of state in a thermodynamic system.
As we saw, of the three coordinates (p, V, T ) only two are independent. Thanks to this, we can define
2D Cartesian planes which have as coordinates either pV , pT , V T . We could also define a surface,
known as the pV T surface, which describes all the possible configurations of the system, “extruding”
the pV , pT and V T

§§§ 1.2.3.1 pV Diagrams

Consider now an empirical case of water in thermal equilibrium at 94◦C in a vessel of 2m3. If the vessel
is sealed and there’s no air, it’s seen that water is in equilibrium with its vapor. It’s notable how, if we
map all the possible pV transformations of water, the diagram will be divided in three zones by what
are known as critical isotherms.
These isotherms all coincide in a special point, known as the critical point. An image of such diagram
follows

§§§ 1.2.3.2 pT Diagrams

Pressure-temperature diagrams, are instead useful for defining phase transition isotherms of the system.
Considering water again, three main curves can be defined between the states of matter. These curves
are known as

• Fusion curve

• Sublimation curve

• Vaporization curve

In the first one, along the curve, the set of states described are states of solid-liquid equilibrium, in the
second curve solid-vapor equilibrium and liquid-vapor equilibrium.
At the intersection of these three lines we find the triple point. It’s important to remember that this
point is represented only in this diagram as a point, while in others is instead a curve.

§§ 1.2.4 Differential Changes of State

In order to properly define a mathematical framework for describing the thermodynamic of substances,
we have to rewrite differential calculus in a way which is physically significant.
Suppose that in a pV diagram, a substance undergoes a really small transition to another equilibrium
state. If the volume changes by a differential dV and the pressure by a differential dp, we must have

• For any volume V , we have dV << V , but dV is big enough to be considered macroscopic
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• For any pressure p, and consequent molecular perturbations to pressure δpmol, we must have

δpmol << dp << p

With these considerations, both volume and pressure can be considered as mathematically continuous
functions between the two equilibrium states.
Remembering that of (p, V, T ) only two of the three are independent, we can define the differentials
of these quantities, since 

p = p (V, T )

V = V (p, T )

T = T (p, V )

Thus 

dp =

(
∂p

∂V

)
T

dV +

(
∂p

∂T

)
V

dT

dV =

(
∂V

∂p

)
T

dp+

(
∂V

∂T

)
p

dT

dT =

(
∂T

∂p

)
V

dp+

(
∂T

∂V

)
p

dV

(1.13)

Where, as a subscript of the parentheses, we indicated which of the coordinates is kept constant.
For volume specifically, we can define two things in particular

1. Volumetric expansivity β as

β =
1

V

(
∂V

∂T

)
p

(1.14)

2. Isothermal compressibility κ

κ = − 1

V

(
∂V

∂p

)
T

(1.15)

Therefore, the differential changes of volume can be described as follows

d log (V ) = βdT − κdp (1.16)

§ 1.3 Work

In general, we can define two kinds of work that can be made by a system, or that the system can be
subjected to:

• External work, which is the one exerted from the system to the surroundings

• Internal work, which is the one exerted from one part of the system to another
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In general, we are only interested in external work in our macroscopic treatment.
Consider now a hydrostatic system contained in a piston chamber with adiabatic walls. By definition, if
the piston has surface S, we define the pressure as

p =
F

S
(1.17)

We now consider an infinitesimal displacement of the piston, with force F . The amount of work is
then, as usual

/dW = F · dr (1.18)

Thus, if the piston moves along the x axis

/dW = pSdx = pdV (1.19)

This work is commonly known as thermodynamic work and shouldn’t be confused with other kinds of
work that might be done from external forces, aka mechanical work.
The main question that pops to mind is how is actually infinitesimal work defined in a thermodynamic
system. The action of the piston itself creates instability, and thus even in an infinitesimal displacement
the gas isn’t anymore in mechanical equilibrium, even for a small amount of time. An approximation is
made in order to make calculations possible, i.e. the quasi-static approximation, defined as follows

Definition 1.3.1 (Quasi Static Process). A quasi static process is an infinitesimal thermodynamic trans-
formation. Specifically, a quasi static process is one such that the system is always in a neighborhood
of an equilibrium configuration, thus it can be thought as always being in an equilibrium state. This
approximation thus renders our previous calculations valid.

The “d slashed” differential operator is there to indicate one thing and one thing only: work is path
dependent, as already seen in any course in classical mechanics.
Note that in literature, the previous definition of work tends to differ by a minus sign. It’s just a
convention which simply indicates the sign of work depending whether it’s made on or by the system.
In our case, if the system is making work on the surroundings, like when it expands, we haveW > 0
and vice versa.
The path dependence of work makes its calculation not always immediate. Thanks to the existence
of the state equation, we can tho define a relationship p(V ) which basically makes the pressure an
integrating factor for work.

§§ 1.3.1 Quasi-static Processes

Let’s start to consider now quasi static processes in ideal gases. We already know that for an ideal gas
the equation of state holds, which is

pV = nRT

We can then define the implicit dependence p(V, T ) as

p(V, T ) =
nRT

V

In the special case of isothermal processes (constant T ), we can then integrate the work differential
and obtain

WT = nR

ˆ VB

VA

1

V
dV = nR log

(
VB
VA

)
(1.20)
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For an isobaric process (p is constant), the integration is trivial and gives

Wp = p (VB − VA) (1.21)

Another special case to consider is when the case study is composed by multiple hydrostatic systems in
thermal equilibrium, separated by a diathermal wall. In this general case, work is additive thanks to its
definition, and the total work of the composite system is none other than the sum of the work of the
single component systems



2 Heat

As we might have understood, the main study of thermodynamics is changes of state (duh). There are
various ways to induce a change of state in a system:

1. External forces, thus whenW 6= 0

2. Changes in temperatureW = 0, something6= 0

3. Both at once

That something must be something special, since it’s not mechanical nor an expansion of the system.
This “something” is known as heat.

Definition 2.0.1 (Calorimetric Heat). «Heat» is that quantity that gets transferred between a system
and its surroundings by virtue of temperature only. An adiabatic wall is thus a heat insulator, while a
diathermal wall is a heat conductor.

§ 2.1 First Law of Thermodynamics

§§ 2.1.1 Internal Energy Function

Consider now the last example system that we treated, a simple ideal gas inside an adiabatic cylinder
chamber with a piston. As we saw before, in this special case work is path independent. The
mathematical result that we obtain is that a potential must exist and is unique. This potential is known
as the internal energy of the gas, and for an adiabatic process gives

WAB = U(pA, VA, TA)− U(pB , VB , TB) (2.1)

In classical thermodynamics, thanks to this result, it’s not needed to know the exact functional shape
of the internal energy, but only its difference between the equilibrium points.
Now a little consideration on notation must be given. Thanks to the ideal gas equation of state, we
can always write the internal energy differential with two of the three thermodynamic coordinates,
thus, taking two of the three possible combinations

dU1 =
∂U

∂p
dp+

∂U

∂V
dV

dU2 =
∂U

∂V
dV +

∂U

∂T
dT

13
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One might mistakenly say that the derivatives with respect to the volume are equal in both cases, but
this is absolutely not true in general.
For avoiding confusion, from now on, the following notation will be used

dU =

(
∂U

∂p

)
T

dp+

(
∂U

∂T

)
p

dT (2.2)

Where the subscript specifies which of the remaining coordinates is being kept constant.
We can now continue with trying to understand how heat fits in our thermodynamic calculations.
Consider a generic system which undergoes two transformations, one adiabatic and one non-adiabatic.
In the first transformation we already calculated that

W = ∆U

In the second transformation this is not true. Since we’re still working in the realm of physics, if there
are no dissipative processes, as in our case, must be conserved.
As we defined before, there is a heat flow between the system and its surroundings, and we can write
then the first law of thermodynamics

∆U = Q−W (2.3)

This extremely important equation implies three fundamental things:

1. An internal energy function exists

2. Energy is conserved

3. Heat is energy in transit by means of temperature differences.

Note that with this definition, we do not and cannot know heat during processes, but only its flow,
specifically

Q =

ˆ t1

t2

dQ

dτ
dτ

I.e. internal energy is not separable in mechanical (work) and thermal (heat). As with work, saying that
there’s an amount of heat in a body doesn’t make any sense.
As with work, heat is path dependent, and its differential inexact.
With what we have said before, the first law can be rewritten in differential form as

dU = /dQ− /dW (2.4)

Via integration of this equation, it’s possible to easily determine how the coordinates of the system
change.
Note that for a hydrostatic system we have

dU = /dQ− pdV
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§ 2.2 Calorimetry

§§ 2.2.1 Heat Capacity

Consider a system which undergoes a change of state for which there’s a variation of temperature, we
can define a new quantity, the heat capacity, as

C =
/dQ

dT
(2.5)

Since both heat capacity and internal energy are extensive, it’s useful to define the specific versions of
these quantities by dividing them by the number of moles of matter n. Specifically, said NA Avogadro’s
number, we have that

n =
N

NA
=

m

M
(2.6)

Where M is the molecular weight and NA = 6.022× 1023 mol−1. Thus

c =
1

n

/dQ

dT
(2.7)

Note that heat capacity can assume different values depending on the process!
It’s important to define then the specific heat capacity at constant pressure and constant volume for
hydrostatic processes 

cp =
1

n

(
/dQ

dT

)
p

cV =
1

n

(
/dQ

dT

)
V

(2.8)

Heat capacity has units of E/nT and it’s usually measured in non-standard units, like the calorie

Definition 2.2.1 (Calorie). A «calorie» indicates the amount of heat necessary to raise the temperature
of water by one degree Celsius. By definition

1 cal = 4.186 J (2.9)

§§ 2.2.2 Calorimeters

A calorimeter is an instrument used to measure heat variations and specific heats of substances. The
simplest calorimeter is the mixture calorimeter, basically an adiabatic container filled with a defined
amount of water.
Consider now the measuring phase. Suppose that we want to find the specific heat of some external
body with mass mx and initial temperature Tx.
If the water in the calorimeter is at a temperature TH2O withmH2O mass of water. After the immersion
of the external body we will have a heat flow between the two, until the calorimeter and the body will
be in thermal equilibrium at a temperature Teq.
For what we have written before, by definition of specific heat we can write

QH2O = mH2OCH2O (Teq − TH2O)

Qx = mxCx (Teq − Tx)
(2.10)
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By virtue of the first law, being the calorimeter adiabatic we must have that the increase in temperature
of the water is only due to the heat flux from the external body, and thus

QH2O = −Qx

Note the minus sign, we must have Q = QH2O +Qx = 0, if this wasn’t satisfied we would have an
adiabatic calorimeter that by calculation is not adiabatic!
Equating and solving for Cx, which is the specific heat that we want to find, we have

Cx =
mH2OCH2O (Teq − TH2O)

mxCx (Tx − Teq)
(2.11)

The passages are omitted, it’s really easy to rederive it, just watch out for the minus sign.
One now might (rightfully) say: «doesn’t the calorimeter have mass, and therefore interfere with the
previous calculation somehow?»
The answer is yes. We therefore must account for this problem by defining an «equivalent mass» of
the calorimeter, i.e. the equivalent mass in water of the calorimeter itself.
For this problem we have that both the water and the calorimeter are always in thermal equilibrium,
thus if we have m1 masses of water with CH2O specific heat, and our calorimeter with Cc as specific
heat with m? as equivalent mass of it, we have

C = Cc + C1 = (m1 +m?)CH2O

Consider now adding m2 mass of water to the calorimeter, at some temperature T2, if the calorimeter
is at temperature T1 we have that there will be an exchange of heat between the new mass of water
and itself, thus Q1 = −Q2, which implies

(m1 +m?)CH2O (Teq.T1) = −m2CH2O (Teq − T2)

With some easy algebra, solving for m?, our equivalent mass, we have

m? =
m1 (T1 − Teq) +m2 (T2 − Teq)

T1 − Teq
= m2

T2 − Teq
Teq − T1

+m1 (2.12)

§ 2.3 Heat Flow

§§ 2.3.1 Conduction and Convection

In order to treat heat flow between two bodies, we have to see (empirically) that if we take a square
rod with cross-sectional surface S and temperatures T1 and T2 at its two faces, that the heat flow
between the two parts depends on

• Surface area

• Time

• Temperature differences

• The inverse of the distance between the two parts
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If the two faces are distant x, then we can write that

Q = κ

(
ST

x

)
∆T (2.13)

T1, S T2, S

x

Figure 2.1: The experimental rod we use to derive the empirical heat flow equation

Where κ is a proportionality constant known as the «thermal conductivity». If we make this rod
infinitesimal (and why not, consider that not all things can be approximated with rods), we have, after
defining a heat flow vector q as

q =
1

S

/dQ

dT
(2.14)

That, being x→ d3r in the general case,

q =
1

S

/dQ

dt
= −κ∇T (2.15)

This is what’s known as Fourier’s heat equation, which tells us that the heat flux depends directly on
the properties of the medium, contained in κ, and its cross sectional surface.
Note the specific case where the medium is isotropic. We will have that the heat will be proportional
to the temperature at the point, and thus our heat conduction equation becomes

∂T

∂t
= −κ∇T (2.16)

Another special case is that of convection. Consider two bodies with conductivity κ1 and κ2, each thick
di. Defined the heat transfer coefficient of the 2 bodies as

hi =
κi
di

(2.17)

Which fits to the empirical heat convection equation or Newton’s law on convection

1

S

/dQ

dt
= h∆T (2.18)

The coefficient h in this case is the total heat transfer coefficient of the system, and can be intended as
an electrical conductance, calculated as follows

1

h
=

1

h1
+

1

h2
(2.19)

This is clearly generalizable to the general case with N bodies using a simple sum.
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§ 2.4 Ideal Gases

§§ 2.4.1 Hydrostatic Systems

As we know from what we wrote before, for a hydrostatic system we have

/dQ = dU + pdV (2.20)

Chosen two thermodynamic coordinates, specifically T, V for ease, we have

/dQ =

(
∂U

∂T

)
V

dT +

[(
∂U

∂V

)
T

+ p

]
(2.21)

This is the differential first law for hydrostatic systems.
From this equation we have a new definition for the specific heat C of a system.
Considering an isochoric process (V = const) we have, after deriving with respect to T(

/dQ

dT

)
V

=

(
∂U

∂T

)
V

= CV (2.22)

I.e., the derivative of the internal energy function at constant volume is the heat capacity at constant
volume.
It’s then possible to write, at constant pressure(

/dQ

dT

)
p

= CV +

[(
∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

= Cp (2.23)

Remembering that ∂TV = βV we have, solving for the derivative of the internal energy(
∂U

∂V

)
T

=
Cp − CV

βV
− p (2.24)

§§ 2.4.2 Joule Expansions

Consider a thermally insulated vessel divided in two compartments with an ideal gas inside in one and
the vacuum on the other compartment. If we remove the wall separating the gas from the vacuum
the gas will rush to fill the vacuum. This kind of expansion is known as a Joule expansion or a free
expansion of the gas.
Since the vessel doesn’t change volume during the expansion of the gas and cannot exchange heat
with its surroundings, the complete process must haveW = Q = 0. If we insert this into the differential
form of the 1st law of thermodynamics we have

dU = /dQ− /dW = 0=⇒U = U0 (2.25)

In general tho, the internal energy is a function of two variables, thus

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV = 0



2.4. IDEAL GASES 19

Since for having /dQ = 0 we must also have dT = 0, we must have that ∂V U = 0 and thus the internal
energy must be dependent only on temperature. For a free expansion we must then have

dU =
dU

dT
dT (2.26)

it has been studied by Rossini and Frandsen, that for real gases the internal energy depends also on the
pressure, and therefore we now have an idea on how to define ideal gases

§§ 2.4.3 Thermodynamics of Ideal Gases

The previous experiment gives a framework to better define an ideal gas. In general an ideal gas is
defined as a gas which, at the low pressure limit, follows these two equations

pV = nRT(
∂U

∂p

)
T

= 0
(2.27)

The second equation, together with the ideal gas equation of state, creates this ideal gas that when it
expands, the internal energy behaves exactly like if it was a free expansion.
In fact, it’s easy to prove that since(

∂U

∂V

)
T

=

(
∂U

∂p

)
T

(
∂p

∂V

)
T

= 0 (2.28)

Then, by definition

dU =
dU

dT
dT (2.29)

I.e. It depends only on temperature. Now from the first law we have
/dQ = dU + /dW

/dW = pdV

dU =
dU

dT
dT

(2.30)

Noting that in an isochoric process dU = CV dT , then we have the first law for ideal gases

/dQ = CV dT + pdV (2.31)

Remembering that for every equilibrium state we have

pV = nRT

We can write
pdV = d (pV )− V dp = nRdT − V dp

Hence
/dQ = (CV + nR) dT − V dp (2.32)
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Deriving with respect to T again, we have a mathematical relationship between CV and Cp, known as
«Mayer’s relation»

Cp = CV + nR (2.33)

Thus, we get two ways of writing the first law for ideal gases

/dQ = CV dT + pdV

/dQ = CpdT − V dp
(2.34)

Note that in general, the heat capacity depends strongly on the temperature T . This relationship will
be better studied with statistical mechanics later.

§§§ 2.4.3.1 Quasi-static Adiabatic and Polytropic Processes

Let’s consider now quasi-static adiabatic processes, in the specific case of ideal gases. From the first
law, we have that for an adiabatic process{

pdV = −CV dT

V dp = CpdT
(2.35)

we can solve the system quite easily by dividing the two equations, and after defining the «adiabatic
index» of a gas γ as

γ =
Cp

CV
=
cp
cV

(2.36)

we have
V

p

dp

dV
= −γ (2.37)

Solving this simple differential equation we get

pV γ = κ (2.38)

Where κ ∈ R is a constant. Note that this relationship holds if and only if the process is quasi-static.
We might want to see the functional definition of work in this process.
We have, for a quasi-static adiabatic transformation between two equilibrium points A and B

WAB =

ˆ B

A

κV −γdV =
κ

1− γ

(
V 1−γ
B − V 1−γ

A

)
(2.39)

Since κ = pAV
γ
A = pBV

γ
B , we have

WAB =
1

1− γ
(pBVB − pAVA) =

nR

1− γ
(TB − TA) (2.40)

Recognizing from the first law that since /dQ = 0, then

/dW = −dU = −CV dT
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Which gives back a new form of Mayer’s relation

CV =
nR

1− γ
(2.41)

Let’s consider now the most generic quasi-static transformation that we might have with an ideal gas.
The transformation equation must be a tweak of the one we found before, specifically, instead of
having pV γ with γ being the adiabatic index, we might use a parameter α which can take different
values.
Thus

pV α = κ



α = 1 pV = κ, κ = nRT

α = 0 p = κ

α→ ∞ V = κ

α = γ pV γ = κ

α ∈ R general case

(2.42)

Note that we have managed to define the most generic transformation possible. Note that since it’s
always true that, for an ideal gas

dU = CV dT

And that in general /dQ 6= 0, we have, noting that we simply substituted γ with the parameter α, that

/dQ =

(
CV +

nR

1− α

)
dT (2.43)

Defined the polytropic specific heat Cα, we have by definition

Cα = CV +
nR

1− α
(2.44)

Giving us this simple equation for polytropic processes

/dQ = CαdT (2.45)
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3 Thermal Engines and Entropy

§ 3.1 Engines

§§ 3.1.1 Heat-Work Conversion

From the first principle of thermodynamics it’s easy to understand how work of any kind can be
converted to heat and vice-versa.
Suppose that we have two heat reservoirs at temperatures T1 < T2. We might construct a cyclical
process between these two sources, which we will call a «thermodynamic cycle». For any cycle we can
define the following quantities

• The total amount of heat absorbed by the system |Qabs|

• The total amount of heat rejected by the system |Qrej |

• The total work done by the system |W |
From these quantities we can define the thermal efficiency of the cycle as

η =

∣∣∣∣ WQabs

∣∣∣∣ (3.1)

From the first law we have
∆U = QT +WT

QT = |Qabs| − |Qrej |
WT = |W |

η =

∣∣∣∣ WQabs

∣∣∣∣
We immediately notice that the first equation must be equal to zero. In fact, dU is an exact differential,
and therefore in any cyclic transformation it’s equal to zero. Mathematically, we have˛

γ

dU = U (γ(A))− U (γ(A)) = 0

Plugging in the second and the third equations into the first one, we must have

|W | = |Qabs| − |Qrej |

η = 1−
∣∣∣∣Qrej

Qabs

∣∣∣∣ (3.2)

23
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It’s clear now how a 100% conversion of heat into work makes little sense. In order to have η = 1 we
must have Qrej = 0, and we’ll prove later that this is not possible.

§§ 3.1.2 Stirling Engine

We begin to try to harness, physically, the power of the first (and what will become the second) principle
of thermodynamics by building thermal engines. There are two main kinds of engines:

• External combustion engines, when the heat sources are outside the system

• Internal combustion engines, when the system itself performs the combustion

The simplest engine, in terms of ease of construction, is the «Stirling engine». This engine is an external
combustion engine which converts heat from fuel to mechanical work, through the usage of hot air.
In a pV diagram, the cycle that the hot air makes is described by two isotherms, one at the combustion
temperature TH and one at a lower temperature TL. The cycle is completed by two isochoric processes.
The processes between the equilibrium points of the system are

• A→ B Isothermal compression of the gas in contact with the low temperature reservoir at TL,
here the system rejects heat QAB

• B → C Isochoric heating of the gas. Here the gas heats up while in contact with the hot reservoir,
absorbing heat QBC

• C → D Isothermal expansion of the gas in contact with the hot reservoir at TH . The gas absorbs
heat QCD

• D → A Isochoric cooling of the gas. Here the gas is in contact with the cold reservoir and rejects
heat QDA

We have, by definition
|QH | = |QH1|+ |QH2|
|QL| = |QL1|+ |QL2|

(3.3)

Quick spoiler: thanks to the first law of thermodynamics these heats are explicitly calculable. From the
first principle we have that in the isochoric heating and cooling we must have /dW = 0, /dQ = dU

/dQBC = /dQDA = CV dT

Thus, integrating on these two transformations we get{
QBC = CV (TH − TL)

QDA = −CV (TH − TL)

On the isothermal compression and expansion instead we have, from the first principle dU = 0, and
thus /dQ = pdV . Using the equation of state of ideal gases for writing the explicit functional relationship
between p and V , we have

QCD = nRTH

ˆ D

C

1

V
dV = nRTH log

(
VD
VC

)
QAB = nRTL

ˆ B

A

1

V
dV = nRTL log

(
VB
VA

)
= −nRTL log

(
VD
VC

) (3.4)
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After indicating the volumetric compression ratio r as

r =
Vmax

Vmin
=
VC
VB

=
VD
VA

(3.5)

We have {
Qabs = QBC +QCD = ncV (TH − TL) + nRTH log (r)

Qrej = QDA +QAB = − [ncV (TH − TL) + nRTL log (r)]
(3.6)

Thus

η = 1−
∣∣∣∣Qrej

Qabs

∣∣∣∣ = 1 +
Qrej

Qabs
= 1− ncV (TL − TH)− nRTL log (r)

ncV (TH − TL) + nRTH log (r)
(3.7)

Which, rearranging, becomes

ηS =
R (TH − TL) log (r)

cV (TH − TL) +RTH log (r)
(3.8)

§§ 3.1.3 Internal Combustion Engines

§§§ 3.1.3.1 Otto Engine

The first internal combustion engine that we will treat is the Otto engine, commonly known as the
four-stroke engine. The gas makes a cycle which might seem similar to the Stirling cycle, but this
is quickly disproved by noting that the two isothermal processes are substituted by two adiabatic
processes. Since during an adiabatic process Q = 0, we must have that the heat absorbed and rejected
by the system must come from the isochoric processes.
The heats in these two transformations are{

QBC = ncV (TC − TB)

QDA = ncV (TA − TD)

Using the equation of state and the adiabatic process equation, we have{
pV = nRT

pV γ = κ
=⇒TV γ−1 = κ (3.9)

Thus {
TCV

γ−1
C = TDV

γ−1
D

TAV
γ−1
A = TBV

γ−1
B

=⇒


TC
TD

=

(
VD
VC

)γ−1

TA
TB

=

(
VB
VA

)γ−1

=

(
VC
VD

)γ−1
(3.10)

Indicated again the compression ratio

r =
VD
VC
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We get 
TC
TD

= rγ−1

TA
TB

= r1−γ =
TD
TC

(3.11)

Thus

ηO = 1 +
QDA

QBC
= 1 +

TA − TD
TC − TB

= 1 +
TB

TD

TC
− TD

TC − TC

TB
TA

After some algebra for rearranging the terms, we get

ηO = 1 +
TB
TA

TD

TC
(1− TC)

TC

TD
(TD − 1)

= 1 +
TD
TC

1− TC
TD − 1

After again some algebra, we get for the Otto engine the following efficiency

ηO = 1− 1

rγ−1
(3.12)

§§§ 3.1.3.2 Diesel Engine

The Diesel engine is another example of internal combustion engine. It’s also a four-stroke engine, but
the cycle is different from the previous. We have

1. A→ B The gas undergoes an adiabatic compression until combustion starts

2. B → C Isobaric expansion of the gas after combustion, the gas absorbs QBC from the hot
reservoir

3. C → D Adiabatic expansion of the gas

4. D → A Isochoric cooling of the gas, the gas rejects QDA to the cold reservoir

The heats can be calculated immediately, and we have{
Qabs = QBC = ncp (TC − TB)

Qrej = QDA = ncV (TA − TD)
(3.13)

From the adiabatic compression and expansion we get similarly to the Otto engine

{
TAV

γ−1
A = TBV

γ−1
B

TCV
γ−1
C = TDV

γ−1
D

=⇒


TA
TB

=

(
VB
VA

)γ−1

TC
TD

=

(
VD
VC

)γ−1

For the efficiency we have, since the parts of the cycle where the gas absorbs and rejects heat are two
and two only, we can write immediately

ηD = 1 +
QDA

QBC
= 1− cp (TD − TA)

cV (TC − TB)
(3.14)
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After defining the «combustion ratio» rc and the compression ratio r defined as follows
rc =

VC
VB

r =
VA
VB

(3.15)

We have, after some tedious algebra

ηD = 1− 1

rγ−1

(
rγ−1
c − 1

rc − 1

)
(3.16)

§§§ 3.1.3.3 Brayton Engine

Another particular type of engine is the «Brayton engine», this engine cycle is used in turbojet en-
gines and in turbines in general. This cycle is also particular and works with adiabatic and isobaric
transformations as follows

1. A→ B Adiabatic compression of the gas until the combustion point

2. B → C Isobaric expansion of the ignited gas, QBC gets absorbed from the hot reservoir

3. C → D Adiabatic expansion of the gas

4. D → A Isobaric compression of the gas, QDA gets rejected to the cold reservoir

As before, it’s straightforward to calculate the rejected and absorbed heat, and we have{
Qabs = QBC = ncp (TC − TB)

Qrej = QDA = −ncp (TD − TA)
(3.17)

Without calculating for the temperature coordinates, since the calculation is similar to the previous one,
after defining the «pressure compression ratio» rp as

rp =
pC
pB

(3.18)

We get for the efficiency of the Brayton cycle

ηB = 1− 1

r
γ−1
γ

p

(3.19)

§§ 3.1.4 Carnot Engine

The most important, and the simplest engine is the one created by Sadi Carnot. This cycle is composed
by four transformations between two heat reservoirs at temperatures TH > TL. The cycle goes as
follows
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1. A → B The gas undergoes an isothermal expansion in contact with the hot reservoir at TH ,
absorbs QAB

2. B → C Adiabatic expansion of the gas

3. C → D Isothermal compression of the gas in contact with the cold reservoir at TL, rejects QCD

4. D → A Adiabatic expansion of the gas

We have, by definition, that the rejected and absorbed heats are
Qabs = QAB = nRTH

ˆ B

A

1

V
dV = nRTH log

(
VB
VA

)
Qrej = QCD = nRTL

ˆ D

C

1

V
dV = −nRTL log

(
VD
VC

) (3.20)

From the two adiabatic processes we get{
THV

γ−1
B = TLV

γ−1
C

TLV
γ−1
D = THV

γ−1
A

=⇒ TL
TH

=

(
VA
VD

)γ−1

=

(
VB
VC

)γ−1

(3.21)

Defined the compression ratio

r =
VA
VB

=
VD
VC

We have, for the efficiency of the Carnot cycle

ηC = 1 +
TL log

(
VD

VC

)
TH log

(
VB

VA

) = 1 +
TL
TH

log(r)

log
(
1
r

) = 1− TL
TH

(3.22)

The fact that the efficiency of an ideal Carnot cycle depends only on the temperature of the two
reservoirs is an extremely important condition that we will derive after defining irreversibility and the
second law of thermodynamics.

§ 3.2 Second Law of Thermodynamics

The second law of thermodynamics can now be derived from empirical facts. The experience of scientists
with engines and work-heat conversion made sure that some fundamental conditions could be written
down.
The first one is the so called Clausius statement of the second law of thermodynamics

T H E O R E M 3.1 (Clausius Statement). It’s not possible to transfer heat from a cold reservoir to a
hot reservoir without introducing work in the system, i.e. it’s not possible to build a refrigerator which
transfers heat without work

Another statement, which was a more operative statement, was written down by Kelvin and Planck
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T H E O R E M 3.2 (Kelvin-Planck Statement). It’s not possible to build a thermal engine for which
W = Q, i.e. it’s not possible to build a machine which converts heat from a hot source to work without
rejecting heat to a cold source

These statements are equivalent, and it’s demonstrable as follows

Proof. Suppose that the Clausius refrigerator exists, then we will have that if there’s a cold source at T1
and a hot source at T2, this engine will extract Q2 from the cold source and reject Q2 to the hot source.
Suppose that now we connect in parallel another machine which extracts Q1 from the hot source at T1
and rejects Q2 to the cold source at T2. Calculating the total heat transfer from the two heat reservoirs
we will have {

QH = Q2 −Q1

QL = Q2 −Q2 = 0
(3.23)

These two connected machines complete a thermodynamic cycle, thus we will have

W = Q2 −Q1, QL = 0

But, this machine is exactly a Kelvin-Planck machine, since it’s converting 100% of the heat taken form
the hot source into work, without rejecting heat to the cold source.
Let’s work the other way around and suppose that a Kelvin-Planck machine exists. This machine will
take Q1 from a hot source at T1 and converts it all into work. Suppose that we connect in parallel a
refrigerator, which takes Q2 from the cold source at T2 and with the work of the KP machine rejects
Q1 +Q2 to the hot source.
If we again check the total heat transfer between the reservoirs we have that{

QH = (Q1 +Q2)−Q1 = Q2

QL = −Q2

(3.24)

Thus, the two connected machines behave like a Clausius refrigerator, taking Q2 from a hot source
and rejecting Q2 to the hot source, without any work.

It’s clear that these two statements are therefore equal, even if they look different. These statements
are what’s called the «second law of thermodynamics», which can be summarized in

• Heat flow from a cold to a hot source is possible if and only if work is done on the system

• Spontaneous heat flow can happen only from a hot source to a cold one

• It’s impossible to have a machine with 100% efficiency

§§ 3.2.1 Reversibility and Irreversibility

From the second law of thermodynamics it’s clear that not all processes are equal, and especially not
all processes are reversible. Irreversibility is a fundamental part of nature, and it can be divided into two
main kinds of irreversibility:

• External irreversibility
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• Internal irreversibility

In order to understand what irreversibility really is, we need to define reversibility

Definition 3.2.1 (Reversible Process). Consider a process from a state A to a state B. If during this
process Q heat is transferred andW heat is transferred, it’s said to be «reversible» if and only if going
back from B to A −Q heat gets transferred and −W work is done

Consider now some isothermal mechanical transformations, like the irregular stirring of a viscous
fluid or the inelastic deformation of a solid in contact with a heat reservoir. For a complete restoration
to the initial state we must have that Q heat must be extracted from the reservoir and completely
transformed into work, which is a violation of the Kelvin-Planck statement.
If the same process is made in a thermally insulated container, there must be a rise in temperature T ,
thus∆U 6= 0. In the backwards process we will have Q = ∆U which is completely converted into work,
again violating Kelvin-Planck, therefore, all processes exhibiting dissipative effects are irreversible and
work gets dissipated into internal energy. These are examples of «external mechanical irreversibility».
If we have a process that transforms internal energy into mechanical energy and then again into internal
energy, like a free expansion or the snapping of a stretched wire, we’re looking at a case of «internal
irreversibility». Take the free or Joule expansion. There will be a change of state from A = (Vi, T ) to
B = (Vf , T ). For a complete restoration of the system till the first state we must have an isothermal
compression till the volume Vi, where there is no friction, hence the transformation is quasi-static and
work is made from an external machine.
Since W < 0, we have Q < 0 and therefore Q = −W , which is again a violation of Kelvin-Planck,
making this process irreversible.
Consider now instead a finite transfer of heat between a system and a reservoir, with temperature
difference ∆T . Suppose that we have conduction from the system to the reservoir if Tr < Ts. In order
to have a reversible process, for transferring heat back to the system from the reservoir we must have a
self-acting device between the two temperatures, i.e. a Clausius refrigerator, violating the second law.
This is known as a process exhibiting external thermal irreversibility.
The same can be said with chemical process. We have that all chemical reactions which involve a change
of structure must be irreversible. More generally, all spontaneous natural processes are irreversible.
In general we can define again reversibility as

Definition 3.2.2 (Reversible Process). A process is said to be «reversible» if and only if thermodynamic
equilibrium conditions are satisfied and there are no dissipative phenomena, i.e.

1. It’s a quasi static process

2. There is no energy dissipation

Therefore, it’s an ideal process.

§§ 3.2.2 Carnot Theorem and Absolute Temperature

One of the main consequences of the second law of thermodynamics is what’s known as the «Carnot
theorem»

T H E O R E M 3.3 (Carnot). No heat engine can have an efficiency higher than its Carnot equivalent
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Proof. Given an engine working between two reservoirs at temperatures TH > TL, we define the
Carnot equivalent engine as the engine with the same efficiency as the Carnot machine

ηC = 1− TL
TH

=

∣∣∣∣ WQH

∣∣∣∣
The Carnot engine will hence absorb QH from the hot reservoir, perform work |W | and reject |QC | =
|QH | − |W | to the cold reservoir.
Consider now a second engine which performs the same amount of work, but absorbs |Q′

H | from the
hot reservoir and rejects |QC | = |W | − |Q′

H | heat to the cold reservoir

η =

∣∣∣∣ WQ′
H

∣∣∣∣
I.e. it will absorb Q′

H from the same hot reservoir.
Let’s assume that η > ηC , thus ∣∣∣∣ WQ′

H

∣∣∣∣ > ∣∣∣∣ WQH

∣∣∣∣=⇒|QH | > |Q′
H |

Now suppose that we reverse the Carnot engine and take in the work |W | produced by the second
machine. We will have that the total rejected heat to the cold source will be

Qrej = (|QH | − |W |)− (|Q′
H | − |W |) = |QH | − |Q′

H |

Since in order to have η > ηC we must have |QH | > |Q′
H | we have that Qrej > 0, and the complete

machine is a Clausius refrigerator which transfers |QH | − |Q′
H | from a cold to a hot reservoir without

performing work, therefore in order to have the second law of thermodynamics hold we also must
have, for any machine

η ≤ ηC (3.25)

Corollary 3.2.1 (Equality of Carnot Efficiencies). All Carnot engines, working between two reservoirs,
have the same efficiency η.

Proof. Suppose that we have two Carnot engines with η1 being the efficiency of the first and η2 being
the efficiency of the second.
Suppose that the engine 1 is driving the engine 2 backwards. Thus

η1 ≤ η2

If we reverse both engines, we will then have engine 2 driving engine 1 backwards, i.e.

η2 ≤ η1

Therefore, since the reservoirs are the same, the only way to support both statements is that

η1 = η2 (3.26)
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This theorem and its corollary are fundamental for defining an absolute temperature scale, also
known as the thermodynamic temperature. We have proven that due to the second law of thermody-
namics

1. All (reversible) Carnot engines working between two reservoirs are equal

2. The efficiency of any Carnot machine working between T2 < T1 is always

η12 = 1− T2
T1

From the definition of efficiency itself, we also have

η = 1−
∣∣∣∣Q2

Q1

∣∣∣∣ ∝ ϕ (T1, T2)

With ϕ(T1, T2) being a random, smooth enough function of the temperatures of the two reservoirs.
Solving for the heats we have ∣∣∣∣Q1

Q2

∣∣∣∣ = 1

1− ϕ (T1, T2)
= f (T1, T2)

Where f is another smooth enough, random, function of the temperatures only. We have therefore
found that heat (as we thought before) depends only on temperature.
In order to better determine the functional shape of f , we take three temperatures T1 > T2 > T3 and
plug three Carnot machines working between them, then∣∣∣∣Q1

Q2

∣∣∣∣ = f (T1, T2)∣∣∣∣Q1

Q3

∣∣∣∣ = f (T1, T3)∣∣∣∣Q3

Q2

∣∣∣∣ = f (T3, T2)

From the second and the third equation it’s then possible to see that∣∣∣∣Q1

Q2

∣∣∣∣ = f (T1, T2) =
f (T1, T3)

f (T2, T3)
=
ψ (T1)

ψ (T2)
=
T1
T2

(3.27)

Note how the constraint on f imposes that it must be a different function of a single variable, which,
for the pleasure of everyone can just be taken to be the absolute temperature of the reservoir.
This temperature can be calculate to give, at the triple point of water, the already well known value of

TTP = 273.16 K (3.28)

The units there are the usual Kelvins of thermodynamics.
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§§ 3.2.3 Entropy

All the previous statements, albeit bulky in words, can be “shortened” mathematically with the
introduction of a new quantity, known as the (thermodynamic) «entropy function». Suppose again that
we have a generic engine with efficiency ηG working between two reservoirs at absolute temperatures
TC < TH .
Due to Clausius’ theorem we will have

ηG = 1 +
QC

QH
≤ 1− TC

TH
= ηC

With ηC being the efficiency of a Clausius engine working between the same two reservoirs.
Rearranging, we will get

QL

TL
+
QH

TH
≤ 0 (3.29)

And, imagining the presence of infinite reservoirs between the two temperatures, we can generalize
everything to an integral ˆ H

C

/dQ

T
= SH − SC ≤ 0 (3.30)

Thanks to the fundamental theorem of calculus we have defined a primitive function S, known as
entropy.
By definition, then, the absolute temperature becomes an «integrating factor» for the inexact differential
/dQ, as was the pressure the integrating factor for work.
We thus have

/dQ = TdS (3.31)

Suppose now that we have two generic equilibrium states A and B. If we perform a reversible
transformation from A to B and vice versa we will have

˛
dS =

ˆ B

A

/dQ

T
−
ˆ B

A

/dQ

T
= 0 (3.32)

I.e., in a reversible cycle the total entropy will always be equal to zero. The equality is clear, since we
have defined the cycle reversible, i.e., from (3.29) considering the two points we have chosen and the
reversibility of the transformation, we must choose the equality instead of them being less than 0.
It’s important to note that the equality holds if and only if the process in study is reversible. It does not
hold for irreversible processes, albeit it’s still possible to define an entropy function even in that case.
Consider now this special case, where the process A to B is irreversible, while the process B to A is
reversible.
We will have in the full cycle ˛

/dQ

T
=

ˆ B

A

/dQ

T
−
ˆ B

A

dS < 0

Where we used the equality (3.2.3) in the reversible part. Indicating the result of that integral simply as
∆S, we will have that, thanks to the generality of the irreversible path chosen between A and B, that
entropy increases in irreversible paths

∆S >

ˆ
/dQ

T
> 0 (3.33)
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All statements can be simply written in a single equation as

∆S ≥
ˆ

/dQ

T
(3.34)

Consider now the two separate processes that the system performs and the surrounding environment
performs. Said ∆Ssurr as the entropy variation of the surroundings and ∆Ssys the one of the system,
thanks to the definition of system and surroundings we can define the entropy variation of the universe,
∆SΩ, and therefore

∆SΩ = ∆Ssurr +∆Ssys ≥ 0 (3.35)

For irreversible transformations, this reduces to the principle of increase of the entropy of the universe.
This is the mathematical formulation of the second law of thermodynamics.
With these definitions we can rewrite the first law of thermodynamics in a way that includes the second
law. Imposing (3.2.3) we get

dU = TdS − /dW (3.36)

Which, considering only ideal gases and thermodynamic work, becomes

dU = TdS − pdV (3.37)

It’s clear that then, the “natural” variables of internal energy are entropy and volume

Unat = U(S, V )

§§§ 3.2.3.1 TS Diagrams

The definition of entropy as a state variable lets us design a new kind of thermodynamic diagram,
known as the «T-S diagram».
For the definition of the functional relations that get drawn on this diagram, for an ideal gas, we
can calculate the generic functional dependency of entropy with respect to pressure, volume and
temperature.
Rewriting the relationship (3.37) in terms of entropy, we have

TdS = dU + pdV

Which can directly be integrated after taking into account the equation of state pV = nRT and
dU = ncV dT .

∆S(T, V ) = ncV

ˆ B

A

1

T
dT + nR

ˆ B

A

1

V
dV = ncV log

(
TB
TA

)
+ nR log

(
VB
VA

)
In terms of the other two combinations of state variables, we have after algebraic manipulation of the
differentials, remembering that: {

pdV = d (pV )− V dp

d (pV ) = nRdT
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We have that entropy can be rewritten as follows

TdS = n (cV +R) dT − V dp = ncpdT − V dp

Or, also, noting that

T =
pV

nR
=⇒dT =

1

nR
(pdV + V dp)

Entropy can be rewritten again as

dS =
ncV
p

dp+
ncp
V

dV

The integration of the previous differential forms are trivial. One thing to note is that in the case of an
adiabatic and reversible transformation (isoentropic), we will have by definition

dS = 0

for the second law of thermodynamics, is important to remember that when the process is irreversible
the previous equation does not hold anymore, since dS 6= /dQ at that point, and we will have

dS > 0
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4 Thermodynamic Potentials

§ 4.1 Maxwell Relations

By looking at the differential relationship that includes the second and the first law of thermodynamics,
if we count that the thermodynamic variables (p, V, T ) are deeply tied by the equation of state, we
might imagine to construct new exact differentials using Legendre transforms.

Definition 4.1.1 (Legendre Transform). Given a smooth enough scalar field f : Rn → R, which satisfies
the equation (without loss of generality n = 2)

df = udx+ vdy

Can be «Legendre-transformed» into a new function g(u, y), called the «characteristic function», which
satisfies

dg = −xdu+ vdy

The transformation can be obtained from the differentials themselves noting that:

udx = d (ux)− xdu

We have then

dg = udx+ vdy − d (ux)

I.e.

dg = df − d (ux)=⇒g = f − ux (4.1)

An example of Legendre transforms in physics is given by the derivation of the Hamiltonian function
from the Lagrangian of a system

The reduction to two variables immediately jumps to eye as something already seen before in
thermodynamics. We can therefore think to define multiple characteristic functions for describing
thermodynamic systems.
We begin from the internal energy. We know that U has natural variables (S, V ), thus its use is
convenient only when dealing with changes in volume and entropy.
We might want to define a new characteristic function in terms of pressure and entropy via a Legendre
transform. This function is known as «enthalpy».

37



CHAPTER 4. THERMODYNAMIC POTENTIALS 38

Definition 4.1.2 (Enthalpy). Given the internal energy of a system as

dU = TdS − pdV

We can define the enthalpy H as the Legendre transform of U with respect to p, thus

dH = dU + d (pV ) = TdS + V dp (4.2)

Another convenient characteristic function is given by the Legendre transform of U with respect to
T , known as the free energy, or the Helmholtz free energy

Definition 4.1.3 (Helmholtz Free Energy). Given the internal energy of a system, we define the Helmholtz
free energy F as the Legendre transform of the internal energy with respect to temperature

dF = dU − d (TS) = −SdT − pdV (4.3)

The same approach can be repeated with enthalpy, obtaining the Gibbs free energy

Definition 4.1.4 (Gibbs Free Energy). Given the enthalpy function, if we apply a Legendre transform
with respect to the temperature T , we get the Gibbs Free Energy G as

dG = dH − d (TS) = −SdT + V dp (4.4)

All these potentials are deeply tied, and one can be recovered from another one through sequences
of Legendre transforms, with respect to temperature, pressure, entropy and volume.
In general, explicitly writing the natural variables of each potential, we can put them all together in a
system 

dU (S, V ) = TdS − pdV

dH (S, p) = TdS + V dp

dF (T, p) = −SdT − pdV

dG (T, V ) = −SdT + V dp

(4.5)

Being potentials also includes the fact that these are all exact differentials, which we remember in the
following definition.

Definition 4.1.5 (Exact Differential). Given a differential form ω, defined as

ω = A(x, y)dx+B (x, y) dy

It’s said to be «closed» if and only if dω = 0, where

dω =

(
∂A

∂y
− ∂B

∂y

)
dxdy = 0
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It’s «exact» if and only if exists a potential function f ∈ C2 such that

df = ω=⇒


∂f

∂x
= A(x, y)

∂f

∂y
= B(x, y)

An exact differential form is necessarily closed, since dω = d2f = 0 by definition of the differential
operator.
Note that then, also

∂2f

∂x∂y
=
∂A

∂y
=
∂B

∂x
=

∂2f

∂y∂x

Thanks to Schwartz’s theorem for C2 functions, we know already that the two mixed derivatives are
necessarily equal.

The previous statements lets us find what are known as the Maxwell relations between the thermo-
dynamic variables. We have

dU = TdS − pdV=⇒
(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

dH = TdS + V dp=⇒
(
∂T

∂p

)
S

=

(
∂V

∂S

)
p

dF = −SdT − pdV=⇒
(
∂S

∂V

)
T

=

(
∂p

∂T

)
V

dG = −SdT + V dp=⇒
(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

(4.6)

Also: 

p = −
(
∂U

∂V

)
S

=

(
∂F

∂V

)
T

V =

(
∂H

∂p

)
S

=

(
∂G

∂p

)
T

T =

(
∂U

∂S

)
V

=

(
∂H

∂S

)
p

S = −
(
∂F

∂T

)
V

=

(
∂G

∂T

)
p

(4.7)

§§ 4.1.1 TdS Equations

The previous findings help us find new constitutive equations for entropy, called the TdS equations.
From the internal energy we have that

dS =
1

T
(dU + pdV ) (4.8)
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Which implies that the natural variables of entropy are volume and temperature. Thus

TdS = T

(
∂S

∂T

)
V

dT + T

(
∂S

∂V

)
T

dV = /dQ

By definition and the application of the third Maxwell relation, we get
T

(
∂S

∂T

)
V

=

(
/dQ

dT

)
= CV(

∂S

∂V

)
T

=

(
∂p

∂T

)
V

All combined into the previous equation, we get the first TdS equation.

TdS = CV dT + T

(
∂p

∂T

)
V

dV (4.9)

If we repeat the same process that we had done in (4.8), but instead we use the enthalpy, we have

dS =
1

T
(dH − V dp) (4.10)

Thus the natural variables become T, p and we have

TdS = T

(
∂S

∂T

)
p

dT + T

(
∂S

∂p

)
T

dp = /dQ

And therefore, by definition of specific heat and using the fourth Maxwell relation, we have
T

(
∂S

∂T

)
p

=

(
/dQ

dT

)
p

= Cp(
∂S

∂p

)
T

= −
(
∂V

∂T

)
p

Which, combined give the second TdS equation

TdS = CpdT − T

(
∂V

∂T

)
p

dp (4.11)

A third can be obtained by writing S as a function of (p, V ), giving us

TdS = T

(
∂S

∂p

)
V

dp+ T

(
∂S

∂V

)
dV = /dQ

Considering (reversible) isobaric and isochoric processes we have
T

(
∂S

∂V

)
p

(
∂V

∂T

)
p

=

(
/dQ

dT

)
p

= Cp

T

(
∂S

∂p

)
V

(
∂p

∂T

)
V

=

(
/dQ

dT

)
V

= CV
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Resulting in the third TdS equation

TdS = CV

(
∂T

∂p

)
V

dp+ Cp

(
∂T

∂V

)
p

dV (4.12)

§§ 4.1.2 Internal Energy Equations

Following the same idea we had previously, we can write a set of equations for the internal energy.
We have in general that for a hydrostatic system

dU = TdS − pdV

If we derive with respect to the volume V we have(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− p

Using the third Maxwell relation we have the first internal energy equation(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p (4.13)

Deriving with respect to pressure we get instead(
∂U

∂p

)
T

= T

(
∂S

∂p

)
T

− p

(
∂V

∂p

)
T

Using the fourth Maxwell relation we immediately get the second internal energy equation(
∂U

∂p

)
T

= −T
(
∂V

∂T

)
p

− p

(
∂V

∂p

)
T

(4.14)

§§ 4.1.3 Heat Capacity Equations

From the TdS equations it’s possible to find two new equations with respect to the heat capacities of
the gas. Equating the first two TdS equations we have

CpdT − T

(
∂V

∂T

)
p

dp = CV dT + T

(
∂p

∂T

)
V

dV

This implies that

(Cp − CV ) dT = T

[(
∂p

∂T

)
V

dp+

(
∂V

∂T

)
p

dV

]



CHAPTER 4. THERMODYNAMIC POTENTIALS 42

Thanks to the equation of state we can see T as a function of (p, V ), and by solving the previous
equatoin with respect to dT and expressing explicitly the differential we have

(
∂T

∂p

)
V

=
T

Cp − CV

(
∂p

∂T

)
V(

∂T

∂V

)
p

=
T

Cp − CV

(
∂V

∂T

)
p

Solving and noting that, thanks to the implicit variable theorem we have(
∂p

∂T

)
V

= −
(
∂V

∂T

)
p

(
∂p

∂V

)
T

We get the first of the two heat capacity equations

Cp − CV = T

(
∂V

∂T

)2

p

(
∂p

∂V

)
(4.15)

From the TdS equation we also get that in an isoentropic process, (i.e. they’re both zero) we must
have 

CpdT = T

(
∂V

∂T

)
p

dp

CV dT = −T
(
∂p

∂T

)
V

dV

Solving for γ = Cp/CV we have

γ = −
(
∂V

∂T

)
p

(
∂T

∂p

)
V

(
∂p

∂V

)
S

Which, rearranged gives the second heat capacity equation

γ = −
(
∂V

∂p

)
T

(
∂p

∂V

)
S

(4.16)

§ 4.2 Real Gases

§§ 4.2.1 Van der Waals Equation

So far we have treated only ideal gases, in the low pressure limit and without interaction between the
particles, which are considered point-like.
This clearly isn’t enough to describe real gases, which have interactions between themselves and are
not point-like. A solution was devised by Johannes Diderik van der Waals, which in his studies he
started from the Lennard-Jones potential to describe molecular interactions and build from there an
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equation of state for real gases.
The Lennard Jones potential is found empirically as

ULJ(r) = U0

[
α1

(
1

r

)12

− α2

(
1

r

)6
]

(4.17)

With α1 and α2 as parameters which depend on the gas. It’s possible to build from it two parameters,
a, b known as the Van der Waals parameters in order to apply corrections to pressure and volume.
We begin by considering molecules as hard spherical shells, which occupy some volume V0, thus, for n
moles of this gas, we can apply a correction to the volume of the gas as

VR = (V − nb) (4.18)

And, considering the attractive forces between molecules, we can also find a correction for pressure,
which will be higher at the center of the gas

pR = p+ a
( n
V

)2

(4.19)

Inserting it into the equation of state, we have

pRVR =

[
p+ a

( n
V

)2
]
(V − nb) = nRT (4.20)

Which is the Van der Waals equation of state, useful for describing the thermodynamic behavior of
real gases. This equation has also critical points (saddles) for pressure and volume. After doing some
optimization calculus on p(V ) we find 

pC =
a

27b2

VC = 3nb

TC =
8a

27Rb

(4.21)

At these critical points the gas undergoes a phase transition and changes state of matter. In phase
transitions more than one state exists in the system, and the Van der Waals equation is ill-equipped for
treating systems with more than one coexisting phase

§§ 4.2.2 Phase Transitions

Phase transitions are one of the most commonly known thermodynamic behaviors, just imagine the
freezing ice outside in the winter or boiling water in order to cook some pasta or brew a nice hot tea.
Phase transitions of any kind show experimentally a really particular behavior: during a phase transition
the temperature is constant.
The most known types of phase transition are:

1. Fusion, as in ice melting inside a drink

2. Solidification, as when water becomes ice

3. Sublimation, as when dry ice evaporates at room temperature
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4. Deposition, as when a gas leaves a solid trace in a container

5. Vaporization, as when water reaches the boiling point and becomes a vapor

Since temperature is constant in each of these transitions, the heat produced must also be constant
and proportional to the amount of mass undergoing the transition. This heat is known as latent heat,
and it’s describable simply as

Ql = mλ (4.22)

Where λ is a constant which depends on the type of transition and the substance.
Consider now a system undergoing a transition from one state to another, thus at a fixed temperature
Tpt. If we have a fraction of substance x in the final phase we might say that, if we denote the phases
as i, f , then being entropy and volume extensive coordinates, we have{

∆S = n (1− x)Si + nxSf

∆V = n (1− x)Vi + nxVf

The latent heat entropy is defined as

λ = T∆S = T (Sf − Si) (4.23)

The best suited thermodynamic potential for the description is the Gibbs free energy, for which must
hold Gi = Gf . Therefore

−SidT + Vidp = −SfdT + Vfdp=⇒ (Vi − Vf ) dp = (Si − Sf ) dT

We immediately recognize the latent heat divided by the transition temperature on the right, and thus,
writing everything in terms of the derivative of pressure with respect to temperature, we get the so
called «Clausius Clapeyron equation»

dp

dT
=

mλ

T∆V
(4.24)

This equation is integrable after imposing some approximations.
Firstly consider vaporization of a liquid or the sublimation of a solid. Clearly Vf >> Vi, thus ∆V ≈ Vf ,
and said

Vf =
nRT

p

We have
d log(p)

dT
=
mλv
RT 2

(4.25)

Which, integrated and solved for p(T ) gives

p(T ) = p0e
−mλv

R

(
1
T − 1

Tv

)
(4.26)

In case of solidification of a liquid this approximation doesn’t hold anymore, but being∆V approximately
fixed and constant we can directly integrate and obtain again from (4.24)

p(T ) = p0 +
mλs
∆V

log

(
T

Ts

)
(4.27)

From these equations is possible to draw the critical isotherms in a p− T plane and describe multiple
phases of a substance. It’s also possible to define a surface, which comprises all the relations between
the thermodynamic variables, known as the pV T surface. Slices of this surface will then give the p− V ,
p− T and V − T planes which can be used to schematize different phenomena.
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