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1 The Electric Field

§ 1.1 Electric Forces and the Electric Field

It has been found from the forefathers of Electrodynamics that, empirically, the force exerted between
two charged objects has the following characteristics

1. It’s directed from one object to the other

2. It depends on the product of the charges

3. It’s proportional to the inverse squared of the distance between the objects d−2

The experimental results brought with great clarity then, that for two point charges q1, q2, said r =∥∥ri1 − ri2
∥∥ and r̂i the associated versor, the electrostatic force is

F i = ke
q1q2
r2

r̂i (1.1)

Here, ke is a coupling constant which takes different values for different choices of units. In the SI
system we have

ke =
1

4πε0
(1.2)

With ε0 being the permittivity of free space, which has value

ε0 = 8.85 · 10−12 C

Nm2
(1.3)

These forces are obviously additive.
Suppose now that you have a set of n charges qi and you add an imaginary test charge Q in order to
theoretically test the force field generated by these charges. We have then

F i =

n∑
j=1

f i(j) =

n∑
j=1

Qq(j)

4πε0r2(j)
r̂i(j) = Q

n∑
j=1

q(j)

4πε0r2(j)
r̂i(j) (1.4)

The element inside the sum can be seen as the field generated by the single particle q(j), denoted as
Ei(j). This field is the Electrostatic field. It’s clear that then we can define a total field Ei by superposition

of the single charge fields, and we can write, for a system of charges

F i = Q

n∑
j=1

Ei(j) = QEi (1.5)

11
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Then, in general, we can say

Ei =
F i

Q
(1.6)

For our system of n charges the previous calculation is pretty straightforward and we directly get

Ei =

n∑
i=1

q(i)

4πε0

r̂i

r2
(1.7)

The passage to continuous distributions of charge is straightforward. We define the following “trans-
formations” 

qi −→ dq∑
i

−→
ˆ

The electric field of such distribution is then

Ei =
1

4πε0

ˆ
r̂i

r2
dq (1.8)

In general, dq can be expressed mathematically with a charge density which can be linear, superficial
or volumetric. I.e.

dq →


λ(r̃i)dl linear distribution

σ(r̃i)ds superficial distribution

ρ(r̃i)d3x̃ volumetric distribution

(1.9)

The electric field will then be calculated with the integral (1.8) extended to the appropriate set (a curve,
a surface or a volume)

§§ 1.1.1 Divergence of the Electrostatic Field

As we have defined previously the electric field it’s clear that if the distribution is complicated enough
the integrals might be hard to solve or straight up nonsolvable. We then want to find different ways
for calculating the field.
In general a vector field is determined by both its divergence and its curl. We firstly remember the
definition of the 3D Dirac delta function δ3(ri), which is simply

δ3(ri) =
1

4π

∂

∂xi

(
ri

r2

)
(1.10)

We then take the definition of Ei for a continuous volumetric distribution and simply apply the
divergence operator.

∂iE
i =

1

4πε0

∂

∂xi

˚
V

ρ(r̃i)
r̂i

r2
d3x̃ (1.11)

Noting that the integral is with respect to the primed coordinates (the ones with respect to the
distribution) we can bring inside the divergence operator, and remembering that in this case r =∥∥ri − r̃i

∥∥, with the definition of the 3D delta we get

∂iE
i =

1

4πε0

˚
V

ρ
(
r̃i
)
δ3
(
ri − r̃i

)
d3x̃ =

1

ε0
ρ
(
ri
)
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Therefore, due to the generality of ρ we have that for every electrostatic field, the following equation
holds

∂iE
i =

ρ

ε0
(1.12)

This is Maxwell’s first equation for the electrostatic field.
A really important property comes from this equation, Gauss’ law. This law states that the flux of Ei is
proportional to the total charge enclosed by the chosen volume V .
This is a direct consequence of Stokes’ theorem for differential forms.
We choose a bounded volume V ⊂ R3 and integrate both sides of (1.12)˚

V

∂iE
id3x =

‹
∂V

Ein̂ids =
1

ε0

˚
V

ρ(ri)d3x

Defining the flux of Ei as Φ∂V (E
i) we have, then‹

∂V

Ein̂ids = Φ∂V (E
i) =

QV
ε0

(1.13)

This is the mathematical expression of Gauss’ law, where we have written

QV =

˚
V

ρ(ri)d3x

Which is the total charge contained inside the volume V .
This theorem is fundamental for the solution of a myriad of electrostatic problems which would take
a lot of calculations using (1.8). The main idea is that this can be used in conditions where there are
particular symmetries of the system.

Example 1.1.1 (A charged sphere). Suppose that you have a charged sphere with radius R and total
charge q and I want to know the electric field inside and outside the sphere. We begin by calculating
the field outside using Gauss’ law. Due to the radial symmetry of the problem we have that n̂i = r̂i

and therefore Ei = En̂i when we choose a spherical volume.
Let ∂V = S2

r be our “gaussian surface”, a sphere of radius r, where the previous relation for Ei holds.
We have that for any r

ΦS2
r

(
Ei
)
=

‹
S2
r

Ein̂ids = E

‹
S2
r

ds = 4πr2E (1.14)

The first part on the left of (1.13) is already evaluated. Then we need to calculate only the right side.
Noting that there is no charge outside the sphere we have an internal volumetric density of charge
ρ = q/V . Since V is a sphere we already know its volume, and the calculation it’s quite easy

˚
Vr

ρ(ri)d3x =
q

V

˚
Vr

d3x =

q
Vr
V

r < R

q r > R
(1.15)

Where Vr is the volume contained inside the gaussian sphere S2
r . Remembering that Vr =

4
3πr

3 and
V = 4

3πR
3 we have that

4πr2E =


q

ε0

( r
R

)3
r < R

q

ε0
r > R

(1.16)
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Dividing by 4πr2 and remembering that Ei = En̂i = Er̂i we get the final solution for Ei, both inside
and outside the charged sphere

Ei =


q

4πε0R3
rr̂i r < R

q

4πε0r2
r̂i r > R

(1.17)

Note how for r < R the field grows linearly (we’re adding charge increasing r), and it begins again
falling like r−2 after we surpass the surface of the sphere at r = R. Curiously (but not at random) the
field for a charged sphere with constant charge q is identical to the field produced by a point charge
at the origin, it’s like after we surpassed the surface of the sphere it collapsed all on the origin of the
coordinates and became a point charge q at the origin.

The previous statements can be reformulated as a formal method

Method 1 (Gaussian Surfaces). Given an electrostatic system with either spherical, cylindrical or planar
symmetries. In order to solve (1.12) we need to choose an appropriate Gaussian surface G which
encloses a bounded volume V for which Ei ∝ n̂iG. In this special case, integrating the equation (1.12)
and applying Stokes’ theorem we have‹

G

Ein̂Gi ds = E

‹
G

ds = ESG (1.18)

Where SG is the surface area of the gaussian surface. With this trick, if we call V the bounded volume
such that ∂V = G we have

E =
1

ε0SG

˚
V

ρ(ri)d3x

A rule of thumb for choosing G is the following:

• For spherical symmetry of E (like a point charge or a spherical distribution) G is the sphere of
radius r

• For cylindrical symmetry (like a charged cable or a charged cylinder) G is the cylindrical surface of
radius r

• for planar symmetry (like a charged plane) G is a “pillbox”, i.e. simply a 3D rectangle

§§ 1.1.2 The Scalar Potential

A neat definition we can use is defining the scalar potential V (ri) of the electrostatic field. As usual a
potential for a vector field is defined if and only if all closed path integrals of the field are 0 in a simply
connected domain, i.e. that the curl of the field is zero in the selected domain.
We of course can choose this proof but it’s much easier using this trick.
Take V as a bounded domain of R3 where there is some charge distribution ρ(ri) inside. The general
formula for the electric field then is the following

Ei =
1

4πε0

˚
V

ρ(r̃i)
r̂i

r2
d3x̃ (1.19)

We immediately see that
∂

∂xi

(
1

r

)
= − r̂i

r2
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Therefore, noting that the derivation acts only on the unprimed coordinates (i.e. it can go outside the
integration without problems) we have

Ei = − ∂

∂xi

(
1

4πε0

˚
V

ρ(r̃i)

r
d3x̃

)
(1.20)

By definition of potential then, we can say that Ei = −∂iV (ri), where

V (ri) =
1

4πε0

˚
V

ρ(r̃i)

r
d3x̃ (1.21)

This is known as the scalar potential of the electrostatic field.
Since by definition the curl of the gradient is always zero, we can immediately write a second constitutive
equation for Ei

εijk∂
jEk = 0 (1.22)

This equation is Maxwell’s third equation for static fields.
Defining R? = R∪{±∞} and chosen two points a, b ∈ R?, we have in the language of differential
forms

dV = Eidx
i (1.23)

Therefore, with this definition, we can evaluate the work needed to move a charged particle through
some path γ : [a, b] ⊂ R? → R3. We have

W =

ˆ
γ

F it̂idl = q

ˆ
γ

Eit̂idl = −q
ˆ
γ

∂iV t̂idl

Writing t̂idl = dxi we have

W = −q
ˆ
γ

∂iV dxi = −q
ˆ V (b)

V (a)

dV = q∆V (1.24)

Therefore, qV (ri) can be imagined as a “potential energy” of the system. Via this definition, we have
that the scalar potential has the following units in the SI system

[V ] =
[W ]

[q]
=

J

C
= V (1.25)

Where V are Volts. With this definition

1 V = 1
J

C
(1.26)

From the definition of work we can immediately find a nice trick for evaluating the scalar potential of a
distribution. Isolating the last two equalities in the first definition of work for the electric field we have

ˆ
γ

Eidx
i = −

ˆ V (b)

V (a)

dV (1.27)

Using the path independence of V we have by direct integration

V (b)− V (a) = −
ˆ
γ

Eidxi (1.28)
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Due to the definition of V we know that it’s defined up to a constant, and such constant can be chosen
in order to have V (a) = 0. The point a ∈ R? is known as the reference point for the potential, and the
appropriate choice depends from the charge distribution. The best choice is taking the point where the
potential is 0
Suppose now we want to calculate the potential of a point charge in the origin. Since Ei → 0 for
r → ∞ we take a = ∞, and therefore, since V (ri) → 0 for r → ∞ we have at some distance b = r

V (r) = − q

4πε0

ˆ r

∞

1

r2
r̂idxi = − q

4πε0

ˆ r

∞

1

r2
dr =

q

4πε0

1

r
(1.29)

Note that by linearity of the integral, for a system of point charges we have

V (r) =
1

4πε0

n∑
i=1

qi
ri

(1.30)

Note that this trick doesn’t work if the charge extends to infinity since the integral would diverge, in
that case the reference point will be some other a = r0

§§ 1.1.3 Maxwell Equations for Electrostatics and Boundary Conditions

So far we found two main equations for the Ei field, these are two coupled partial differential equations
known as the Maxwell equations for Electrostatics. These equations are ∂iE

i =
ρ

ε0

εijk∂
jEk = 0

(1.31)

Or, in integral form for a bounded volume V and a regular surface Σ
‹
∂V

Ein̂ids =
1

ε0

˚
V

ρd3x

˛
∂Σ

Eit̂idl = 0

(1.32)

Inserting the definition of the potential these two equations collapse in a single equation, which is the
Poisson equation for the potential

∂i∂
iV = − ρ

ε0
(1.33)

But, as for every partial differential equation, these make sense if and only if a boundary condition has
been provided.
Without loss of generality we can consider an uniformly charged plane with surface density σ. We have
using the Gaussian surface trick, choosing a pillbox with surface area A, that

E

‹
G

ds =
σA

ε0

Noting that the contribute between the 4 sides is zero, only the two faces remain and SG = 2A, and
therefore

E =
σ

2ε0
(1.34)
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Since Ei ∝ n̂i we have
Ei =

σ

2ε0
n̂i (1.35)

But the normal to the plane changes sign passing through its surface, therefore the field is discontinuous
passing through its surface!
For the potential this is not true. By definition of potential we’re checking the line integral along the
tangent to the border of this Gaussian surface, which doesn’t change sign when we pass through the
surface. Therefore we have that V ∈ C2(V ) ∪ C0(∂V ) while the field is discontinuous on the border.
These conditions are valid for every regular surface.
Consider that, locally, every regular surface can be considered as “flat” or euclidean, therefore the
Gaussian pillbox trick works well.
Noting that the outward normal of the pillbox above and below the “plane” is equal to ±n̂i where n̂i

is the normal to this plane. Therefore, by the previous calculations we must have that passing through
the surface (locally) (

Eiin + Eiout
)
n̂i = 0 (1.36)

I.e., the field outside this “plane” is opposite in sign to the field inside the “plane“. Going back to the
main general surface, via integration, we have that this result must hold generally, which emphasizes
the discontinuity of the electric field.

§§ 1.1.4 Energy of the Electrostatic Field

Considering again the definition of work for a particle as W = q∆V we can calculate it for a set of
particles. Considering the interaction between particles we have thatW ∝ qiqj where i, j = 1, · · · , n,
and noting that a charge doesn’t self interact, i.e. qiqj = 0 for i = j and that the usual multiplication
between scalar is commutative, i.e. qiqj = qjqi we have

W =
1

8πε0

n∑
i=1

n∑
j 6=i

qiqj
r2ij

=
1

2

n∑
i=1

qiV (ri) (1.37)

Passing to continuous distributions we get

W =
1

2

˚
V

ρ(ri)V (ri)d3x

Using the first Maxwell equation we have ρ = ε0∂iE
i, therefore

W =
ε0
2

˚
V

V (ri)∂iE
id3x

Integrating by parts and applying Stokes’ theorem we get

W =
ε0
2

(‹
∂V

V Eids−
˚

V

Ei∂iV d3x

)
(1.38)

Noting that Ei extends to infinity where it becomes zero, we have on the limit V → R3, where we use
Ei = −∂iV , that the total energy stored in a charge distribution is

W =
ε0
2

˚
R3

E2d3x (1.39)
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§ 1.2 Conductors

The main real problem that somebody will encounter solving problems in electrostatics is problems
with conductors. A conductor is a rigid body for which there are free charges which can move after
the application of an electric field. An example of conductor is a metallic body in the rigid body
approximation.
One main property of conductors is that inside of it the electric field is zero.
Imagine taking a neutral box conductor, and then apply an electric field parallel to the sides of the
box. The free charges will then move due to the action of the electrostatic force towards the field (if
q > 0) or against the field (if q < 0). Since the conductor was neutral and charges must be conserved
since they cannot pop into existence randomly, we have that the field generated by the single negative
and positive charges on the surface of the conductor will be equal in magnitude and opposite in sign,
therefore the total field inside is 0, even though the field outside is nonzero.
A second property of conductors is that the charge density inside the conductor is 0 inside. Using
Gauss law and the first property of conductors we have

ρ = ε0∂iE
i = 0 (1.40)

This is always true for conductors, since as we said before Ei = 0 inside.
One main explanation of this is that inside there is as much positive charge density ρ+ and ρ−. In fact,
from Gauss’ law we have

ρ = ρ+ + ρ− = 0 =⇒ ρ+ = ρ−

This indicates that the charges of the conductor will then be all on the surface, and therefore the
conductor is an equipotential surface. In fact

∂iVin = −Eiin = 0 =⇒ Vin = k, k ∈ R (1.41)

In order to bring out other properties of the electric field in presence of conductors, we can consider
the surface of separation between two materials. Consider a rectangular loop going through both
materials. We have from the third Maxwell equation for electrostatics

˛
A

Eit̂idl = 0 (1.42)

Since the conductor is rectangular, separating the line integral into 4 integrals, where 2 go parallel to
the surface and 2 are normal to it, we have that the two normal integrals taking a clockwise path must
cancel each other and therefore we have

˛
1

Ei1t̂
1
idl +

˛
2

Ei2t̂
2
idl = 0 (1.43)

Since t̂i1 = −t̂i2 we have that, locally (
Ei1 − Ei2

)
t̂1i = 0 (1.44)

Therefore, the electric field tangent to the surface is continuous and therefore conserved. Since a
charged conductor has a zero electric field inside and there is no external field, then

Eiin = 0, Eiint̂i = 0, Eiextt̂i = 0
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But since in general a vector can always be decomposed in a tangent component to the surface and a
normal component to the surface we have

Eiinn̂i = 0, Eiextn̂i 6= 0

This because the conductor is charged. This means that there is a discontinuity in the field and the field
itself must be normal to the surface of the conductor due to the continuity of the tangential component
of the field. If Eic is the electric field generated by a conductor we have then

Eic = En̂i (1.45)

Consider now the potential inside and outside the conductor, Vext, Vin. Considering that the charges
we are moving are electrons with q = −e, where e is the fundamental charge

e = 1.6021766208(98) · 10−19 C (1.46)

We have that the work needed to bring outside the conductor our electron will be

∆U = −e∆V = −e (Vext − Vin) (1.47)

We define the work function as L = ∆U/e and it must obviously be positive since we’re applying
energy to the system in order to bring out an electron. We have

L = Vin − Vext > 0 =⇒ Vin > Vext (1.48)

Due to all of these consideration, and noting that dV = −Eidxi we have that the potential of a
conductor will be defined as

V0(r) = −
ˆ ∞

r

Eit̂idl = −
ˆ r0

r

Eit̂idl (1.49)

Where r0 is the ”first“ radius immediately outside the conductor.

§§ 1.2.1 Coulomb Theorem

Consider now a conductor V and take a small cylinder orthogonal to its surface. Considering that the
charge on a conductor is only on the surface we have using Gauss’ law on the differential flux of Ei

that

dΦ(Ei) = Ein̂idS =
σ

ε0
dS (1.50)

Considering the equality in terms of norms of the Ei field and remembering that E‖n̂i we have that

Ei =
σ

ε0
n̂ (1.51)

You can immediately see that this field is twice the field generated by a charged infinite plane. Let’s
consider what’s happening with some more precision.
In that small cylinder dS we will have that the total external field will be composed from the contribution
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of the charge inside the cylinder and the one outside. The same should be for the inside, but the inside
field must be zero

Eiext =
(
Eiext

)dS
+
(
Eiext

)S−dS 6= 0

Eiin =
(
Eiin
)dS

+
(
Eiin
)S−dS

= 0

The field
(
Ei
)S−dS

doesn’t change and it must be the same as the field generated by dS. Applying
Gauss’ theorem to the small surface element dS and noting that it must be the same of a plane with
surface area dS we have (

Eiin
)S−dS

=
(
Eiext

)S−dS
= −

(
Eiin
)dS

=
σ

2ε0
n̂i

Therefore, finally

Eiext =
σ

2ε0
n̂+

σ

2ε0
n̂ =

σ

ε0
n̂

Where we used again that
(
Eiext

)dS
= σ

2ε0
n̂

§§ 1.2.2 Induced Charges

Consider now some conductor which is empty inside. Inside the first conductor we insert another
conductor charged with charge Q. At t = 0 the external conductor is neutral, and therefore Qext = 0.
Since charge must be conserved, we have that at t > 0 when we insert the new conductor inside the
total charge must remain neutral, therefore

Qint +Qext = 0

From Gauss’ theorem, taking a surface inside the conductor that includes inside itself the internal
surface of the conductor but not the external one. For Gauss we have

Φ(Ei) = 0 =
QV
ε0

=⇒ Q+Qin = 0

Therefore, there must be an induced charge Qin on the internal surface of the conductor, such that

Qin = −Q (1.52)

From this, substituting before, we have that on the external surface we measure the charge we added
inside the conductor, via the process of charge induction

Qext = −Qin = Q (1.53)

Note that this comes directly for having charge conservation.
Consider now the same empty conductor but don’t add any charge inside of it, but rather charge the
whole conductor with some positive charge Q. What happens inside the hole? Is there any charge?
By Gauss’ theorem we have, since Ei = 0 inside the conductor, that the total charge inside the
conductor is zero Qin = 0.
There could still be a charge balance inside, where Q+

in −Q−
in = Qin = 0. Supposing this true we can

take a closed path that goes inside the hole. By definition of Ei the line integral on this path γ must be
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zero. Divide the path into 1, that goes inside the hole, where there should be a field Ei between the
two charges Q+

in and Q−
in, and path 2 which is inside the conductor. Then we would have

˛
γ

Eit̂idl =

ˆ
1

Eit̂1idl +

ˆ
2

Eit̂2idl =

ˆ
1

Eit̂1idl

Since the path is closed, call D the surface enclosed by the path, we have

˛
γ

Eit̂idl =

‹
D

εijk∂
jEkn̂ids =

ˆ
1

Eit̂1idl =⇒ εijk∂
jEk 6= 0 (1.54)

This is in clear contradiction with Maxwell’s equation for electrostatics (which we have already demon-
strated that they generally hold), therefore all the charge is safely distributed on the external surface of
the conductor, as we expected.

Exercise 1.2.1 (Two Charged Spheres). Suppose that you have two metal spheres connected by a wire.
One has radius R1 and the other has radius R2. At t > 0 we deposit some charge Q on the system.
What will be the total charge distributed on the two spheres? (Q1, Q2)

S o l u t i o n

The potentials on the two spheres must be equal, and we know already from previous calculations that

V1 =
1

4πε0

Q1

R1

V2 =
1

4πε0

Q2

R2

V1 = V2

(1.55)

From the previous equation we have that

Q2 =
R2

R1
Q1 (1.56)

The total charge, on the other hand, will be Q = Q1 +Q2, therefore

Q = Q1 +
R2

R1
Q1 =

R1 +R2

R1
Q1 =⇒ Q1 =

R1

R1 +R2
Q (1.57)

And, analogously

Q2 =
R2

R1 +R2
Q (1.58)

From Gauss’ theorem, if the spheres have surface charges σi, i = 1, 2 we must also have

Q1

R1
=
Q2

R2
=⇒ 4πR2

1σ1
R1

=
4πR2

2σ2
R2

(1.59)

I.e.

σ1R1 = σ2R2 =⇒ σ1 =
R2

R1
σ2
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Since R1σ1

ε0
= R2σ2

ε0
, we must also have that the fluxes of the fields multiplied by Ri are equal, i.e. the

electric fields are scaled as follows

E2 =
R1

R2
E1 (1.60)

�

§§ 1.2.3 Capacity

Consider an isolated conductor on which there is some charge Q, distributed with density σ on its
surface, such that the conductor is equipotential. We have that for every point in the conductor, by
definition

V (r) =
1

4πε0

¨
S

σ

r
ds

Q =

¨
S

σds

(1.61)

It’s clear that by this definition that if we vary σ to a new σ′ = ασ with α ∈ R, we also have that
V ′ = αV, Q′ = αQ.
The following rate is then called the capacity of the conductor

C =
Q

V
(1.62)

This is clearly only dependent on the geometry of the system. The capacity is measured in Farads, where

1 F = 1
C

V

Example 1.2.1 (Capacity of a Spherical Conductor). Take now a spherical conductor with charge Q.
We have

V =
Q

4πε0R

Therefore

C = 4πε0R (1.63)

This lets us redefine ε0 in terms of Farads. In fact

[ε0] =
[C]

[R]
=

F

m

Therefore

ε0 = 8.854
F

m
(1.64)

In the case that we have multiple conductors one close to the other the problem gets slightly more
complex.
Add a charge Q1 to the first conductor, which will have potential V1, which will induce a charge Q2 and
therefore a potential V2 on the second. If I change the charge to Q′

1 = αQ1 we will have a basically
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identical result to the previous problem. Inverting the system and setting the charge on the second
conductor Q2 we will have a symmetrical system, for which we can write

Vi =

n∑
j=1

pijQj (1.65)

The pij are the potential coefficients, for which holds pij = pji > 0, pii ≥ pij i 6= j.
Due to the fact that the potential is unequivocally determined we must be able to solve the inverse
problem, therefore we also know that det pij 6= 0, and therefore

Qi =

n∑
j=1

cijVj (1.66)

The matrix cij is known as the capacitance matrix, and we have pij = c−1
ij . The diagonal elements cii

are known as the capacity coefficients, while the off diagonal cij , i 6= j are known as the induction
coefficients.
For this matrix hold the following properties, known as Maxwell inequalities

cij = cji

cii > 0

cij < 0 i 6= j
n∑
j=1

cij ≥ 0

(1.67)

§§ 1.2.4 Capacitors

Let’s take again two conductors in total induction as for our previous system of two concentric
conductors where one inside is set at a charge Q. Grounding the external surface we get that the
external shell will be at a fixed V = 0, while the internal surface will have an induced charge −Q.
Between these two surfaces there will be a potential difference ∆V , for which it’s possible to evaluate
the capacitance as

C =
Q

∆V

Writing this in terms of the potential matrix Vi =
∑
j pijQj we have the following system of equations,

where Q1 = Q, Q2 = −Q {
V1 = p11Q− p12Q

V2 = p21Q− p22Q

Subtracting the second from the first we have

∆V = (p11 + p12 − 2p12)Q

Therefore

C =
Q

∆V
=

1

p11 + p12 − 2p21
(1.68)
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Or in terms of the capacitance matrix cij

C =
det(cij)

c11 + c12 − 2c12
(1.69)

Finding the capacitance using these matrices tho is a quite long calculations, therefore we directly use
the line integral of the Ei field for determining it, therefore, since

∆V12 =

ˆ 1

2

Eidx
i

Example 1.2.2 (Spherical Capacitor). Consider now a spherical capacitor for which the outer shell is
grounded, we have

Ei =
Q

4πε0

r̂i

r2

Therefore

∆V =
Q

4πε0

ˆ r1

r2

1

r2
dr =

Q

4πε0

(
1

r1
− 1

r2

)
Therefore

Cs =
4πε0r1r2
r2 − r1

(1.70)

Example 1.2.3 (Cylindrical Capacitor). For a cylindrical capacitor made of two conducting cylinders of
radius R1 and R2 and length l >> R2 and total charge λl we have that the electric field is

2πlrE =
λl

ε0

Ei =
λ

2πε0

r̂

r

Therefore

∆V =

ˆ 2

1

Eidx
i =

λ

2πε0
log

(
R2

R1

)
Therefore, since Q = λl, we have

Cc =
2πε0

log
(
R2

R1

) (1.71)

Example 1.2.4 (Parallel Plane Capacitor). For two parallel plane conductors for which d <<
√
S where

S is the surface area of the plane we have that

E =
σ

ε0
, Q = Sσ

Therefore
∆V =

σ

ε0
d

Where d is the distance between the plates, and therefore

C =
ε0S

d
(1.72)
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§§ 1.2.5 Forces on a Conductor

Consider a charged conductor with surface area S. Considering a small element dS we have that the
external field generated by the remaining surface is(

Eiext
)S−dS

=
σ

2ε0
n̂

The total charge in dS is σdS, and therefore the (infinitesimal) force on the area element dS is, by
definition of electrostatic force

dF i = σ
(
Ei
)S−dS

dS =
σ2

2ε0
n̂idS =

1

2
ε0E

2n̂idS = un̂dS (1.73)

Where we identified the energy density of the field u as

u =
1

2
ε0E

2

Deriving everything by dS, we have that the electrostatic pressure pi on the infinitesimal element of
the surface of the conductor is

pi =
dF i

dS
= un̂i (1.74)

Consider now a virtual displacement of the external surface of the conductor, where we move it by δr
orthogonally to the previous surface, then, the (virtual) work necessary for such displacement is

δL = δF iextδri = δU

Where we used that δL = δU , and F iext as the ”extraction force“. Since F iext = −F i we have that

δFr = −δU
δr

But, by definition

δU = −1

2
ε0E

2δrdS

Therefore, as before
δFr = udS

For constant charge, we might think to apply this to a charged parallel plate capacitor, for which we
know that the infinitesimal work needed to charge it, i.e. to move the charges from infinity towards
our capacitor, is

dW = V dq =
q

C
dq =⇒ W =

1

2

Q2

C

For a parallel plate capacitor therefore

U(x) =
1

2

Q2x

ε0S

Therefore

F = −∂U
∂x

= −1

2

Q2

ε0S
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This force is attractive (obvious from the system).
What if V = cost. but the charge isn’t constant? We know that

V =
Q

C

And since both C, V are constants (one depends only on the geometry and the other is set constant by
the system) Q can be the only one to have changed.
This means that there is some generator that charges up the capacitor, with work

δWg = V δQ = V 2δC

Where we have Q = V C. From our previous relations we have

δWext = Fextδx, δU = δWg + δWext

Therefore, since Fext = −F we have that

δU = δWg − δW

And, for the generator

δ(CV 2) = δW + δ

(
1

2
CV 2

)
Finally

δW = δU = Fδx

Remembering that U = CV 2/2 and C = Sε0/x we have through derivation that

F = −1

2

Sε0V
2

x2
= −1

2

C2V 2

Sε0
= −1

2

Q2

Sε0

Which is the same result as before.
It’s clear that for a charged conductor then the force is the mechanical moment of the system. It can
be derived using the virtual work theorem, noting that δLext = δU = −δL, therefore

δL = F iδxi + Liδθ
i = −δU

Where, in the limit δx, δθ → dx, dθ

Fx = −∂U
∂x

Lθ = −∂U
∂θ



2 The Electrostatic Potential

§ 2.1 Poisson and Laplace Equations

§§ 2.1.1 Green Identities

From the equations of Maxwell for electrostatics, we have seen that inserting the relation between the
electrostatic field and the potential we get a second order partial differential equation known as the
Poisson equation

∇2V = ∂i∂iV (ri)− ρ

ε0
(2.1)

And its homogeneous counterpart where ρ = 0, the Laplace equation

∂i∂iV = 0 (2.2)

There are two fundamental theorems that we’re gonna use for solving PDEs (Partial differential equa-
tions).

Theorem 2.1 (First Green Identity). Given two functions ϕ,ψ ∈ C2(V ) with V being a bounded set,
we have ˚

V

(
ϕ∂i∂iψ + ∂iϕ∂iψ

)
d3x =

‹
∂V

ϕ
∂ψ

∂xi
n̂ids =

‹
∂V

ϕ
∂ψ

∂n
ds (2.3)

Proof. Taken Ai = ϕ∂iψ we have that

∂iAi = ∂i (ϕ∂iψ) = ϕ∂i∂iψ + ∂iϕ∂iψ

Therefore ˚
V

∂iAid
3x =

˚
V

(
ϕ∂i∂iψ + ∂iϕ∂iψ

)
d3x =

‹
∂V

ϕ
∂ψ

∂n
ds =

‹
∂V

Ain̂
ids

Theorem 2.2 (Second Green Identity). Given two functions ϕ,ψ ∈ C2
(
R3
)
, again from stokes theorem

one has ˚
V

(
ϕ∂i∂iψ − ψ∂i∂iϕ

)
d3x =

‹
∂V

(
ϕ
∂ψ

∂n
− ψ

∂ϕ

∂n

)
ds (2.4)

27
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Proof. Taken two vector fields Ai = ϕ∂iψ, Bi = ψ∂iϕ, analogously as before we have

∂i (Ai −Bi) = ϕ∂i∂iψ − ψ∂i∂iϕ

Applying Stokes’ theorem to the previous definition we have the proof, since

Ai −Bi = ϕ∂iψ − ψ∂iϕ

With these two theorems, we can easily modify Poisson’s equation into an integral equation which
can help us find useful informations on the shape of V .
Taking (2.4) where we set

V (ri) = ϕ

1

r
= ψ

We get, remembering that ∂i∂i(r
−1) = −4πδ3(ri − r̃i) and ∂i∂iV = −ρ/ε0

˚
V

(
V (r̃i)∂i∂i

(
1

r

)
− 1

r
∂i∂iV

)
d3x =

˚
V

(
−4πV δ3(ri) +

ρ

rε0

)
d3x

Therefore

˚
V

(
−4πV (r̃i)δ3(ri) +

ρ

rε0

)
d3x =

‹
∂V

(
V (ri)

∂

∂n

(
1

r

)
− 1

r

∂V

∂n

)
ds

Bringing to the left the surface integral and solving for V (ri) after having applied the Dirac delta we
have

V (ri) =
1

4πε0

˚
V

ρ

r
d3x− 1

4π

‹
∂V

(
V (ri)

∂

∂n

(
1

r

)
− 1

r

∂V

∂n

)
ds (2.5)

This result, is the general solution for Poisson’s equation, consistent with a known volume charge ρ
and a surface charge σ = ε0∂nV . Note how the solution depends on the boundary values of V .

§§ 2.1.2 Boundary Conditions and Uniqueness of the Solution

Given the general solution (2.5) how can we choose for appropriate boundary values such that the
solution exists and is unique ∀ri ∈ V where V is a bounded and closed set?
One way is to specify V at the boundary, i.e. using Dirichlet boundary conditions, or to specify
En = Ein̂i = −∂nV in the boundary ∂V , i.e. using Neumann boundary conditions.
Supposing Dirichlet boundary conditions for V we have that the solution is unique. Why?
Let V be the usual bounded set of R3 in which we have

∂i∂iV = − ρ

ε0
∀xi ∈ V

Then, let U = V1 − V2 where V1, V2 are two solutions to Poisson’s equation. By definition, then, U
solves Laplace’s equation

∂i∂iU = ∂i∂iV1 − ∂i∂iV2 = 0
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At the boundary therefore we must have

U,
∂U

∂n
= 0 ∀xi ∈ ∂V

From Green’s 1st identity we also have that˚
V

U∂i∂iU + ∂iU∂iUd3x =

‹
∂V

U
∂U

∂n
ds

Using that U must solve Laplace’s equation and it must also be zero at the boundary, we have, writing
∂iU∂iU = |∂U |2 ˚

V

|∂U |2d3x = 0

This last integral implies that |∂U |2 = 0 and therefore ∂iU = 0 ∀xi ∈ V , i.e. U is constant. Since
U ∈ C2 and it must be 0 in ∂V the constant must be 0 and therefore

V1 = V2

Which implies ∃!V : V → R which solves Poisson’s equation where V is defined on the boundary.
With Neumann conditions this implies that the two solutions are linearly dependent, still implying the
uniqueness of the solution.
It’s also clear that using mixed Dirichlet/Neumann boundary conditions will give rise to a well behaved
and unique solution.

§§ 2.1.3 Method of Images

A cool method for finding a solution of the Poisson and Laplace equations is the method of images,
where we choose some imaginary charges put in some special positions such that the potential found
solves the PDE and therefore is unique.

Example 2.1.1 (A Toy Problem). Suppose that some point charge q is held at some distance d from a
grounded infinite conducting plane put at z = 0. What is V (ri) above the plane where there is q?
Note that it cannot be q/4πε0r since there is an induced charge on the surface of the plane where
Qi = −q.
We imagine removing the plane and setting a charge −q on the opposite side of the first charge. In
this case the potential will be simply the sum of the two potentials of the single charge, where

V (x, y, z) =
q

4πε0

(
1√

x2 + y2 + (z − d)2
− 1√

x2 + y2 + (z + d)2

)
Note that this potential goes to 0 at infinity and it’s 0 at z = 0 where there should be our plane. Due
to the uniqueness of the solution we have that this is the solution to the first problem. We can also
calculate the induced surface charge. We know that the surface charge will be proportional to the
normal derivative of the potential at z = 0 (see the general solution of Poisson’s equation), therefore,
since the normal to the plane is the ẑi versor, we have that

∂V

∂n
=
∂V

∂z
=

q

4πε0

(
z + d

(x2 + y2 + (z + d)2)
3/2

− z − d

(x2 + y2 + (z − d)2)
3/2

)
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Therefore, taking z = 0 and multiplying by −ε0 we have that the induced surface charge on the plane
is:

σ(x, y) = − qd

2π (x2 + y2 + d2)
3/2

Note that integrating σ over all the plane we get back that the total induced charge is −q as expected.
The method of images is a particular method that uses the symmetries of the problem in order

to carve out a solution to Poisson’s equation and it can’t be used in most situations. In those other
situations we need to actually solve the partial differential equation and find the potential through
integration, using a cool method that will be explained in the next section

§ 2.2 Separation of Variables

The main line of attack for Laplace’s equation is the separation of variables, i.e. taking the following
Ansatz for the potential V (x, y, z)

V (x, y, z) = f(x)g(y)h(z)

This Ansatz tho it’s only usable when either the surface charge distribution σ or V are defined on the
boundary of the set V , i.e. when our PDE has a defined boundary value problem with either Dirichlet
or Neumann conditions.
Take as an example the following 2D problem.

Example 2.2.1 (Two Infinite Planes). Suppose that there are two infinite plates (grounded) parallel to
each other and to the xz plane. One is at y = 0 and the other is at y = a. At x = 0 the left end of this
strip is closed by an infinitely vertical strip at some fixed potential V0(y). Find V (x, y, z) of the system.
Since the system is independent from z we gotta solve the following differential equation

∂2V

∂x2
+
∂2V

∂y2
= 0

Where we have the following boundary conditions
V (x, 0) = V (x, a) = 0

V (0, y) = V0(y)

lim
x→∞

V (x, y) = 0

We begin by separating the variables and writing V (x, y) = f(x)g(y). We substitute into the differential
equation and then divide by f(x)g(y) and we get

1

f(x)

d2f

dx2
+

1

g(y)

d2g

dy2
= 0

Note that now we have a sum of two functions depending on only one variable, i.e. X(x) + Y (y) = 0
This means that these functions must be equal, opposite in sign and constant, therefore the differential
equation decouples into two ordinary differential equations

d2f

dx2
= kf(x)

d2g

dy2
= −kg(y)
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These two equations are of easy solution, and therefore we get{
f(x) = Aekx +Be−kx

g(y) = C cos(ky) +D sin(ky)

Imposing the boundary conditions we get

lim
x→∞

f(x) = 0 =⇒ A = 0

g(0) = 0 =⇒ C = 0

The searched potential therefore has the following shape

V (x, y) = De−kx sin(ky)

Imposing V (x, a) = 0 we have the following constraint on the coupling constant k

V (x, a) = De−kx sin ka = 0 =⇒ kn =
nπ

a

Therefore, we finally have

Vn(x, y) = Dne
−nπx

a sin
(nπy

a

)
The general solution of our problem then will be a linear superposition of all solutions, therefore

V (x, y) =

∞∑
n=0

Cne
−nπx

a sin
(nπy

a

)
This is clearly the Fourier series solution of V , therefore the constants Cn will be found using Fourier’s
trick and multiplying on the left by sin(kn′y) and integrating on the expansion interval, which for us is
[0, a]. We have then, for V (0, a) = V0(y)

∞∑
n=0

Cn

ˆ a

0

sin

(
kπy

a

)
sin
(nπy

a

)
dy =

ˆ a

0

V0(y) sin

(
kπy

a

)
dy

Remembering that ˆ a

0

sin

(
kπy

a

)
sin
(nπy

a

)
dy =

a

2
δkn

We have

Cn =
2

a

ˆ a

0

V0(y) sin
(nπy

a

)
dy

I.e. Cn are the Fourier coefficients of the function V0(y). If V0(y) = V0 is constant the integral can be
solved quickly, and we get

Cn =
2V0
a

(1− cos(nπ)) =


4V0
nπ

n mod 2k = 0

0 n mod 2k + 1 = 0

And the complete solution is then

V (x, y) =
4V0
π

∞∑
n=0

e−
(2n+1)πx

a

2n+ 1
sin

(
(2n+ 1)πy

a

)
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§§ 2.2.1 Laplace Equation in Spherical Coordinates

What happens when the boundaries exhibit spherical symmetry? We change to spherical coordinates!.
The Laplacian in spherical coordinates is

∂i∂
i =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

The Laplace equation therefore becomes

∂i∂
iV =

1

r2

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂ϕ2
= 0 (2.6)

We suppose that the system has azimuthal symmetry, i.e. ∂ϕV = 0 and we solve the equation using
the separation of variables, supposing V (r, θ) = f(r)g(θ), then after dividing by V and multiplying by
r2 we get the following equation

1

f(r)

∂

∂r

(
r2
∂f

∂r

)
+

1

g(θ) sin θ

∂

∂θ

(
sin θ

∂g

∂θ

)
= 0

The equation can be then separated. Taking c1 = −c2 = l(l + 1) We get two ordinary differential
equations 

d

dr

(
r2

df

dr

)
= l(l + 1)f(r)

d

dθ

(
sin θ

dg

dθ

)
= −l(l + 1) sin θg(θ)

(2.7)

The first equation has a power series solution, while the second is a special differential equation solved
by the Legendre polynomials Pl(cos θ), a complete and orthogonal set of polynomials defined by the
recursive relation using the Rodrigues’ formula

Pl(x) =
1

2ll!

dl

dxl
[
(x2 − 1)l

]
(2.8)

The solutions for the two differential equations are then f(r) = Arl +
B

rl+1

gl(θ) = Pl(cos θ)
(2.9)

The potential will then be, after superposition of all solutions in l, the following

V (r, θ) =

∞∑
l=0

(
Alr

l +
Bl
rl+1

)
Pl(cos θ) (2.10)

An example of using this solution is the following

Example 2.2.2 (A Hollow Sphere). Consider a hollow sphere with radius R, find V inside the sphere
considering that the surface of the sphere is at some fixed potential V0(θ).
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The differential equation that must be solved here is the following
∂i∂

iV (r, θ) = 0

V (θ,R) = V0(θ)

lim
r→0

V (r, θ) = 0

From the third condition we need that Bl = 0, if not the potential would blow up at the center,
therefore the first sketch of the solution will be from the general solution (2.10)

V (r, θ) =

∞∑
l=0

Alr
lPl(cos θ)

From the second equation we have that at R it must be equal to V0(θ). From (2.8) we can also get,
using induction, the completeness relation for Pl.

ˆ 1

−1

Pl(x)Pk(x)dx =

ˆ π

0

Pl(cos θ)Pk(cos θ) sin θdθ =
2

2l + 1
δlk (2.11)

Therefore, using Fourier’s trick to the potential we found, we get that

AlR
l 2

2l + 1
δlk =

ˆ π

0

V0(θ)Pk(cos θ) sin θdθ

This implies that the coefficients Al we’re searching are

Al =
2l + 1

2Rl

ˆ π

0

V0(θ)Pl(cos θ) sin θdθ

The complete potential inside the sphere is then

V (r, θ) =

∞∑
l=0

2l + 1

2

( r
R

)l
Pl(cos θ)

ˆ π

0

V0(θ)Pl(cos θ) sin θdθ

§ 2.3 Multipole Expansion of the Potential

§§ 2.3.1 Electric Dipoles

It’s clear that from our calculations, at large distances from the distribution the electrostatic potential
behaves approximatively like the potential of a single point charge

V (r) ≈ q

4πε0

1

r

Note that if Qtot = 0 we don’t have necessarily that V ≈ 0 at large distances! Take as an example
the electric dipole. Take two point charges with charge ±q and position them at some distance d
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between them. Writing r+ and r− as the distances of each charge from the point considered we can
immediately write the potential of such system by superimposing the potentials of each single charge

V (r) =
q

4πε0

(
1

r+
− 1

r−

)
Noting that the distance d between the two charges and the distance from the origin of each writes a
triangle, we can write

r2± = r2 +
d2

4
∓ rd cos θ = r2

(
1 +

d2

4r2
∓ d

r
cos θ

)
In our case r± >> d since we’re far from the system, and therefore, approximating to the first order in
d
r

1

r±
≈ 1

r

(
1± d

2r
cos θ

)
Therefore

1

r+
− 1

r−
≈ d

r2
cos θ

Which, by substitution into our previous definition of the potential, gives

V (r) =
1

4πε0

qd cos θ

r2
(2.12)

The term on the right, qd, is known as the electric dipole moment of the distribution p.
In general, a potential can be approximated in a multipole series. The first term (the dominant one) is
known as the monopole term of the potential, and it’s equal to the potential of a single point charge

Vmon(r) =
Q

4πε0r
=

1

4πε0

1

r

˚
V

ρ(r̃i)d3x̃i (2.13)

If the total charge Q = 0, as for the previous case, the dominant term will be the dipole term of the
potential

Vdip(r) =
1

4πε0

pir̂i
r2

=
1

4πε0

r̂i
r2

˚
V

r̃i cos θρ(r̃i)d3x̃ (2.14)

The vector pi is what we have defined as the dipole moment of the system, which is equal to

pi =

˚
V

r̃iρ
(
r̃i
)
d3x̃ (2.15)

For the previous case of the two charges, we easily have

pi = qri+ − qri− = qdi (2.16)

Where di is the vector connecting the two charges.
Note that in the case that the dipole moment of the potential is zero, there will be other terms that will
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dominate the expansion, such as quadrupole terms, octupole terms and so on. The general formula for
finding these coefficients can be extracted from the general shape of the potential in integral form

1

4πε0

˚
V

ρ(r̃i)

‖ri − r̃i‖
d3x̃

Using ∥∥ri − r̃i
∥∥ = r2

(
1 +

(
r̃

r

)2

− 2

(
r̃

r

)
cos θ

)
And supposing

∥∥ri − r̃i
∥∥ = r

√
1 + ε, where we choose ε as follows

ε =

(
r̃

r

)(
r̃

r
− 2 cos θ

)
We have, for 1 + ε→ 0, which is the case for long distances from the potential

1

‖ri − r̃i‖
≈ 1

r

(
1− 1

2
ε+

3

8
ε2 − 5

16
ε3 + · · ·

)
(2.17)

Rewriting in terms of r̃/r, cos θ, we have on the right a series of cosines, which is known as the
Legendre Polynomials in cos θ Pl(cos θ), which are the solutions to the angular part of the Laplace
equation in polar coordinates. The function on the left of the series approximation is known as the
generating function of the polynomials.

1

‖ri − r̃i‖
=

1

r

∞∑
l=0

(
r̃

r

)l
Pl (cos θ) (2.18)

In general, we have then that the complete multipole expansion of the electrostatic potential is

Vmult(r) =
1

4πε0

∞∑
l=0

1

rl+1

˚
V

r̃lPl (cos θ) ρ
(
r̃i
)
d3x̃ (2.19)

Note that this gives consistently that the potential goes as 1/r for monopoles, 1/r2 for dipoles, 1/r3

for quadrupoles and so on, and approximate charge distributions at great distances as a sum of simpler
problems, a single point charge for the monopole, two point charges for the dipole, four point charges
in a square for a quadrupole and so on.
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3 Electricity in Matter

§ 3.1 Polarization

So far we dealt with electrostatics with conductors only. We begin to consider non-conducting materials,
which are known as dielectrics.
What changes from electrostatics with conductors? Experimentally it can be seen using capacitors.
Consider a parallel plane capacitor on which we put a charge Q and then fill the space between the
places with some isotropic and homogeneous dielectric.
It can be seen that if V0 is the potential without the dielectric, then in this case ∆V < ∆V0. From the
definition of capacitance then

C > C0

Experimentally it’s seen that, independently from the shape of the capacitor

C

C0
= εr (3.1)

This is known as the relative dielectric constant, which is from what we have seen greater than 1 and
non-dimensional.
We can then write

C = εrC0 = εr
ε0S

d
=
εS

d
(3.2)

Where we defined ε = εrε0, which is the dielectric constant of the medium.
Using the known formulas for the capacitance we get that ∆V = ∆V0/εr and therefore E = E0/εr,
and this phenomenon can be explained as if we added a surface charge distribution on the two plates,
and therefore

E =
σ + σ′

ε0
, E0 =

σ

ε0

I.e.

σ + σ′ =
σ

εr
=⇒ σ′ =

1− εr
εr

σ

We decide to cleverly distribute this charge on the positively charged plate as a negative charge
distribution and vice versa on the other plate.
These charges are due to the polarization of the medium.

37
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We also have that if we put a point charge inside a dielectric we get a new “scaled” Coulomb law

E =
E0

εr
=

q

4πε0εr

1

r2
=

q

4πε

1

r2
(3.3)

§§ 3.1.1 The Polarization Field

Consider now an atom A. An atom in general it’s a neutral object composed of a positively charged
nucleus with charge q = Ze and Z electrons with charge q = −Ze Inserting it into a constant electric
field we have that if it’s not big enough to ionize the atom (making a conductor) it will move the
nucleus and electrons till they get to a stable point, generating a dipole moment pi. This process is
known as polarization of the medium.
It’s clear that this dipole moment is linearly coupled to the electric field with the following relationship

pi = αEi (3.4)

The coupling constant α is known as the atomic polarizability and depends on the chosen atom A. For
anisotropic media, like molecules, this coupling constant becomes the atomic polarizability tensor, with
the following relation

pi = αikE
k (3.5)

Consider now a molecule with a “built in” polarization, (i.e. polar molecules) like water. What happens
when we apply an E field?
If E is uniform then the force on the positive charge cancels the one on the negative, F+ = −F−,
however there is still a torque to consider

τ i = εijkr
jF k+ + εijkr

jF k− (3.6)

Since ri = ±di/2 we have, substituting F± = ±qE

τ i =
q

2
εijkd

jEk +
q

2
εijkd

jEk

This is nonzero, in fact we have
τ i = qεijkd

jEk = εijkp
jEk (3.7)

I.e., since pi = qdi is the dipole moment of the molecule (which is nonzero), there is an induced torque
when applying the field, which rotates the molecules until pi ‖ Ei, and therefore τ i = 0.
Note that if the field is nonuniform we won’t have anymore F+ = −F−, and we will have a net force
applied to our dipole (the molecule)

F i = F i+ + F i− = q∆Ei

For small dipoles, i.e. for small ∆Ei, we can approximate it to

∆Ei ≈ di∂iE
j

And therefore the net force applied on the dipole is

F i = qdj∂jE
i = pj∂jE

i (3.8)
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Now consider an element with an amount of molecules of the order of 1023. All these tiny dipoles
induced from the electric field or from the single molecule itself will sum up to a general dipole field,
called the polarization field of the medium. By definition we have, that if V is some volume then

P i = lim
V→0

1

V

N∑
α=1

pi(α) =
〈
pi
〉 dN
dV

(3.9)

Here we have indicated with
〈
pi
〉
the average dipole moment of the system.

Now let’s write the potential for a single molecule. Since the molecule can be approximated as a dipole,
we know already then that

V (r) =
pir̂i

4πε0r2

From our previous definition of polarization field, then, integrating over all the dielectric and using
dV → d3x we have

Vpol(r) =
1

4πε0

˚
V

P ir̂i
r2

d3x̃ (3.10)

Looking closely inside the integral, we can rewrite an identity inside that will ease our calculations, in
fact

r̂i
r2

=
∂

∂xi

(
1

r

)
With a clever trick then we can write, using product rules

P i
∂

∂xi

(
1

r

)
=

∂

∂xi

(
P i

r

)
− 1

r

∂P i

∂xi

Therefore, reinserting into our definition of V and applying Stokes when possible, we have

Vpol(r) =
1

4πε0

[‹
∂V

P in̂i
r

ds−
˚

V

1

r
∂iP

id3x

]
(3.11)

This potential resembles a lot the potential given from a volumetric charge plus some surface charge in
some closed bound set, like

Vv(r) =
1

4πε0

[‹
∂V

σ(ri)

r
ds+

˚
V

ρ(ri)

r
d3x

]
And, reinterpreting the polarization field as a field generated by a bound charge, we can define two
simple equations that will make our V similar to Vv. Then, if{

P in̂i = σb

∂iP
i = −ρb

(3.12)

And defined as Vσ, Vρ the two potentials generated by this “bound charge”, we have that the total
potential generated by a polarized medium is

Vpol(r
i) = Vσ(r

i) + Vρ(r
i) (3.13)
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A nice observation from the second equation of (3.12) is that if the dielectric is homogeneous, the
dipole moments inside the object will average to 0, and therefore P i will be independent from the
position inside the dielectric, i.e.

∂iP
i = 0 = −ρb

And all bound charges will be on the surface with distribution σb

§ 3.2 Perfect Dielectrics

§§ 3.2.1 Local Electric Field

So far we defined a dielectric as a cluster of molecules and atoms. It’s clear so far that each atom
and molecule has its little microscopic ei field, therefore the electric field inside a dipole can change
greatly between points, depending on where we measure the field, if near or far away from an electron
(considering that the distances are d ≈ 10−10 m “far” can be a negligible quantity in relation to the
dimension of the dielectric).
Take now a really small part of the dielectric, in this small element of dielectric we will have inside some
sphere S molecules which are polarized when an external field Ei gets applied.
We consider 2 major cases:

1. There are no molecules inside S and therefore there will be only the bound surface charge
σb = P in̂i with n̂i being the outward normal of the conductor

2. There are molecules inside S and therefore, there will also be a field generated by the polarization
of the molecules

The field at the center of S, EiS will then be the sum of these three fields we considered, the external
polarizing field Ei, the field Ẽi generated by the bound surface charge, and the field Eidip generated
by the molecular dipoles. Therefore

EiS = Ei + Ẽi + Eidip (3.14)

Due to the homogeneity of the dielectric we must have that ∂iP
i = 0, and therefore the field generated

by the dipoles and the bound surface charge must balance themselves, Ẽi + Eidip = 0.

As we said before the molecule itself generates a small microscopic field ei, therefore we define a local
field or Lorentz field inside the dielectric by subtracting this ei. We have that this field Eiloc is

Eiloc = Ei + Ẽi + Eidip − ei = Ei + Ẽi + Ei (3.15)

Where we defined Ei = Eidip − ei. What’s this field then?

We begin by evaluating Ẽi, which is the field generated by the surface charge. Then by definition of
the Ei field itself we can immediately say

dẼi =
1

4πε0

σbr̂
i

r2
ds

Due to the symmetries imposed on the system (homogeneity of the dielectric,…) we have that dẼz =

−
∥∥∥dẼi∥∥∥ cos θ, and therefore, remembering that σb = P in̂i = −P cos θ (n̂i is the outward normal)

dẼz = −σb cos θ
4πε0r2

ds
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Since ds = r2dΩ we then have

dẼz = −P cos2 θ

4πε0
dΩ (3.16)

Integrating, we have

Ẽz = − P

4πε0

ˆ 2π

0

dφ

ˆ π

−π
cos2 θ sin θdθ =

P

2ε0

ˆ 1

−1

cos2 θd (cos θ) =
P

3ε0
(3.17)

Therefore, we firstly found that

Ẽ =
P

3ε0
(3.18)

We only miss evaluating the field generated by the dipoles minus the microscopic molecular electric
field. We only need to know what’s the field generated by an isotropic dipole.
We know already that an electric dipole has the following scalar potential

V (r) =
pir̂i

4πε0r2
=

piri
4πε0r3

Taking the gradient we have

∂V

∂xi
=

1

4πε0

(
1

r3
∂

∂xi

(
pjrj

)
+ pjrj

∂

∂xi

(
1

r3

))
Expanding and writing explicitly the gradient of a radial function with the usual formula, we have

∂V

∂xi
=

1

4πε0

[
1

r3

(
∂pj

∂xi
rj + pj

∂rj
∂xi

)
− 3(pjrj)r

i

r5

]
Using ∂ipj = 0 and ∂irj = δij we have that

∂

∂xi

(
pjrj

)
= pjδij = pi

And therefore
∂V

∂xi
=

1

4πε0

(
pi

r3
− 3(pjrj)r

i

r5

)
Writing r̂i = ri/r we have finally, multiplying by -1

Ei = − ∂V

∂xi
=

1

4πε0r3
(
3
(
pj r̂j

)
r̂i − pi

)
(3.19)

In our special isotropic case inside a little sphere S, inside a dipole itself we have that this field will be
oriented on the z axis, with a constant dipole moment of the α−th molecule p(α), then

E = Ez =

N∑
α=1

p(α)

(
3z2(α) − r2(α)

)
4πε0r(α)5

(3.20)
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(Note that here we took the opposite process and rewrote the non normalized vector ri for ease of
calculation).
Since the p(α) are uniformly distributed around the dielectric we must have that

N∑
α=1

x2(α)

r5(α)
=

N∑
α=1

y2(α)

r5(α)
=

N∑
α=1

z2(α)

r5(α)
=

1

3

N∑
α=1

r2α
r5(α)

(3.21)

Simply inserting it back into the definition of E we get then E = 0.
The final result for the Lorentz field (the local field inside a dielectric), considering all the microscopic
variables, is

Eiloc = Ei +
P i

3ε0
(3.22)

I.e. it only depends on the external applied field Ei and the polarization of the dielectric P i (divided by
3ε0)

§§ 3.2.2 Susceptibility and the Clausius-Mossotti relation

So far we can finally conclude that with a good approximation the polarization of the dielectric P i must
depend on this local field Eiloc, which basically decides how a certain material gets polarized. Therefore,
using the definition of P i and defining the numerical volumetric density of molecules dN

dV = n

P i = n
〈
pi
〉
= nαEiloc (3.23)

§§§ 3.2.2.1 Gases and Vapors

Let’s now consider different relations between the Lorentz field and the polarization field. The easiest
case to consider is a gas. In this case, if we take the perfect gas approximation, i.e. the density is low
enough, we can say that the molecules are too far apart in order for their fields to interact between
each other, therefore Eiloc ≈ Ei.
We also have to consider thermal excitations of the molecules of the gas, and therefore the coupling
constant αmust be split in two parts. One, αd, dependent on the molecule itself, and one αt depending
on the temperature of the gas and the specific polarization of the molecule

α = αd + αt = αd +
p20
3kT

P i = nαEi = n
(
αd +

p0
3kT

)
Ei

We then define the electric susceptibility of the medium χ via the following relation

P i = ε0χE
i (3.24)

Therefore, for a gas

χ(T ) =
n

ε0

(
αd +

p0
3kT

)
= εr − 1 (3.25)

Where εr is the relative permittivity of the substance, as we will see later
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§§§ 3.2.2.2 Liquids and Amorphous Substances

For liquids everything changes a little bit. Since the density isn’t low enough, the molecules will be
packed and their local field will comprise of the external field applied plus the field generated by the
polarization. We have

Eiloc = Ei +
P i

3ε0

P i = nαEiloc

Then, by mere substitution

P i = nα

(
Ei +

P i

3ε0

)
Solving for P i (bringing it on the left and taking it outside the product with the constants) we have
then

P i =
nα

1− nα
3ε0

Ei = ε0χE
i (3.26)

Now, solving for α, we have after some algebra, the Clausius-Mossotti relation, which ties α, a
microscopic quantity, to εr via χ, a macroscopic quantity

α =
ε0
n

3(εr − 1)

εr + 2
(3.27)

§§§ 3.2.2.3 Anisotropic Solids, Electrets and Piezoelectricity

In general when the solid is anisotropic, as we defined before the polarizability is not a simple constant
but a tensor, where

P i = αijE
j (3.28)

For other materials, α can also be nonlinear. Take for example electrets. An electret or a ferroelectric
material is a material which keeps a permanent polarization inside after turning off the external field,
showing magnet-like behavior, like hysteresis. In this case α is non-unique.
Another example of a non-linear relation comes from piezoelectric materials. Piezoelectricity is a
phenomenon given by substances that polarize under mechanical pressure, like quartz. In these
materials α must depend on the mechanical pressure itself.

§§ 3.2.3 The Electric Displacement Field

So far, adding the theory on dielectrics, we can build multiple equations describing the polarization P i,
bound charges ρb, σb and the relation between P i and Ei.
From Gauss’ law we know that the divergence of the Ei field is equal to the (total) volumetric charge
divided by ε0. With dielectrics we then gotta consider also bound charges, therefore

∂iE
i =

ρ+ ρb
ε0

Remembering that the bound volumetric charge is tied to the polarization with the differential equation

∂iP
i = −ρb
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We then have

∂iE
i =

ρ

ε0
− 1

ε0
∂iP

i

Multiplying by ε0 and bringing ∂iP
i on the left and using the linearity of ∂i we have

∂i
(
ε0E

i + P i
)
= ρ

We define the vector on the left as the Electric Displacement field Di

Di = ε0E
i + P i (3.29)

And we immediately get from the previous equation, the equivalent Gauss law for this field

∂iD
i = ρ (3.30)

With this field, the first and third Maxwell equations in dielectrics become two coupled partial differential
equations for two different fields, Ei and Di{

∂iD
i = ρ

εijk∂
jEk = 0

(3.31)

This is solvable only if we know the relations between Di and Ei, or in general how P i is related to Ei.
In a perfect dielectric we have that the polarizability tensor αij is independent of the position, time and
electric field (note that a gas cannot be a perfect dielectric since α depends on the temperature).
We will study only isotropic perfect dielectrics, also known as linear dielectrics, where αij = αδij , and
we can write for these, as we saw before

P i = αEi = ε0χE
i (3.32)

Therefore, from our previous definition of Di and noting that χ = εr − 1,

Di = ε0E
i + P i = ε0E

i + ε0χE
i = ε0 (1 + χ)Ei = ε0εrE

i (3.33)

Using ε = ε0εr we have then, that in linear dielectrics the Di field is linearly dependent on the Ei field,
where

Di = εEi (3.34)

Note that outside a dielectric (i.e. in free space) we must have P i = 0, and therefore

Di
f = ε0E

i
f (3.35)

Maxwell’s equations for a linear dielectric then modify to a much simpler variant which differs from the
usual electrostatic maxwell equations by simply setting ε0 → ε ∂iE

i =
ρ

ε

εijk∂
jEk = 0

(3.36)

Note that in free space
∂i
(
ε0E

i
f

)
= ρ
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And in a dielectric
∂i
(
εEi
)
= ρ

Then, we must have
∂i
(
εEi
)
= ∂i

(
ε0E

i
f

)
Integrating and using the first principle of the calculus of variation then it’s obvious that

ε0E
i
f = εEi =⇒ Ei =

1

εr
Eif (3.37)

Where we used ε = εrε0. This is the exact same experimental result that we found empirically before
with the parallel plate capacitor

§ 3.3 Maxwell Equations for Electrostatics in Linear Dielectrics

We can now begin defining all the various laws we derived for electrostatic fields in free space in
presence of dielectrics, using the linear relations that we found before.
From Gauss’ law for the Di field integrating we immediately have

˚
V

∂iD
id3x =

‹
∂V

Din̂ids = Qloc =

˚
V

ρd3x (3.38)

And, analogously, the Coulomb theorem for surface charges

Di = σn̂i (3.39)

Note that we didn’t indicate the total charge inside V , QV , since we’re not considering the polarization
bound charge Qb! We’re only considering the “free” charge, which is not due to polarization effects
of the dielectric.
We have a bit of luck tho when dielectrics are linear, then with a simple multiplication of the third
Maxwell equation by ε we also get a coupled set of equations for the Di field{

∂iD
i = ρ

εijk∂
jDk = 0

(3.40)

Due to the clear linear relations between Ei and P i it’s also possible to know the polarization inside
the medium, which is not always obvious and measurable (it’s clear only for perfect dielectrics). Since
Ei = Di/ε0εr and χ = εr − 1 we have

P i = ε0χE
i = ε0(εr − 1)

Di

ε0εr
=
εr − 1

εr
Di (3.41)

Example 3.3.1 (A Charged Dielectric Sphere). Take as an example a sphere composed of dielectric
material of radius R with charge Q.
From Gauss’ theorem for Di we have, for a spherical Gaussian surface with r > R

Φ
(
Di
)
= 4πRD = Q =⇒ D =

Q

4πr2
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Since Ei = ε−1Di and P i = ε0χE
i we have

P i = ε0χ
Di

ε
=
ε0(εr − 1)

ε0εr
Di =

(
εr − 1

ε3

)
Q

4πr2
r̂i

And

Ei =
Q

4πεr2
r̂i

The bound polarization charge distributions are then found using the known formulas, and therefore
for the surface polarization charge

σb = P in̂i = −P ir̂i = −εr − 1

εr

Q

4πR2
= −εr − 1

εr
σ

The total polarization charge is

Qb = 4πR2σb = −εr − 1

εr
Q

And therefore the total charge is

Qt = Q+Qb = Q

(
1− εr − 1

εr

)
=
Q

εr

While, for the volumetric polarization charge we have

ρb = −∂iP i =
1

r2
d

dr

(
r2P r

)
= − 1

r2
d

dr

(
εr − 1

εr

Q

4π

)
= 0

I.e. ρb = 0 as we expected. Since the dielectric is neutral there also must be a charge −Qb > 0 at
r → ∞.

Example 3.3.2 (A Parallel Plate Capacitor). This example is quite simple. We know from Gauss’ theorem
for the surface charge and Di that

D = σ

Therefore

E =
D

ε
=
σ

ε
The polarization field instead is

P = ε0χE = χε0
σ

ε
=
εr − 1

εr
σ

And, the polarization surface charge (remembering that we take the outer normal) is

σb = P in̂i = −P = −εr − 1

εr
σ

The potential difference between the plates is simply

∆V = Ed =
D

ε
d =

σ

ε
d = σS

d

εS
= Q

d

εS
=
Q

C

Note that

C =
Sε

d
= εrC0

As we expected.
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§§ 3.3.1 Boundary Conditions

Suppose now that we have multiple dielectric regions. On the boundaries of these regions, passing
from one dielectric to another, it’s clear that the fields Di, Ei have discontinuities and therefore we
cannot use the differential equations anymore.
We might try by either solving the equations for every dielectric region, or instead by directly solving
Poisson’s equation with appropriate boundary conditions for each dielectric.
While we cannot use the differential equations (local) in the boundaries of the dielectrics we instead
have that the integral relations still hold, where

‹
Din̂ids = 0

‹
Ein̂ids 6= 0

(3.42)

These imply that

1. The dielectric is neutral, σ = 0

2. The dielectric is polarized, σb 6= 0

Considering an infinitesimal cylinder centered on the boundary of two different dielectric regions, we
have that inside the cylinder the flux of D must be 0, i.e.

Di
1n̂

1
ids+Di

2n̂2ds = 0

Therefore, noting that n̂i1 = −n̂i2 we get(
Di

1 −Di
2

)
n̂1ids = 0 =⇒ Dn1 = Dn2 (3.43)

While, for E, using Dn1 = ε1En1
En1
En2

=
ε2
ε1

6= 1 (3.44)

Considering that εijk∂
jEk = 0 we can write instead, for the line integral on the closed curve describing

the cylinder instead that
Et1 = Et2

Dt1

Dt2
=
ε1
ε2

(3.45)

The boundary conditions between two dielectrics then become the following connection relations

Et1 = Et2, Dn1 = Dn2 (3.46)

Example 3.3.3 (Parallel Plate Capacitor with 2 Dielectrics Inside). Consider now a parallel plate capacitor
with surface area S, composed inside of two dielectrics, one thick d1 with permeability ε1 and one thick
d2 with permeability ε2. If we smear on the plates a charge Q we have that by our previous definitions
that D only sees the charge Q but not the polarization charges, that E sees. Since the field is normal
to the plates we must have that between the two dielectrics

D1 = D2 = D
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And, for what we’ve seen before

D = σ =
Q

S

The potential difference is then

∆V = E1d1 + E2d2 = D

(
d1
ε1

+
d2
ε2

)
=
Q

S

(
d1
ε1

+
d2
ε2

)
Note that

∆V

Q
=

1

C
=

d1
ε1S

+
d2
ε2S

=
1

C1
+

1

C2

I.e. this parallel plate capacitor works exactly as a series of two capacitors! From what we’ve seen
before we can write then the potential difference of these “2” capacitors

∆V1 = E1d1 =
D

ε1
d1

∆V2 = E2d2 =
D

ε2
d2

Or noting that

∆V =
ε1d2 + ε2d1

ε1ε2
D

We can write

∆V1 =
ε2d1

ε2d1 + ε1d2
∆V

∆V2 =
ε1d2

ε2d1 + ε1d2
∆V

§ 3.4 Electrostatic Energy with Dielectrics

We know already that the electrostatic energy in free space is given by the following formula

U =
1

2

˚
R3

ρV d3x

In presence of dielectrics this still holds if we consider that ρ = ρb + ρf where ρb, ρf are the bound
polarization charges and the free charges respectively.
Remembering that ∂iD

i = ρ and integrating by parts, we get for a volume V

U =
1

2

˚
V

∂

∂xi
(
DiV

)
d3x−

˚
V

Di∂iV d3x (3.47)

Sending V → R3 we get that the first integral is zero (it becomes a surface integral with Stokes’
theorem and goes to 0), therefore, for a dielectric, remembering that −∂iV = Ei

U =
1

2

˚
R3

DiEid
3x (3.48)
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Which implies that the volumetric energy density for a dielectric is

u =
1

2
DiEi (3.49)

For a perfect isotropic dielectric Di = εEi, therefore

u =
1

2
DiEi =

ε

2
E2 =

1

2

D2

ε
(3.50)

Which, if integrated, give the exact identical result for free space if we substitute ε0 → ε
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Part II

Magnetostatics

51





4 The Magnetic Field

§ 4.1 Electric Currents

As for all materials (like dielectrics) we can see conductors as crystalline solids with atoms positioned at
the nodes of the crystalline reticle, the valence electrons are free to roam on on all the volume of the
conductor via thermal agitations.
Classically, this gas of electrons is in thermal equilibrium with kinetic energy

1

2
me

〈
v2
〉
=

3

2
kT

This implies a classical root mean square velocity of

vt =
√
〈v2〉 =

√
3kT

me
≈ 120

km

s

If we add over this an electric field we get an ordinate motion of charges, that we call current.
Consider now a conductor where charges are moving and consider a generic section of it, if in this
section S in some time interval dt a charge dq passes through that, we define the current I as

I =
dq

dt
(4.1)

The units of current in the SI are therefore

[I] =
[Q]

[t]
= 1

C

s
= 1 A (4.2)

These units are known as Ampères.
In a conductor, if a current is present, we have that if we have two sections with different potentials
VA and VB the work needed to move charges between the plates is

dW = VAdq − VBdq = I∆V dt =⇒ dW

dt
= I∆V (4.3)

This represents the work employed by the electric field for moving the charges.
In general the electric field will induce a force F ie , which, for Newton’s second law will be

F ie = qEi = mai =⇒ ai =
qEi

m
(4.4)

53
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Remembering that for electrons q = −e we have that the acceleration will be on the opposite direction
from the field. The average velocity of electrons in a time ∆t will then be, by definition

〈
vi
〉
=

1

2
∆vi = −eE

i

2m
∆t

This, between collisions, that happen on average in a time ∆t = λ/vt, where λ is the mean free path
of the electron and vt is the thermal velocity of the electrons. Therefore

〈
vi
〉
= − e

2m

λ√
3kT
m

Ei = −e λ√
3kTm

Ei

I.e.
〈
vi
〉
∝ Ei.

Formally for a group of charges q inside a conductor where current is flowing, taken a differential
cross-sectional surface ds we have that the charge flowing through that is, if n is the volumetric density
of charges

dQ = qn
〈
vi
〉
n̂idsdt

We define the current density as the vector J i, where

J i = nq
〈
vi
〉

Then, we have

dQ = J in̂idsdt (4.5)

Therefore, the charge through this flux tube is

dI =
dQ

dt
= J in̂ids

Integrating, we get

I =

ˆ
dI =

‹
S

J in̂ids (4.6)

It’s clear that the current density then has the following units

[J ] = [n][q][〈v〉] = m−3 · C ·ms−1 =
A

m2

Considering that the average velocity of the charges is 〈v〉 ∝ E, since it’s collinear with the Ei field
(with direction depending on the sign of the charge) we have that with a special kind of conductors
(known as Ohmic conductors) we can define what is known as Ohm’s law which ties directly current
flow density to the electric field applied

J i = σEi (4.7)

σ is known as the electric conductibility, and indicates how much one is able to move charges applying
an electric field
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§§ 4.1.1 Charge Conservation

Consider a bounded volume V with inside it some variable charge Q(t). Since charge doesn’t pop up
randomically into existence (yet) we have that if Q(t) changes there must be some charge going inside
or coming outside V depending from the current itself. Then, if the current goes out, the charge must
reduce. Then

−dQ = Idt =

‹
∂V

J in̂idsdt (4.8)

In general we can write Q as a volume integral, and deriving the previous equation with respect to
time, we have (bringing inside the integral the time derivative)

dQ

dt
=

˚
V

∂ρ

∂t
d3x = −

‹
∂V

J in̂ids

Using Stokes’ theorem and bringing everything to the left then we have that

˚
V

(
∂ρ

∂t
+
∂J i

∂xi

)
d3x = 0 (4.9)

This implies the continuity equation
∂iJ

i + ∂tρ = 0 (4.10)

We define now stationary currents as currents for which ∂tρ = 0, i.e., where the continuity equation
becomes

∂iJ
i = 0 (4.11)

§ 4.2 Lorentz Force and Magnetic Fields

§§ 4.2.1 Lorentz Force Law

Consider a small (closed) test circuit where there is a stationary current and a mobile rod long dl with
its tangent in the same direction of I. If we put it in a permanent magnetic field or next to cables
where current is passing through we have that it will experience a force dF such that

dF ∝ I, dF ∝ dl, dF i ⊥ t̂idl (4.12)

Noting that there is a direction for which F = 0 which coincides with the direction of the magnetic
needle in that point we can write what is known as Lorentz’s force law, which introduces a new field,
the magnetic induction field Bi which is oriented as the magnetic needle in the point considered

dF i = Iεijk t̂
jBkdl (4.13)

Rewriting It̂idl in terms of the current density J i we have

It̂idl = Jt̂idSdl = J id3x

Therefore
dF i = εijkJ

jBkd3x (4.14)
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Or, writing J i = nqvi and integrating

F i =

˚
V

εijkJ
iBkd3x = q

˚
V

εijkv
iBknd3x

Writing again nd3x = dN we have then integrating the final and better known shape of Lorentz’s
force law

F i = qεijkv
jBk (4.15)

Note that by this definition, we have that magnetic forces do no work. In fact we have

dW = F idxi = qεijkviv
jBkdt = 0 (4.16)

Note that this is obvious by the definition of the triple product εijkviv
jBk. In boldface notation this

can be written as a determinant of the matrix which has as colums the vectors vi, vj , Bk, therefore
since two colums are equal, it must be zero by definition of the determinant.
What’s the unit for magnetic fields in the SI system?

[B] =

[
F

qv

]
=

kg ·m · s−2

C ·m · s−1
= kg · C−1s−1 =

Vs

m2
=

Wb

m2
= T (4.17)

The unit Wb is known as Weber and it’s a measure of magnetic flux, while the one on the right
measures the irradiance of the field and is known as Tesla.
The total force on an electric charge can then be written as a sum of the Coulomb force and the Lorentz
force, where

F i = qEi + qεijkv
jBk (4.18)

It’s clear that if v = 0 there won’t be any Lorentz force, and therefore Bi acts only on moving charges.
Do another supposition: Take a set of moving charges with current I. If I do a relativistic frame change
and I move to a frame where the charges have v = 0 then B disappears magically. It means that there
must be an electromagnetic field which transforms covariantly with respect to Lorentz transformations,
which can be seen as a mix of magnetic and electric fields.
Basically, the magnetic field can be seen as some kind of “relativistic effect” on charges

§§ 4.2.2 Motion of Charges in Magnetic Fields

Consider a charge with some velocity v in a magnetic field, we have then that in absolute value we
have a centripetal force

F = qvB

Since the force is centripetal the motion will be circular on a plane, take it as the xy plane. In this plane

mv2

R
= qvB =⇒ v

R
=
qB

m
= ω

ω is the frequency of the circular motion, and the radius is

R =
mv

qB

With period T = 2πm/qB independent from the speed of the particle, and momentum p = mv = qBR.
If the initial velocity goes along the z axis it’s clear that the motion then is elicoidal.
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Let’s write this properly. Writing v → vi in vector form, and Bi = Bδi3 we have evaluating the cross
product (use your preferred method, note that using Levi-Civita symbols it’s easy to find when it’s
positive in 3 dimensions. Knowing that it’s positive for even permutations, you can write 12312 as the
first row and then writing 3 subsequent numbers removing the first one of the row. You’ll get then
three rows with values 123,231,312 which are all the positive elements of εijk. obviously the negative
ones will be 132,213,321 and the cross product vector can be then be written easily in terms of the
components of the product of the two vectors multiplied, viBj in our case. Another way is to write the
two vectors one over another and then work more or less like if it’s a determinant starting from above.
When we hide the x component of the first vector we will have the x component of the product, when
we hide the second we will have minus the y component and at last the z coponent. Another way is to
write a determinant in vector quaternion notation as follows

εijka
jbk → det

∣∣∣∣∣∣
ê1 ê2 ê3
ai a2 a3

b1 b2 b3

∣∣∣∣∣∣
Remember that each way is valid as long as you get the right answer, especially for cross products
which have their particularities) After this long parenthesis, we calculate our cross product with our
favorite method, and we get, (Remember that Bi ‖ z, i.e. Bi = Bδi3 this can ease calculations)

m
dvi

dt
= qεijkv

jBk = qBεijkv
jδk3 → qB

 vy
−vx
0


Note that dv3

dt = 0 since the B field is acting only in the xy plane. Thendvx

dt
dvy

dt
dvz

dt

 =
qB

m

 vy

−vx
0

 (4.19)

Rewriting everything as a 2D problem in the xy plane and remembering that vz = v0 is constant and
equal to the initial value of the velocity, we have(

dvx

dt
dvy

dt

)
=
qB

m

(
vy

−vx
)

(4.20)

From (4.20), deriving again we get (
d2vx

dt2
d2vy

dt2

)
=
qB

m

(
dvy

dt

−dvx

dt

)
Connecting this one to (4.20) we have two identical differential equations(

d2vx

dt2
d2vy

dt2

)
=

(
qB

m

)2(dvx

dt
dvy

dt

)
(4.21)

Solving these equations and inserting the initial values we have the final solutionsvxvy
vz

 =

 v0⊥ cos(ωt)
−v0⊥ sin(ωt)

v0

 (4.22)

And this is the equation of an elicoidal motion, as we expected.
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§§ 4.2.3 Mechanical Actions on Circuits

We know already a formula for magnetic forces, given from Lorentz’s force law. In its differential form
we have Laplace’s second formula

dF i = Iεijkdl
jBk (4.23)

Where dli = t̂idl.
We always consider here steady currents, therefore in all our circuits there will be current generators
that keep I constant. For a rigid circuit we have that the total force exerted on the charges is

F i = I

˛
εijkdl

jBk = I

˛
εijk t̂

jBkdl (4.24)

Note that if B is uniform then, for a closed circuit the total force exerted on the charges is 0

F i = I

˛
εijk t̂

jBkdl = IεijkB
k

˛
t̂jdl = 0

Since ˛
t̂idl = 0

M i = I

˛
εijkr

jεklmt̂
lBmdl (4.25)

Note that it’s the usual classical formula M = r× F extended to the whole circuit

Example 4.2.1 (A Closed Circuit). Consider a closed rectangular rigid circuit with a current I, submerged
in an uniform B field.
If the rectangle has sides a and b where a ⊥ b and the sides b are the ones “above” and “below”. If
the circuit isn’t normal to the B field, and denominating with F1, F4 the forces acting on the sides long
a, while F3, F1 the ones acting on the sides long b, we have

F1 = F3 = BIb cos θ

(Remember that the total current on one cable is Il where the cable is long l)
While

F2 = F4 = BIa

Using the right hand rule for cross products we know then that F1, F3 must be coplanar and therefore
don’t contribute to a force couple, while F2, F4 do. The angular momentum M i depends on the
orientation of B, and therefore we car write

M = BIab sin θ = BIS sin θ

Where S = ab is the surface area. Therefore, rewriting B sin θ = ‖B× n̂‖ we have

M i = ISεijkn̂
jBk = εijkm

jBk

Via analogy we define the magnetic dipole moment of the circuit mi as

mi = ISn̂i (4.26)
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§ 4.3 Maxwell’s Equations for Magnetostatics

§§ 4.3.1 Biot-Savart’s Law

In general, experimentally it has been found that the magnetic field follows the right hand rule and
depends in magnitude from the current density and the inverse of the distance from the magnetic
object. Experimentally it has been found that for a wire with static current density dIi = Idli = Iidl
the magnetic field is

Bi =
µ0

4π

ˆ
λ

εijkI
j r̂k

r2
dl (4.27)

This equation is known as the law of Biot and Savart. The constant µ0 is a coupling constant known as
the permeability of free space and has units of Newton/Ampere squared. It has the following (exact)
value in the SI system

µ0 = 4π · 10−7 N

A2
(4.28)

Note that this holds dimensionally with the B from what we found before from Lorentz’s force law.

Example 4.3.1 (A Live Wire). Consider a wire along the x axis where a stationary current goes from
right to left. Using Biot-Savart we can find the field Bi at a distance s from the wire. We have that
for the symmetries of the system we’re working on a 2D plane xy. The radius vector from the current
to the point where we’re evaluating the field describes a triangle in this plane, we indicate the angle
between the height of the triangle (s) and the radius vector r as θ. Using trigonometry we have that
the length of the basis of this triangle is l = s tan θ, therefore

dl =
s

cos2 θ
dθ

Also, we have that in this triangle considering the angle α between the current and the radius vector
we have that the cross product of the two has the following magnitude

‖dl× r̂‖ = r sinαdl = r
sinα

cos2 θ
dθ

Using the fact that we’re in an euclidean triangle (duh) we must have that α+ θ + π/2 = π, therefore
α = π − θ. Still using trigonometry we can also say that

s = r cos θ =⇒ r =
s

cos θ
=⇒ 1

r2
=

cos2 θ

s2

From Biot-Savart then

dB =
µ0

4π

cos θ

r2
dl =

µ0 cos θ

4π

(
s

cos2 θ

cos2 θ

s2

)
dθ

Therefore

dB =
µ0 cos θ

4πs
dθ (4.29)

Considering that θ goes from some θ0 to some θ1 if the wire is finite, and θ0 = −π/2, θ1 = π/2 for an
infinite wire, we have in the second case

B(s) =
µ0

4πs

ˆ π
2

−π
2

cos θdθ =
µ0

2πs
(4.30)
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Using the right hand rule we can also find the direction of B, being always normal to both r and I we
have that in 3 dimensions, using cylindrical coordinates

Bi =
µ0

2πs
ϕ̂i (4.31)

§§ 4.3.2 Divergence and Curl of B

Consider now an infinite wire with a static current Ii going through it. If we take a closed loop C
around the wire it’s clear that if we integrate B in that loop the integral can’t be 0. From Biot-Savart
we have, using what we found previously for infinite wires

B =
µ0I

2πr

˛
C

dl = µ0I (4.32)

In general it’s clear that for some loop C around multiple currents I(i), we will have that as for Gauss’
law for electric fields with charges, that

˛
C

Bit̂idl = µ0Iin (4.33)

Where Iin is the total current inside the loop. If we have a current density J i it’s clear that then,

Iin =

¨
S

J in̂ids

Where S is the surface such that ∂S = C. Reconnecting and using Stokes’ theorem on B we have

¨
S

εijk∂
jBkn̂ids = µ0

¨
S

J in̂ids (4.34)

We get then that for straight wires

εijk∂
jBk = µ0J

i (4.35)

What about the divergence of B? We begin again with Biot-Savart law in a general setting with a
volume current J i. We have

Bi =
µ0

4π

˚
V

1

r2
εijkJ

j r̂kd3x

We then apply the divergence operator to both sides

∂iB
i =

µ0

4π

˚
V

∂

∂xi

(
εijkJ

j r̂
k

r2

)
d3x

Using the antisymmetry of εijk we can rewrite the divergence of the cross product as follows

∂

∂xi
εijkJ

j r̂
k

r2
=
r̂i
r2
εijk∂

jJk − Jiε
i
jk∂

j

(
r̂k

r2

)
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Remember: J i doesn’t depend from how far we’re measuring the field, therefore ∂iJ
k = 0! The first

part on the right hand side of the previous equation is zero, therefore we have

∂

∂xi
εijkJ

j r̂
k

r2
= −Jiεijk∂j

(
r̂k

r2

)
= 0 (4.36)

Where we used that the curl of r̂i/r2 is 0 (it’s the gradient of another function). Therefore we have
that

∂iB
i = 0 (4.37)

Note that this holds everywhere since we started from a generic current distribution! We can also
recompute the curl of B from this generic current distribution. Remembering again that J depends
only on the local coordinates of the distribution itself and not from how far we’re measuring B we
have, firstly, using the identities of εijk, and juggling a bit

εijk∂
jεklmJ

l r̂
m

r2
= J i∂l

(
r̂l

r2

)
−
(
J l∂l

) r̂i
r2

(4.38)

Using the definition of the 3D Dirac delta for evaluating the first divergence we have

εijkε
k
lm∂

jJ l
r̂m

r2
= 4πδ3(r)J i −

(
J l∂l

) r̂i
r2

(4.39)

Looking closely at the second side, we have

∂

∂xi

(
J i
r̂j

r2

)
=
r̂j

r2
∂iJ

i +
(
J i∂i

) r̂j
r2

Noting that for steady currents ∂iJ
i = 0 we have then(

J l∂l
) r̂i
r2

=
∂

∂xj

(
J i
r̂j

r2

)
Reinserting everything into the definition of Bi we have

εijk∂
jBk = µ0

˚
V

J iδ3(r)d3x+
µ0

4π

‹
∂V

r̂i

r2
Jj n̂jds (4.40)

The surface integral is safely equal to zero since all currents are safely inside the surface (by definition),
and collapsing the first integral we have

εijk∂
jBk = µ0J

i (4.41)

This relation is general and holds for all current distributions J i. This is known formally as Ampere’s
law for Magnetostatics.
Analogously to Gauss’ law for E, we have some tricks for evaluating B using Ampere’s law. We draw
some convenient closed loops for which B comes out easily from the integral. As we have Gaussian
surfaces, we have for B Amperian loops.
Integrating both sides of (4.41) we have applying Stokes that if we chose a nice enough loop, i.e. one
where B is parallel to the tangent of the loop it will come out from the integral and we will have on
the right µ0Iin, easing all calculations
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§§ 4.3.3 The Parallel Between Magnetostatics and Electrostatics

We have now found 4 Maxwell equations, two for static charges and two for static currents. These
equations are, in free space 

∂iE
i =

ρ

ε0

εijk∂
jEk = 0

∂iB
i = 0

εijk∂
jBk = µ0J

i

(4.42)

These equations are asymmetric! If we made a symmetric parallel between the two and supposed
∂iB

i = µ0ρm where ρm is a ”magnetic charge“, the magnetic counterpart to the electric charge, these
equation would be perfectly symmetric. The fact that ∂iB

i = 0 always shows that magnetic charges,
or magnetic monopoles, cannot exist in nature due to the actual shape of B.
This particular parallel, lets us think that there might also be a potential for B. We are already sure that
it can’t be a scalar potential in general, since the curl of B is nonzero.

§§§ 4.3.3.1 Magnetic Potentials

Let’s look back at Biot-Savart’s law, we have

Bi =
µ0

4π

˚
V

1

r2
εijkJ

j r̂kd3x =
µ0

4π

˚
V

εijkJ
j∂k

(
1

r

)
d3x

Using ∇× J = 0 we can use a little property of the epsilon symbol and bring outside the curl. We
have

Bi =
µ0

4π
εijk

∂

∂xj

˚
V

Jk

r
d3x (4.43)

I.e. we wrote B in terms of the curl of some other vector. This vector is the magnetic vector potential
Ai and, writing

Ai =
µ0

4π

˚
V

J i

r
d3x (4.44)

It’s clear that since the curl of a gradient is zero, this potential is defined up to gradients of continuous
functions.
We will usually choose the Coulomb Gauge, where ∂iA

i = 0, this means that since

Ai = Ai0 + ∂iλ =⇒ ∂iA
i = 0 ⇐⇒ ∂i∂iλ = −∂iAi0

This is a Poisson equation and the solution is easily

λ(r) =
1

4π

˚
V

∂iA
i
0

r
d3x

In this potential formulation, if we take Ampere’s law we have

εijk∂
jBk = εijk∂

jεklm∂
lAm = ∂i∂lA

l − ∂l∂lA
i = µ0J

i (4.45)
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Taking the previous gauge choice we have 3 Poisson equations for each component of A

∂l∂
lAi = −µ0J

i (4.46)

If J(r) → 0 we have then that the solution is, as before

Ai =
µ0

4π

˚
V

J i

r
d3x

§§ 4.3.4 Boundary Conditions for the Magnetic Field

Going back to electrostatic boundary conditions, we have that E is discontinuous on the surface charge.
Instead, B, by analogy of the formulas is discontinuous on surface currents.
Checking again Maxwell’s equations, we must have that if E is discontinuous on the normal to the
surface, B must be discontinuous on the tangent, in fact, taken a pillbox P that goes through this
surface current, then, since ∂iB

i = 0 always we have¨
P

Bin̂ids = 0 (4.47)

This immediately implies, noting that the normal vector above is opposite to the normal vector below
the surface, that

Bin̂abi = Bin̂beli (4.48)

I.e., the normal components of the magnetic field are continuous.
Take now an Amperian loop that goes through the surface. Then, by Ampere’s law we get˛

A

Bit̂idl = µ0Ienc

Where Ienc = KI if K is our surface current density. Therefore, expanding the integral

Bit̂abi −Bit̂beli = µ0K (4.49)

Note that this holds since if we check the parallel components of the tangent of this loop, we must
have Ienc = 0. Both these conditions can be summarized into a single equation.
Let Ki be the surface current density, then if we measure the magnetic field above (Biab) and below
Bibel, it must be continuous passing through the current surface and discontinuous on its tangent, i.e.

Biab −Bibel = µ0ε
i
jkK

j n̂j (4.50)

§ 4.4 Magnetic Dipoles

As for electrostatic potentials, it’s possible to expand the magnetic potential into multipoles.
Remembering that if ri = ri − r̃i, we can write r−1 in terms of Legendre functions

1

r
=

1√
r2 + (r̃)2 − 2rr̃ cos θ

=

∞∑
l=0

(
r̃

r

)2

Pl(cos θ)
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Therefore, for any Amperian loop A with current It̂i we have

Ai(r) =
µ0I

4π

∞∑
l=0

1

rl+1

˛
A

(r̃)
l
Pl(cos θ)t̂

idl (4.51)

Expanding till quadrupoles (l = 2) we then can write

Ai ≈ µ0I

4πr

˛
A

t̂idl +
µ0I

4πr2

˛
A

r̃ cos θt̂idl +
µ0I

4πr3

˛
A

(r̃)2

2
(3 cos θ − 1) t̂idl (4.52)

Note that the monopole term (l = 0) is zero, as we expected! Again, there are no magnetic monopoles.
We concentrate on the l = 1 term, the dipole term. We have then that the magnetic dipole is

Aidip(r) =
µ0I

4πr2

˛
A

r̃ cos θt̂idl (4.53)

Remembering that by definition r̂i ˆ̃ri = cos θ we can write everything in terms of scalar products. Since

r̃ cos θ = r̃r̂

We can write the integral in terms of a surface integral. Call S the surface enclosed by the loop, then

Aidip(r) =
µ0I

4πr2

˛
A

(r̃j r̂j)t̂
idl =

µ0I

4πr2

(
−εijkr̂j

¨
S

n̂kds

)
Remembering the definition of magnetic dipole, and switching the indexes on the cross product, we
have

Aidip(r) =
µ0

4πr2
εijkm

j r̂k (4.54)

Look how this is clearly equivalent to the field generated by a small dipole mi generated by a current
loop on a circuit A.

§§ 4.4.1 Interaction Between Currents

Consider two rigid circuits with some current Ii, i = 1, 2. Suppose these two circuits are small enough
so that we can consider them as two magnetic dipoles.
In the second circuit, there is a force dF21 generated from the B1 field of the first circuit. We have

dF i21 = I2ε
i
jkdl

j
2B

k
1 = I2ε

i
jkdl

j
2

˛
1

µ0I1
4πr212

εklmdll1r̂
k
12

Where we took r12 as the distance between the two circuit elements dli. The total force will be then,
integrating

F i12 =
µ0I1I2
4π

˛
1

˛
2

1

r212
εijkε

k
lmdlj2dl

l
1r̂
m
12 =

µ0I1I2
4π

˛
1

˛
2

(
dli1

(
r̂l12
r212

dl2l

)
− r̂i12
r212

dll1dl
2
l

)
(4.55)
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Where we used the properties of εijk for computing the products. On the right hand side the first term
can be seen as the curl of a vector (with respect to the 2nd line integral) integrated on the surface
enclosed by the second loop. This curl is zero, and therefore we have finally

F i12 = −µ0I1I2
4π

˛
1

˛
2

r̂i12
r212

dll1dl
2
l (4.56)

Note that F12 = −F21 simply because r12 = −r21! Therefore what we found respects Newton’s third
law.
Consider now two infinite parallel wires with the same currents, we have that if dl1l dl

l
2 ≥ 0 or dl1l dl

l
2 ≤ 0

(i.e. the two currents have the same direction or opposite direction), we will get wither an attractive
force or a repulsive force.
It’s clear that this force will be orthogonal to the wires (see Lorentz’s force law) and therefore we’re
interested to check only the orthogonal component.
If the two parallel wires are distant a from each other we can write immediately r12 cos θ = a, and
dl1 = a

cos2 θdθ. Noting that the two wires are infinite, using the transformation dl1 → dθ we get
(dividing by dl2)

dF⊥
21

dl2
= −µ0I1I2

4π

ˆ π
2

−π
2

(
cos2 θ

a2

)
cos θ

( a

cos2 θ
dθ
)
= −µ0I1I2

4πa

ˆ π
2

−π
2

cos θdθ

Integrating, we immediately get
dF⊥

12

dl2
= −µ0I1I2

2πa
(4.57)

Note this is negative only if dll1dl
2
l > 0, i.e. when the currents are parallel.
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5 Magnetism in Matter

If we insert some material in a region where there is a B field there are three observed effects

1. Mechanical forces on the body are observed

2. The field around the bodies is modified by their presence

3. The bodies can be magnetized, i.e. they behave like a magnet

If we take as our experimental test field the one produced by a solenoid (a conductive spring where
charges move in a closed loop) it can be verified immediately that all substances are distinguishable in
three categories

1. Ferromagnets, which get attracted by the B field of the solenoid

2. Paramagnets, which get weakly attracted by the field

3. Diamagnets, which get weakly repulsed by the field

All these different behaviors are directly correlated from macroscopic proprieties.
Atoms themselves can be thought as small loop circuits (imagine electrons “going around” the nucleus),
and therefore generate some magnetic dipole mi. These dipoles interact with the field and tend to
orient themselves in the same direction as B, i.e. the bodies get magnetized.

§ 5.1 Magnetization

The discussion of magnetism in matter is similar to the one on electricity in matter, and therefore it’s
good practice to begin with a microscopic approach to the problem.
Consider a small Hydrogen atom, one proton and one electron. Since mp ≈ 2000me we can consider
the nucleus as locked in place, while electrons move around in a circular orbit with radius r0.
The electron experiences the following centripetal coulomb force

Fc = meac =
1

4πε0

e2

r20

I.e., using ac = v20/r0 = ω2
0r0 we get

meω
2
0r0 =

1

4πε0

e2

r20

67
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Since ω0 = 2πT−1
0 with T0 being the period of the orbit we get

T0 =
4π

e

√
πε0mer30

All these calculations are needed to find the magnetic dipole momentum of the electron, mi. Using a
bit of quantum mechanics and remembering that the electron is in a bound state (E < 0) we can find
r0 using the ionization energy (i.e. the energy needed to bring the electron to r = ∞ with v = 0) we
have that

E = −Ie =⇒ r0 =
1

8πε0

e2

I
≈ 0.5

Note that we used experimental data (for now). In the setup we made we basically made a toy hydrogen
atom, for which I = 13.6 eV, where 1 eV = 1.6× 10−19 C ·V = 1.6× 10−19 J.
With this we get T0 ≈ 1.5 × 10−16 s as our orbit period, and the current associated with a single
electron moving around a proton (a simple toy atom, hydrogen in this case) is

I =
e

T0
≈ 1 mA

Using mi = ISn̂i we have that the magnetic momentum of this system is

m = Iπr20 =
eπr20
T0

= 9.35× 1024 A ·m

And the angular momentum is

L = mev0r0 = me
2πr20
T0

=⇒ m

L
=

e

2me

The last constant is known as the gyromagnetic factor g of the electron and is a general result also
valid in quantum mechanics.
Writing L = ~l in a semiclassical fashion (you’ll understand later, probably, or you already know) we
get a new fundamental constant tied to the gyromagnetic factor g

m = gL = ~gl =
~e
2me

l = µBl

Where µB is known as Bohr’s magneton, for which µB ≈ 9.27 · 10−24 A ·m2

§§ 5.1.1 The Magnetization Field

After the small “quantum” digression, we can get back to our classical treatment of Electrodynamics.
We’ve seen that all atoms must have a magnetic dipole moment mi tied to the “orbital” nature of
bound electrons in nuclear fields. Analogously to dipole moments in dielectrics this must determine the
magnetic properties in matter.
We define the Magnetization irradianceM i as follows

M i = lim
∆V→0

∆N

∆V

〈
mi
〉

(5.1)
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Where ∆N is the numerical density of atoms.
In SI units we have

[M ] =
A

m

And rearranging a bit the previous terms, and using ∆V → dV

dmi =M idV (5.2)

We begin by considering an uniform magnetizationM i inside a magnetized medium. It’s clear that
indide the body all the currents will cancel out and we’ll be left only with surface effects, which will
be magnetization-induced currents that will follow the right hand rule since there’s no compensation
outside the magnet.
Obviously, ifM i is not uniform, we will also have volumetric currents. Surface currents will be indicated
with Jms and volumetric currents with Jmv.
Using equation (4.54) we can see the relations betweenM i and these currents. remembering equation
(5.2) we can write for a magnetized body V

Ai =
µ0

4π

ˆ
V

1

r3
εijkM

jrkd3x′ (5.3)

Bringing 1/r3 inside the cross product and remembering that ri/r3 = −∂i(r−1) and then applying a
simple vector analysis identity (v ×∇f = f∇× v −∇× (fv)) we get two integrals

Ai =
µ0

4π

(ˆ
V

εijk∂
jMk

r
d3x′ −

ˆ
V

εijk∂
j

(
Mk

r

)
d3x′

)
(5.4)

Using
´
V
∇× vdV = −

´
∂V

v × n̂ds on the second one we get

Ai =
µ0

4π

ˆ
V

εijk∂
jMk

r
d3x′ +

µ0

4π

ˆ
∂V

εijkM
jnk

r
ds′ (5.5)

Since the vector potential has an unique solution (it’s defined from a Poisson equation with well defined
conditions) We can interpret the first curl as our volumetric current density and the second cross product
as our surface current densities, giving us the relations between the magnetization currents and the
magnetization vectorM i

J imv = εijk∂
jMk

J ims = εijkM
j n̂k

(5.6)

§ 5.2 Maxwell Equations for Magnetostatics in Magnetic Media

Taking back what we found for the Bi field we can try to build up again the Maxwell equation for
magnetostatics in magnetized media.
As we already have found we have

∂iB
i = 0

εijk∂
jBk = µ0J

i
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We now must consider that J i indicates the total current, so we will consider it as the sum of “free”
extra currents J if and the previously found magnetization currents J im.

Inside the magnetized volume V we can replace J im with the curl ofM i and, bringing it to the left we
can write guardando il forno e una

εijk∂
j

(
Bk

µ0
−Mk

)
= J i

We can define an auxiliary field inside this curl, which we will call the “magnetic field” Hi

Hi =
Bi

µ0
−M i (5.7)

Rewriting everything, we get Maxwell’s equation for magnetostatics in media{
∂iB

i = 0

εijk∂
jHk = J if

(5.8)

These equations can be solved only if we know the functional relations between B and H orM and B,
or if we manage to find some conditions that can help us

§§ 5.2.1 Boundary Conditions

In order to solve these equations tho we need to consider what happens at the surface ∂V of the body.
Suppose that we have two magnetized bodies separated by a surface Ss. Taken a small loop l on this
separation surface, which encompasses a surface S, we can use the second equation of (5.8) we get

˛
l

Hitidl =

¨
S

εijk∂
jHkn̂ids =

¨
S

J in̂ids =
∑
i

Ii (5.9)

Therefore, the closed line integral of Hi is the sum of the (free) currents enclosed by the loop.
Considering the same loop in the case where there are no free currents, equations (5.8) give the
boundary conditions for B and H in matter.{

Bn1
= Bn2

Ht1 = Ht2

(5.10)

Where ni, ti are the normal and tangent components of the field between substance 1 and 2.
By definition of Hi we can see already that in vacuum Bi0 = µ0H

i
0 since M i = 0. As for dielectrics

in isotropic and homogeneous substances we can write Bi = µHi with µ0 = µ0µr where µr is the
relative magnetic permeability.
For anisotropic substances µ can be described as a rank 2 tensor. Contrary to dielectrics, µ in general
depends from the B field irradiance, and is constant only for diamagnetic or paramagnetic substances.
For ferromagnets µ = µ(B).
With this definition, we can calculate the magnetization field of the body. We have B = µH therefore

Hi = µrH
i −M i =⇒ M i = (µr − 1)Hi = χmH

i =⇒ µM i = χmB
i (5.11)
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Where µr − 1 = χm is the magnetic susceptibility.
Inserting that back to the definition of Hi we have

Bi = µ0 (1 + χm)Hi (5.12)

By definition, the value of χm defines the alignment of the magnetization with respect to the magnetic
field. In general for values of χm between 10−5 to 10−3 we have an orientation of atomic magnetic
dipoles and therefore paramagnetism.
For negative values we get diamagnetic effects and for very big positive effects we get ferromagnetic
effects

§ 5.3 Ferromagnets and Hysteresis Cycles

In ferromagnets (χm >> 1) the dependence B(H) orM(H) is really complex and the relations aren’t
unique and can change a lot for small changes on composition of the material.
For analyzing it we start with the unmagnetized material (H = B = M = 0) and place it inside a
solenoid, for which we know already that, thanks to the Maxwell equations that H = nI, with n being
the number of loops of the solenoid and I being the total current of the solenoid.
Changing I we have that B changes way quicker than H, with a strong contribution from the
magnetization of the element through the relation

B = µ0H + µ0M

The growth is exponential until a saturation Hs value is reached. This growth is known as the “first
magnetization curve”. After this value the growth of B is linear in H till a maximum Hm due to a
saturation inM , which reaches a saturation maximumMs.
Shutting the current off (I = 0) we get to H = 0 and a residue magnetic induction field Br can be
measured.
Inverting the current’s direction B goes down till 0, for µ0H = −µ0M , i.e. the magnetic field H
reaches the coercive magnetic field value where Hc = −Mc. From here on, the fields quickly reaches a
negative minimum at H = −Hm.
Making H grow again from the minimum the field B will reach −Br at H = 0 and will reconnect to
the first cycle maximum at Hm.
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H

B

Hm

Br

−Br

−Hm

Hc

−Hc

Figure 5.1: Example of an hysteresis cycle, without the first magnetization curve.

This full cycle is known as the magnetic hysteresis cycle and if it’s drawn it’s clear that B(H) is not
a function in the proper sense of it, since the value depends on what happened before to the material,
and in general we have that

µ(H) =
B

H
(5.13)

It’s also possible to draw a demagnetization cycle on the B −H plane from any point making smaller
and smaller hysteresis cycles, and with a simple analogy to p− V planes in thermodynamics, one can
calculate the work made per unit volume of the material with the relation dW = BdH (remember that
in thermodynamics dW = pdV when there is no external work acting on the system).
From the relationship we found before for B one can write the differential magnetic permeability of a
body as

µd =
dB

dH

Or its relative counterpart

µdr =
µd
µ0

=
1

µ0

dB

dH

Another experimental result on ferromagnets is the law of Curie-Weiss, which states that for temper-
atures over a critical value Tc, a ferromagnet becomes a paramagnet, and its susceptibility goes as

χm =
kρ

T − Tc
(5.14)

Where k is a constant and ρ is the material’s density
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§ 5.4 Local Magnetic Field

For evaluating the local counterpart of the magnetic field, since we can consider ourselves in vacuum,
we’re free to choose between using B and H = B/µ0. For notational ease H is “better”.
Using the same exact path taken to find the Lorentz local field in dielectrics (3.22) we can say that the
magnetic field around some atom, at its center is

Hi
loc = Hi +

1

3
M i (5.15)

This local field considers that the contribute of all the small dipoles inside the sphere around the atom
sum to zero.
Since for paramagnetic and diamagnetic substancesM << H we could even write Hloc ≈ H.
This doesn’t hold for ferromagnets, and thanks to Weiss we get a reformulation of the local field

Hi
loc,fm = Hi + γM i (5.16)

The constant γ is known as Weiss’ constant, and 103 < γ < 104. It has been justified by considering the
ferromagnet as divided in multiple sectors where atomic dipoles have zones of common orientations,
where the biggest zone is the one oriented with the magnetic field H. The zone engulfs the whole
magnet then slowly.

§§ 5.4.1 Larmor Precession

Consider now a single atom, completely unaligned with the field. We have already found that its
magnetic moment is

mi
0 = − e

2me
Li

And its torque is
τ i = εijkm

j
0B

k
loc

With Bloc being our local B field.
By definition of torque τ we have

dLi

dt
= εijkm

j
0B

k
loc =

e

2me
εijkB

j
locL

k = εijkω
i
LL

k (5.17)

The last result gives us the Poisson formula for L, which indicates that it completes a precession motion
with angular velocity ωL, known commonly as Larmor precession. This speed is by definition parallel to
the local field, and it’s associated to a current given by this precession and the charged nature of the
electron

IL = − e

TL
= −eωL

2π
(5.18)

This current is therefore tied to a magnetic moment, for which mL = ILS̃ where S̃ is the area of the
orbit of the electron projected onto the same direction of the local field. Inserting a bit of numbers in
the previous statement we have

mi
L = − e

2π
S̃ωiL = − e2

4πme
S̃Biloc
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Averaging the coordinates of the position of the electron we know already that

〈x〉2 = 〈y〉2 = 〈z〉2

〈x〉2 + 〈y〉2 + 〈z〉2 = 〈r〉2

Therefore

S̃ = π
(
〈x〉2 + 〈y〉2

)
=

2π

3
〈r〉2

Therefore

mi
L = − e2

6me
〈r〉2Biloc (5.19)

Summing for all Z electrons in an atom, and remembering that the average radius of an electron is aB ,
the Bohr radius

mi
L = −Ze

2a2

6me
Biloc (5.20)

Note that we used ω0 << ωL as an approximation, together with Bl << 4πmeT
−1
0 e−1 (Bloc <<

5 · 105 T), which is almost always verified.
This intrinsic atomic moment is always present by definition, and it always opposes the local field

§§§ 5.4.1.1 Microscopic Interpretation of Diamagnets

Considering atoms where there is no atomic magnetic moment we have only Larmor effects, and by
definition therefore the magnetization will be

M i = nmi
L = −nµ0Ze

2a2

6me
Hi
loc = αdH

i
loc (5.21)

By definition αd << 1 and therefore, using (5.15) we write

M i =
3αd

3− αd
Hi ≈ αdH

i (5.22)

By definitionM i = χmH
i, i.e. χm ≈ αd < 0. This susceptibility doesn’t depend on the temperature, is

negative and for reasonable values of a, Z, n χm ≈ −10−5 as we said before for diamagnets

§§ 5.4.2 Langevin Function

Going back to substances where its composing atoms have their own atomic magnetic moment mi
0,

we have that thermal agitation tends to bring them to a disorder in their orientation.
In order to evaluate this Langevin proposed to utilize a function which could be used to evaluate the
average magnetic momentum. Called L this Langevin function we have〈

mi
〉
=
〈
mi

0

〉
L(y) (5.23)

Where

L(y) = coth (y)− 1

y
= coth

(
mi

0B
loc
i

kT

)
− kT

mi
0B

loc
i

(5.24)

By definition we have that this function is limited at ±∞ by ±1 and it’s uneven (L(y) = −L(−y))
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§§§ 5.4.2.1 Paramagnets

For paramagnets we have atoms (or molecules, as always) with proper magnetic moment m0, but
in general m0Bloc << kT , i.e. y << 1 and we can use a power series approximation on Langevin’s
function at the first order, which implies the following statements

〈m〉 ≈ m0
y

3
=
m2

0µ0

3kT
Hloc =⇒ M =

nm2
0µ0

3kT
Hl = αpHloc (5.25)

Using χm ≈ αp and writing the number density of atoms n = ρNA/A we have

χm(T ) =
ρNAm

2
0µ0

3k

1

T
(5.26)

Which is Curie’s law that we defined before, with the constant written out in full in this classical view
of microscopic electromagnetism

§§§ 5.4.2.2 Ferromagnets

For ferromagnets the approximation y << 1 doesn’t hold anymore since m0 is big, and using Weiss’
law for ferromagnets (5.16) and the definition of magnetization, remembering that L(∞) = 1 indicates
the saturation of the magnet, we have that the saturation magnetization will simply beMs = nm0,
and we’ll get 

M(y,H) =MsL(y)

M(y,H) =
kT

m0µ0γ
y − H

γ

(5.27)

Plotting the first equation we get the magnetization in terms of the parameter y, which looks something
like this

y

M(y)

Ms

−Ms

Figure 5.2: Langevin function for Magnetization
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The second equation is a line tangent toML(y) at y = 0 intersecting theM axis at−H/γ, increasing
the field H the intersection moves towards the right up untilM =Ms.
Lowering the field until H = Hc the line becomes tangent to McL(y) for which we get two new
intersections.
Inverting H (therefore I) the line reaches firstMc then −Ms, describing a magnetic hysteresis cycle
(not drawn).
Reconsidering he system (5.27) we see that the line has angular coefficient kT/m0µ0γ, therefore if T
is high enough this coefficient is higher thanMs/3 of Langevin’s curveM(y). In this particular case
there is only one intersection point, and therefore the substance becomes paramagnetic (there cannot
be an hysteresis cycle).
Considering the derivative of the first and the second we have

kT

m0µ0T
≥ Ms

3
=⇒ T ≥ µ0γm0Ms

3k
= Tc

Which gives the Curie temperature definition again. For T > Tc we can approximate L(y) ≈ y/3,
therefore

M =
Msy

3
=
nm2

0µ0

3kT
Hloc =

Tc
γT

Hloc

Hloc = H + γM

(5.28)

Inserting the second equation in the first we have

M =
Tc
γT

(H + γM) =
Tc

γ (T − Tc)
H

Using again χm =M/H we have

χm =
1

γ

Tc
T − Tc

=
µ0nm

2
0

3kTc

Tc
T − Tc

And we get via simple algebra the Curie-Weiss law for ferromagnets

χm(T ) =
µ0m

2
0n

3k

1

T − Tc
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6 Maxwell’s Equations

§ 6.1 Faraday’s Law

So far we managed to build four equations for the two fields, in static conditions. These are, whenever
there no dielectrics and no magnets, are

∂iE
i =

ρ

ε0

∂iB
i = 0

εijk∂
jEk = 0

εijk∂
jBk = µ0J

i

(6.1)

Faraday in his works had a major discovery while using two simple circuits.
Consider a closed circuit A with only a galvanometer, and a circuit B with a battery and a switch.
Using the switch for controlling the current flow on the circuit B (which is NOT connected to circuit A),
he saw that the galvanometer measures a current while the current in B is changing.
Taking the same setup but keeping the switch closed on B, if either of the two circuits are in motion,
there is current flow in A. The same happens if circuit B is substituted by a magnet!
Now take a non-rigid circuit immersed in a region with a constant magnetic field Bi. Deforming the
circuit will also induce a current flow on it.
Calling fem the electromotive force that drives the current in circuit A, Faraday deduced experimentally
that

fem = −dΦ

dt
(6.2)

Where Φ is the magnetic flux passing inside the circuit.
Note that we know, by definition, that this electromotive force must be driven by an electric field Ei,
where

fem =

˛
C

Eiindt̂idl (6.3)

This field can’t be conservative! Using the definition of the electric field as force per unit charge, and
using Lorentz’s force law we have a little hint that this induced field is the sum of a pure electric field
plus a second field generated by the movement of charges

Eiind = Ei + εijkv
jBk (6.4)

79
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Noting that the charges are constrained to the circuit, we can divide the velocity vi with a component
parallel to the circuit vi‖ and a perpendicular component vi⊥. It’s obvious then that

fem =

˛
C

(
Ei + εijkv

j
⊥B

k
)
t̂idl (6.5)

Suppose now that we do not move the circuit, then vi = vi‖ and Eiind = Ei, where this electric field is

for sure not conservative.
All this jargon, condenses itself in one simple but powerful law, Faraday-Neumann-Lenz’s law, which
indicates exactly what Faraday discovered experimentally

Theorem 6.1 (Faraday-Neumann-Lenz, Electromagnetic Induction). Given a time-dependent magnetic
field Bi(t, xi), an electric field is induced by the variation of its flux, where

˛
∂S

Eit̂idl = − d

dt

¨
S

Bin̂ids

Or, in its differential counterpart

εijk∂
jEk = −∂B

i

∂t
(6.6)

Proof. Suppose that there is some circuit ∂S that spans some surface S inside of it, which is immersed
in a time dependent magnetic field Bi(t), then (6.2) holds, and therefore

dΦ

dt
=

d

dt

¨
S(t)

Bi(x, t)n̂ids

The derivative on the right can be seen as the variation of the surface S(t) when the B field is fixed in
time at t0, plus the integral over the surface S(t0) of the derivative of B with respect to time, i.e.

dΦ

dt
=

d

dt0

¨
S(t)

Bi(x, t0)n̂ids+

¨
S(t0)

∂Bi

∂t
n̂ids

Since we know already that (6.2) holds, we have that if find is the induced fem, we have that

find =

˛
∂S(t0)

Eit̂idl =

˛
∂S(t0)

Eit̂idl =

¨
S(t0)

∂Bi

∂t
n̂ids

But

dΦ =

¨
S

Bi
ds

dt
dt =

ˆ ˛
∂S

εijkB
ivjD t̂

kdldt (6.7)

Where vD is the velocity in the direction of the movement of the circuit. Therefore, “dividing” by dt,
we get

dΦ

dt
=

d

dt

¨
S(t)

Bi(x, t0)n̂ids =

˛
∂S

εijk t̂iv
j
DB

kdl

Since we know that an additional find is given by the deformation of the circuit ∂S(t0) → ∂S(t), we
have in total

fem = −dΦ

dt
=

˛
∂S

Ei + εijk t̂iv
j
DB

kdl
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Since vD = v‖ + v⊥ and v‖ ‖ t̂ we get that since Eind = E+ v ×B, Eind has B as a source, and we
can condense it all in a single integro-differential equation, which is Faraday-Neumann-Lenz’s law

∇×E · n̂ds = − d

dt

¨
S

∂B

∂t
· n̂ds

§§ 6.1.1 Self-Induction

Having deduced our previous results, the first thing that we might check is how a circuit behaves with
itself.
Consider a closed circuit with some current I(t) such that ∂tI ≈ 0. If the magnetic permeability of the
body is constant we can apply Biot-Savart for evaluating the field, and we have

Bi(t) =
µ0I(t)

4π

˛
C

εijk t̂
jrk

r3
dl (6.8)

Evaluating the flux of this field we have, since the current is independent from the integrated variables,
that Φ ∝ I(t), and therefore

Φ(t) = LI(t) L =
µ0

4π

˛
C

¨
S

εijk t̂
jrk

r3
dlds

The constant L only depends on the geometry of the circuit as it’s easy to see from the integral, and
it’s known as the self-induction coefficient or also as autoinduction coefficient.
From Faraday’s law, since this flux depends on time (through our current I(t)), it generates an electro-
motive force fL, as follows

fL = −dΦ

dt
= −LdI

dt
(6.9)

The autoinduction coefficient has units the following units:

[L] =
[Φ]

[I]
=
W

A
=
V s

A
= Ωs = H

The SI unit H is known as Henry and it’s equal to Watts/Ampere. Note that this can also be calculated
via Ohm’s law, noting that V = RI and that [RI] = ΩA

§§ 6.1.2 Mutual-Induction

Consider now a setup similar to the previous one, but with two circuits C1 and C2, which are close
enough to each other such that the generated magnetic fluxes through each circuit are not negligible.
The fluxes as before will be proportional to the currents, and without evaluating the self-induction of
both circuits we have

Φ1(B2) =

¨
S1

Bi2n̂ids ∝ I2(t)

Φ2(B1) =

¨
S2

Bi1n̂ids ∝ I1(t)

(6.10)
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Using the previous considerations, we have then, in index form, that

Φi =MijIj(t) (6.11)

The coefficientsMij are known as the mutual induction coefficients. ObviouslyMij =Mji.

§ 6.2 Magnetic Energy

With what we wrote before, we might consider a circuit with a given self-induction coefficient L and
some time-dependent current I(t) flowing through it. We can evaluate the work of that the magnetic
force exerts on these charges as follows. Per unit time

dw

dt
= −femI(t) (6.12)

Using Faraday’s law we know that
dΦ

dt
= −fem = −LdI

dt

Therefore
dw

dt
= L

(
dI

dt

)2

=
1

2
LI2(t) (6.13)

We can go forward with this calculus, noting that then, since Φ = LI, and

Φ =

¨
εijk∂

jAkn̂ids

Then, using Stokes’ theorem ˛
Ait̂idl = LI

And therefore, vectorizing the current as Ii = It̂i

w =
1

2

˛
AiIidl

Or in general

w =
1

2

˚
AiJid

3x =
1

2µ0

˚
εijkAi∂

jBkd3x (6.14)

Where we used Ampere’s law to get the last integral. Playing around with the last curl, using vector
notation, we have

∇ · (A×B) = B · ∇ ×A−A · ∇ ×B = B2 −A · ∇ ×B

Applying Stokes’ theorem on the divergence and noting that the surface integral goes to 0 when we
integrate over all space, we end up with the following result

w =
1

2µ0

˚
R3

B2d3x
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The parallelism with the energy of an electric field is astounding. Written side by side we have

Wes =
1

2

ˆ
R3

V ρd3x =
ε0
2

ˆ
R3

E2d3x

Wms =
1

2

ˆ
R3

AiJid
3x =

1

2µ0

ˆ
R3

B2d3x

(6.15)

§ 6.3 Maxwell’s Equations

So far, we found 2 pairs of coupled differential equations for the electric and magnetic field ∂iE
i =

ρ

ε0

εijk∂
jEk = −∂tBi

(6.16)

And {
∂iB

i = 0

εijk∂
jBk = µ0J

i
(6.17)

The second pair of equations holds only if the current field is divergenceless, but using Gauss’ law and
the current conservation equation we have

∂iJ
i + ∂tρ = ∂iJ

i + ε0∂t∂iE
i = 0 (6.18)

Grouping the divergences we see that the time derivative of the electric field behaves exactly like a
current, commonly called the “displacement current”. In order to fix all the equations now we can
add this new current in the last couple of the Maxwell equations and get the well known fundamental
equations of electromagnetism 

∂iE
i =

ρ

ε0

εijk∂
jEk = −∂tBi

∂iB
i = 0

εijk∂
jBk = µ0J

i + ε0µ0∂tE
i

(6.19)

These equations account for moving charges and are absolutely general in nature. It will be seen
later that they’re also Lorentz invariant, therefore they preserve between Lorentz transformations and
therefore are relativistically covariant.
For linear dielectric and magnetic media we can rewrite easily with the already known rules, Maxwell’s
equations 

∂iD
i = ρ

εijk∂
jDk = εµ∂tH

i

∂iH
i = 0

εijk∂
jHk = J i + ∂tD

i

(6.20)
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§§ 6.3.1 Poynting’s Vector, Energy Conservation

As we have seen via previous calculations, the energies of the two separated fields are, calling them Ue
and Um

Ue =
ε0
2

ˆ
V

E2d3x

Um =
1

2µ0

ˆ
V

B2d3x

(6.21)

We can imagine that the energy of the combined electromagnetic field will be a sum of the two, i.e.

Uem =
1

2

ˆ
V

ε0E
2 +

B2

µ0
d3x (6.22)

We try to confirm this using the work done by some particle. Substituting into the force the formula
for Lorentz’s force we get

F idli = q
(
Ei + εijkv

jBk
)
dli = q

(
Ei + εijkv

jBk
)
vidt = qEividt = dW

Which is what we expected.
Going to a microscopic consideration we substitute q = ρd3x, we get J i = ρvi, and therefore,
integrating with respect to time we have

W =

ˆ
V

EiJid
3xdt =⇒ EiJi =

dw

dt

But, from Maxwell equations we have

εijk∂
jBk = µ0J

i +
1

c2
∂Ei

∂t
=⇒ J i =

εijk∂
jBk

µ0
− 1

µ0c2
∂Ei

∂t

Where we used µ0ε0 = c−2 (it will be clear later, for now check multiplying those two and see that it
adds up)
Therefore, we rewrite EiJi as follows

EiJi =
1

µ0
Eiε

i
jk∂

jBk − ε0Eiε
i
jk∂

jBk

Note that, tho:

∂iε
i
jkE

jB
k

µ0
=

1

µ0
Biε

i
jk∂

jEk − Eiεijk∂
jB

k

µ0

Therefore

Eiε
i
jk∂

jB
k

µ0
= − 1

µ0
Biε

i
jk∂

jEk − ∂iε
i
jkE

jB
k

µ0
= −Bi

µ0

∂Bi

∂t
− ∂iε

i
jkE

jB
k

µ0

Which, gives us back

EiJi = −1

2

∂

∂t

(
ε0E

2 +
1

µ0
B2

)
− 1

µ0
∂iε

i
jkE

jBk =
dw

dt
(6.23)
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We immediately recognize the volumetric density of energy of the electromagnetic field, let’s denote it
as uem, and we get

EiJi = −∂uem
∂t

− ∂iε
i
jkE

j

(
Bk

µ0

)
(6.24)

We begin to have a better view of the phenomenon, we see a variation of energy on the right plus the
divergence of some vector that we define now.

Definition 6.3.1 (Poynting Vector). The Poynting vector is a vector defined as follows:

Si =
1

µ0
εijkE

jBk (6.25)

It has dimensions of a flux of energy, as we will see.

With the previous definition, everything becomes much clearer in terms of notation, in fact

EiJi = −∂uem
∂t

− ∂iS
i

Integrating in a random volume V we get, as said before, our flux of energy!

ˆ
V

EiJid
3x = − ∂

∂t

ˆ
V

uemd3x−
‹
∂V

Sin̂ids

It’s clear that in order to make sense we must sum energies with energies, giving the previously stated
dimensions of the Poynting vector as an energy flux.
Rewriting EiJi as our work variation we have that it’s nothing else than the time derivative of the
volumetric density of mechanical energy, and writing uem + umech as our total energy variation, we
have ˆ

V

∂u

∂t
d3x = −

‹
∂V

Sin̂ids (6.26)

The associated PDE is clearly the conservation of energy of the whole system

∂u

∂t
+ ∂iS

i = 0 (6.27)

This shape also gives the real idea of what’s Poynting’s vector: an energy “current”

§§ 6.3.2 Stress Tensor, Momentum Conservation

Lorentz’force as we have seen, in terms of microscopic evaluations is written (it’s a force density in this
case) as

f i = ρEi + εijkJ
jBk (6.28)

We rewrite it in terms of fields only using the two following Maxwell equations

∂iE
i =

ρ

ε0
=⇒ ρ =

1

ε0
∂iE

i

εijk∂
jBk = µ0J

i +
1

c2
∂Ei

∂t
=⇒ J i =

1

µ0
εijk∂

jBk − 1

µ0c2
∂Ei

∂t

(6.29)
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Therefore, Lorentz’s force becomes, using ε0 = (µ0c
2)−1

f i = ε0E
i∂jE

j + εijk

(
1

µ0
εjml∂

lBm − ε0
∂Ej

∂t

)
Bk

Or, moving inside the cross product for clarity

f i = ε0E
i∂jE

j +
1

µ0
εijkB

kεjlm∂
lBm − ε0ε

i
jk∂tE

jBk

Using the product rule on the time derivative at the last factor we have that

∂tε
i
jkE

jBk = εijk∂t(E
j)Bk + εijkE

j∂t(B
k) =⇒ εijk∂t(E

j)Bk = ∂tε
i
jkE

jBk − εijkE
j∂t(B

k)

From the second Maxwell equation tho we have

εijk∂
jEk = −∂tBi

Therefore
−εijkEj∂t(Bk) = εijkE

jεklm∂
lBm

And everything comes back to

εijk∂t(E
j)Bk = ∂t

(
εijkE

jBk
)
+ εijkE

jεklm∂
lEm

And inserting it back into the Lorentz force density gives

f i = ε0E
i∂jE

j +
1

µ0
εijkB

kεjlm∂
lBm − ε0

∂

∂t

(
εijkE

jBk
)
+ ε0ε

i
jkE

jεklm∂
lEm (6.30)

Or, rearranging the two fields

f i = ε0
(
Ei∂jE

j − εijkε
k
lmE

j∂lEm
)
+

1

µ0

(
Bi∂jB

j − εijkε
j
lm∂

lBmBk
)
− ε0

∂

∂t

(
εijkE

jBk
)
(6.31)

Where we used ∂iB
i = 0 in order to symmetrize the shape of the equation.

Using the properties of the Levi-Civita symbol we have that (note that gij = δij in this metric)

εijkε
k
lm = δilδjm − δjlδ

i
l (6.32)

We have (using a generic vector here, it can be either Bi or Ei)

εijkε
k
lmA

j∂lAm = Am∂
iAm −Al∂lA

i

So

f i = ε0
(
Ei∂jE

j + El∂lE
i − Em∂iEm

)
+

1

µ0

(
Bi∂jB

j +Bl∂lB
i −Bm∂iBm

)
− 1

c2
∂Si

∂t

Looking closely we see that the big mess inside the parentheses is simply

∂j
(
EiEj

)
− 1

2
∂j
(
EkEk

)
= ∂j

(
EiEj − 1

2
δijEkEk

)
Seen this, we define the following symmetric rank-2 tensor σij
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Definition 6.3.2 (Maxwell Stress Tensor). The Maxwell stress tensor is defined as follows:

σij = ε0

(
EiEj − 1

2
δijEkEk

)
+

1

µ0

(
BiBj − 1

2
δijBkBk

)
(6.33)

It’s a rank 2 tensor and it’s obviously symmetric

The Lorentz force density becomes then the following simply

f i =
∂σij

∂xk
− 1

c2
∂Si

∂t
(6.34)
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7 Potentials and Fields

§ 7.1 Maxwell’s Equation for Potentials

As we have seen already, Maxwell’s equations are the following

∂iE
i =

ρ

ε0

εijk∂
jEk = −∂B

i

∂t

∂iB
i = 0

εijk∂
jBk = µ0J

i +
1

c2
∂Ei

∂t

(7.1)

If we wanted to write the potential formulation of this equation, we must know that in general, the
potentials might be different. In fact, Coulomb’s law and Biot-Savart only work in the static case, i.e.
where ∂tE = ∂tB = 0.
Using that ∂iB

i = 0 from the third equation we can say for sure that

εijk∂
jAk = Bi

And inserting it in the second we get

εijk∂
jEk = − ∂

∂t
εijk∂

jAk

εijk∂
j

(
Ek +

∂Ak

∂t

)
= 0

The second line immediately tells us that the vector field inside must be the gradient of some scalar
field!
Using ∂iV = −Ei then we can rewrite the electric potential as a sum of the time variation of the vector
potential and the scalar potential, which gives us

Ei(xi, t) = − ∂V

∂xi
− ∂Ai

∂t
(7.2)

Now that we have the potentials for the dynamic case we know that the Poisson equation for the
electric field then becomes

∂iE
i = −∂i∂iV − ∂

∂t
∂iA

i =
ρ

ε0
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Or, written better

∂i∂
iV +

∂

∂t
∂iA

i = − ρ

ε0
(7.3)

Also, for the equivalent vectorial Poisson equation for the Ai field

εijkε
k
lm∂

lAm = µ0J
i − 1

c2
∂

∂t

(
∂V

∂xi
− 1

c2
∂Ai

∂t

)
Rewriting the first double cross product as

∂i∂jA
j − ∂j∂

jAi

And bringing the time derivative of the gradient of V to the left, while grouping it inside the ∂i operator
(it’s linear), and bringing with it the second time derivative on Ai we have (note also that I changed
sign on both sides)

∂j∂
jAi − ∂

∂xi

(
1

c2
∂V

∂t
+ ∂jA

j

)
− 1

c2
∂2Ai

∂t2
= −µ0J

i (7.4)

Both together give us the most general possible way to formulate Maxwell equations for potentials,
which reduce to two coupled non-homogeneous second order PDEs

∂j∂
jV +

∂

∂t
∂jA

j = − ρ

ε0

∂j∂
jAi − 1

c2
∂2Ai

∂t2
− ∂

∂xi

(
1

c2
∂V

∂t
+ ∂jA

j

)
= −µ0J

i

(7.5)

§§ 7.1.1 Gauge Freedom

What we’ve learned before about electromagnetic potentials is that they’re gauge-modifiable. Depend-
ing on what we really need we might choose between any given gauge, since Maxwell’s equation are
gauge-invariant.
The first gauge we will use is the most common one, it’s useful when dealing with magnetostatics or
when we really need to find V. It’s Coulomb’s gauge.
Here we set the divergence of Ai to zero, and the first equation of (7.5) reduces back to a Poisson’s
equation. The second simplifies a bit, but it’s not easy to solve…

∂i∂
iV = − ρ

ε0

∂j∂
jAi − 1

c2
∂2Ai

∂t2
− 1

c2
∂2V

∂xi∂t
= −µ0J

i
(7.6)

Another thing to note here is that V cannot be observable, moving charges change ρ which changes V
istantaneously, it’s not Lorentz invariant.
The second most important gauge we can define it’s Lorenz’s1 gauge, which defines the divergence of
A as follows

∂iA
i =

1

c2
∂V

∂t
(7.7)

1Lorenz, not Lorentz, apparently
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Then, reinserting it back to (7.5) we get by immediate substitution two uncoupled non-homogeneous
wave equations 

∂j∂
jV − 1

c2
∂2V

∂t2
= − ρ

ε0

∂j∂
jAi − 1

c2
∂2Ai

∂t2
= −µ0J

i

(7.8)

This is a relativistic wave equation with sources ρ and J i.
Note that if we define the four-gradient as the 4-vector composed by the following components
(µ = 0, · · · , 3)

∂µ =

(
1

c
∂t,−∂i

)
(7.9)

We have that, formally

∂µ∂
µ =

1

c2
∂2t − ∂i∂

i = �

Where the box operator is known as the D’Alambertian, which is the equivalent of the Laplacian in 4
spacetime dimensions. Therefore we can also write �V = ∂µ∂µV =

ρ

ε0

�Ai = ∂µ∂µA
i = µ0J

i
(7.10)

§ 7.2 Retarded Potentials

Using (7.10) and setting the time derivatives as 0, we get back Poisson’s equations for both potentials,
for which we know already the general solution for a volume V .

V (xj) =
1

4πε0

ˆ
V

ρ(x̃j)

r
d3x̃

Ai(xj) =
µ0

4π

ˆ
V

J i(x̃j)

r
d3x̃

We can say, from the previous equations, that the interaction travels at speed c, therefore we might
imagine the time progression of the interaction as “retarded in time” by a factor of r/c. We then
define the retarded time as

tr = t− r

c
(7.11)

We therefore can imagine a solution to those equations as

V (xj , tr) =
1

4πε0

ˆ
V

ρ(x̃j , tr)

r
d3x̃

Ai(xj , tr) =
µ0

4π

ˆ
V

J i(x̃j , tr)

r
d3x̃

(7.12)
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Note that we could imagine this solution only due to the mathematical shape of the equation, it cannot
be done the same way for the fields.
Now let’s check if this idea we had is a solution for the relativistic equations. Noting that

∂itr = − x̂
i

c

We have, after using the chain rule
∂ρ

∂xi
= −1

c

∂ρ

∂t
x̂i

And therefore

∂iV = − 1

4πε0

ˆ
V

1

c

∂ρ

∂t

x̂i

r
− ρ

x̂i

r2
d3x

Applying again the del operator we get

∂i∂iV = − 1

4πε0

ˆ
V

1

c

(
x̂i

r

∂2ρ

∂t∂xi
+
∂ρ

∂t

∂ix̂
i

r
+
∂ρ

∂t
x̂i∂i

(
1

r

))
+

(
x̂i

r2
∂ρ

∂xi
+ ρ

∂

∂xi

(
x̂i

r2

))
d3x

But
∂2ρ

∂t∂xi
= −1

c

∂2ρ

∂t2
x̂i

And

∂i

(
x̂i

r

)
=

1

r2
, ∂i

(
x̂i

r2

)
= 4πδ3(xi)

Therefore, finally

∂i∂iV =
1

4πε0c2

ˆ
V

1

r

∂2ρ

∂t2
d3x− ρ

ε0
δ3(xi) (7.13)

Seeing immediately on the right the time second time derivative with respect to ct of V , bringing it to
the left and playing with minuses we get again the awaited Maxwell equation.

�V =
ρ

ε0

The calculation for Ai is completely analogous. Note that we could also have chosen an advanced time
ta defined as

ta = t+
r

c

Everything comes back to the two Maxwell equations, but the physical sense gets lost since the
potentials we found don’t respect causality, they sense the change before it actually happens in the
chosen reference frame.

§ 7.3 Jefimenko’s Equations

Given the two retarded potentials defined in (7.12), we could imagine to determine the electric and
magnetic field generated by both. Since the retarded potentials, as we have shown, solve generally
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Maxwell’s equations (7.10), the fields will also solve generally Maxwell’s equations for the fields.
We begin by finding Ei. We know that

Ei = −∂iV − ∂tA
i

Therefore

Ei = − 1

4πε0

ˆ
V

∂i
(ρ
r

)
d3x− µ0

4π

ˆ
V

1

r

∂J i

∂t
d3x (7.14)

From the previous calculations, we already know that

∂i
(ρ
r

)
= −1

c

∂ρ

∂t
x̂i − ρ

x̂i

r2

And we get easily the first Jefimenko equation for the E field

Ei(xj , t) =
1

4πε0

ˆ
V

(
1

c

∂ρ

∂t
+
ρ

r

)
x̂i

r
d3x− µ0

4π

ˆ
V

1

r

∂J i

∂t
d3x

Using ε0 = (µ0c
2)−1 we can group everything in a clearer equation

Ei(xj , t) =
1

4πε0

ˆ
V

(
1

c

∂ρ

∂t
+
ρ

r

)
x̂i

r
− 1

rc2
∂J i

∂t
d3x (7.15)

For Bi the calculations are slightly harder due to the presence of the curl, but with some discipline are
doable. We have that

Bi = εijk∂
jAk =

µ0

4π

ˆ
V

1

r
εijk∂

jJk + εijkJ
i∂k
(
1

r

)
d3x

But, by definition we have

∂iJ
k =

(
∂tJ

k∂k
)
tr = −1

c

∂Jk

∂t

∂r

∂xk
=

1

c

∂Jk

∂t
x̂k

So, the cross product is simply

εijk∂
jJk =

1

c
εijk∂tJ

j x̂k

The second part instead comes immediately from the gradient of r−1, and we have

Bi(xj , t) =
µ0

4π

ˆ
V

1

r
εijk

(
Jj

r
+

1

c

∂Jj

∂t

)
x̂kd3x (7.16)

Both Jefimenko equations grouped are, therefore (and finally)
Ei(xk, t) =

1

4πε0

ˆ
V

1

r

(
1

c

∂ρ

∂t
x̂i + ρ

x̂i

r
− 1

c2
∂J i

∂t

)
d3x̃

Bi(xk, t) =
µ0

4π

ˆ
V

1

r
εijk

(
Jj

r
+

1

c

∂Jj

∂t

)
x̂kd3x̃

(7.17)
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8 Electromagnetic Waves

§ 8.1 The Wave Equation

Maxwell’s equations are of utmost importance in studying the behavior of electromagnetic field, due to
their versatility and generality. It’s due to Maxwell himself that we now treat light as electromagnetic
radiation, particularly, electromagnetic waves. The reasoning behind Maxwell’s work comes directly
from his equation. Consider a location of space in which there are no charges nor currents, i.e. no
sources. For such system, Maxwell’s equations are1

∇×E = −∂B
∂t

∇×B =
1

c2
∂E

∂t

(8.1)

Where, the divergence equations are both equally zero

∇ ·E = ∇ ·B = 0 (8.2)

It’s important to remember that

c2 =
1

µ0ε0

Is the “speed of light” for reasons that will be clear after a couple of manipulations. For reasons of
symmetry of the two curl equations we use the following substitution

B = µ0H (8.3)

for which, the only nonzero equations are
∇×E = −µ0

∂H

∂t

∇×H = ε0
∂E

∂t

(8.4)

1From now on, here we will use the standard boldface vector notation for ease of reading. Index notation will be used in the
chapter on crystals and in some other section
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The main problem of these equations is that they’re still coupled between eachother, and there are still
the previous divergence equations, but this can be solved quickly. Remembering the following operator
identity

∇×∇× [ ] = ∇ (∇ · [ ])−∇2[ ]

We get, by taking the curl of both equations, and reinserting them to the right hand side
∇×∇×E = −µ0ε0

∂2E

∂t2

∇×∇×H = −µ0ε0
∂2H

∂t2

(8.5)

Or, inserting the identity and (8.2) 
∇2E =

1

c2
∂2E

∂t2

∇2H =
1

c2
∂2H

∂t2

(8.6)

Or, more compactly {
�E = 0

�H = 0
(8.7)

Where

� =
1

c2
∂2

∂t2
−∇2 (8.8)

Is known as the D’Alembertian operator. The equation we wrote is a wave equation for waves traveling
at v = c.

§§ 8.1.1 Dielectric Wave Equation

If we consider now ourselves inside some media, we have to take account of both polarization and
magnetization, given by the presence of atoms inside the medium. These atoms will absorb some
special frequencies, which will be known as resonance frequencies.
Far from the resonant frequencies, the medium is known as a transparent and non-absorbent medium.
Maxwell’s equations are the usual complete ones:

∇ ·E =
ρ

ε0

∇×E = −∂B
∂t

∇ ·B = 0

∇×B = µ0J+ µ0ε0
∂E

∂t

(8.9)

Consider now a real electromagnetic wave, it will be composed of multiple frequencies, denoted with
ω. An electromagnetic wave will be denoted as monochromatic if and only if it’s composed by a single
frequency, (note that in nature there are no monochromatic waves). In this ideal case, the electric field
is:

E(r, t) = Eω(r)e
−iωt (8.10)
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With the exponential coming from the wave equation itself.
Since we are dealing with dielectrics, we gotta consider charge polarization P, which will also be
decomposed in frequencies, therefore, inserting the D field in our calculations

Dω = ε0Eω +Pω = εωEω (8.11)

Where we used the following two relations{
Pω = ε0χωEω

εω = ε0(1 + χω)
(8.12)

Noting that here, in general, εω depends on position, the first Maxwell equation for dielectrics becomes
slightly more complicated

∇ ·Dω = Eω · ∇εω + εω∇ ·Eω = 0

Solving for Eω we get

∇ ·Eω = −Eω · ∇εω
εω

(8.13)

Evaluating the time derivatives for the monochromatic fields we have

∂E

∂t
= −iωE

∂H

∂t
= −iωH

Inserting everything into Maxwell’s equations we get the set of equations for monochromatic waves in
general non-magnetic media 

∇ ·Eω = −Eω · ∇εω
εω

∇×Eω = iωµ0Hω

∇ ·Hω = 0

∇×Hω = −iωεωEω

(8.14)

Now, using the same technique we used before for finding the wave equation, we get

∇×∇×Eω = −ω2µ0εωEω

∇×∇×Hω = −ω2µ0εωHω

Therefore, inserting the divergence equations and taking care of the minus signs

∇2Eω +∇
(
Eω · ∇εω

εω

)
= ω2µ0εωEω

∇2Hω = ω2µ0εωHω

Definition 8.1.1 (Refraction Index). We define the refraction index nω as follows

nω(r) =

√
εω(r)

ε0
(8.15)
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Hence

εω = ε0n
2
ω

Inserting the previous definition into the divergence of Eω we see that

Eω · ∇εω
εω

= 2Eω · ∇ log (nω)

And, the right hand side becomes

ω2µ0εωEω =
ω2

c2
n2ωEω

Definition 8.1.2 (Wavenumber). We define the vacuum wavenumber k0 as follows

k0 =
ω

c
=

2π

λ
(8.16)

Reuniting both definitions and the simplification we then get, for the equation on E

∇2Eω + 2∇ (Eω · ∇ log(nω)) = k20n
2
ωEω

Now, in order to ease calculations in our range of frequencies (or wavelenghts, or wavenumbers
also) we check if defined a characteristic length ln which indicates the spatial scale of variation of nω
(remember that it depends on space position), we have that:

∇2Eω ∝ Eω
lnλ

∆nω
nω

∝ k20n
2
ωEω

‖∇∇ ·Eω‖ ∝ Eω
l2n

∆nω
nω

And since in optical ranges of light ln >> λ and∆nω << nω we can discard immediately the divergence
term, and get two symmetric wave equations for the wave in a generic dielectric (nonmagnetic or
transparent) medium {

∇2Eω = k20n
2
ωEω

∇2Hω = k20n
2
ωHω

(8.17)

These equations are known as Helmholtz equations for the single chromatic part of the E,H fields.
Note that these equations are exactly the equations solved by a single Fourier component of the
transformed wave equation (n appears since we are in some media and εr 6= 0).
Note that via Fourier transforms it’s possible to go back to the already known wave equation, where
the speed of propagation is not c but it’s c/nω = u. It’s then also obvious that in vacuum nω = 1,
which is also clear from the definition of the refraction index.
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§ 8.2 Vectorial Behavior of Electromagnetic Waves

The general solution to the wave equation (8.6) can be written both as a real function or a complex
exponential. The latter one, although non “real”, eases a lot calculations and therefore will be the
favored approach. Using all previous definitions the general result is

E = E0e
ik·r−iωt

H = H0e
ik·r−iωt (8.18)

Evaluating the curl, the divergence and the time derivative for these solutions it’s possible to write the
following operator equation

∂̂t → −iω
∇̂ → ik

(8.19)

Where k is known as the wavevector, which is the vector with magnitude ‖k‖ = nk0 And Maxwell’s
equations can be rewritten as 

k ·E = 0

k ·H = 0

k×E = ωµ0H

k×H = −ωεE

(8.20)

Therefore, k,E,H are three mutually orthogonal vectors. By definition, then, k must be oriented
parallel to the direction of motion.
Also from the last three equations, taken the norm of the two and solved the equations for E/H we
have

E

H
= n

√
ε0
µ0

=
n

Z0
(8.21)

With Z2
0 = µ0/ε0 being the free space impedance which has value of Z0 ≈ 377Ω. Note also that

by definition of the Poynting vector S, we also have that k ‖ S, which implies that, if we define the
irradiance as I = ‖S‖, that:

S = I
k

k
= Ik̂ (8.22)

Or, using what we found before

I =
n

2Z0
E2

0 (8.23)

For plane waves it’s actually better if we take the time average of the fields using phasor notation
(complex exponential notation) for the fields, we have

〈S(t)〉 = S = Re
〈
E0e

ik·r−iωt〉×Re
〈
H0e

ik·r−iωt〉
Since Re(z) = 1

2 (z + z) and the complex conjugate is distributive, the calculation boils down to
simplifying the following expression

1

4

〈(
E0 ×H0e

2ik·r−2iωt +E0 ×H0 = E0 ×H0 +E0 ×H0e
−2ik·r+2iωt

)〉



CHAPTER 8. ELECTROMAGNETIC WAVES 100

Noting that the average value for the real part of the exponential is 0, we have

S =
1

2
E0 ×H0 (8.24)

Where we omitted both the real part operator and the time average.

§§ 8.2.1 Polarization

The vectorial nature of waves comes up in most part with the phenomenon of polarization, which is
simply the “favored” direction of oscillation of the wave. Waves can also be non-polarized, as is the
case for natural light, when there is no well defined oscillation direction.
The simplest polarization state obtainable is linear polarization. Setting k ‖ ẑ we have E,H orthogonal
and coplanar on the xy plane.
Linear polarization is then achieved when E oscillates with a constant angle from the chosen x axis.
This can be expressed mathematically as:

E = Exx̂+ Eyŷ (8.25)

Note how here, in general, E ∈ R2.
The instrument used to generate linearly polarized light is the linear polarizer. This object is built in a
way such that it transmits light only in one orientation. The associated axis is known as the transmission
axis.
Chosen a 2D orthonormal reference system t̂, ŝ in which the t axis is parallel to the transmission axis,
then, we must have

Ein = Ett̂+ Esŝ

Eout = Ett̂

Since Et = Ein cos θ then the irradiance of the outgoing field is

Iout = Iin cos
2 θ (8.26)

This behavior is known as Malus’ law.
In case that the incoming light isn’t polarized and it can’t be described with the previous decomposition,
taken the time average, we get

Iout =
1

2
Iin

Due to the superposition principle, it’s not hard to imagine a mixture of polarized and unpolarized light.
The degree of polarization P of this light can be evaluated using Malus’ law, and it will be equal to

P =
Imax − Imin
Imax + Imin

(8.27)

Or, also, as the fraction of polarized irradiance

P =
Ipol

Ipol + Iunp
(8.28)

There is one more possible (general) state of polarization, in which the field is totally described as a
complex vector. In this state the two components of the field are dephased by exactly φ = π/2, adding
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the phase to the exponential, we get a new factor of i on one of the two components.
The field can then be described by a complex vector in the following way

E = E0x̂+ iE1ŷ (8.29)

This configuration is known as elliptical polarization or circular polarization when E1 = E0, i.e.

E = E0(x̂+ iŷ) (8.30)

This special polarization state has two version, called right hand and left hand polarization, depending on
whether the dephasing between the components is +i or −i. Left hand elliptical (circular) polarization
is defined by a positive phase difference of i.
The instrumentation used to produce elliptical or circular polarization is known as quarter wave plates,
optical devices which exhibit a special property known as birefringence, i.e., they have two different
refraction indexes, nf , ns where the subscripts mean “slow” and “fast” because nf < ns. The objects
are specially made in a way such that the indexes are disposed in two mutually orthogonal axes.
The quarter wave denomination comes from the criterion used to choose the thickness of the slabs. In
general, it depends from the wavelength of the beam that gets polarized with the following formula

d =
λ0

4(ns − nf )
(8.31)

Note that a quarter wave plate isn’t enough to generate circularly polarized light. In order to make
both components equal after the dephasing, it’s necessary to linearly polarize light at an angle of π/4,
so that when it traverses the quarter wave plate it’s perfectly diagonal between the axes.

§§ 8.2.2 Jones Calculus

Due to the vectorial nature of polarization it’s not hard to imagine a new notation which uses the
power of linear algebra.
A generic wave will be described as follows

E =

(
Exe

iφx

Eye
iφy

)
(8.32)

This vector is known as a Jones vector.
Then, the two basic polarization states are, in general

Elin =

(
A
B

)
= A

(
1
0

)
+B

(
0
1

)
(8.33)

Linear, when A,B ∈ R, decomposed as a sum of horizontally and vertically polarized waves.

E =

(
A

±iB

)
= A

(
1
0

)
±B

(
0
i

)
(8.34)

Elliptical, with A,B ∈ C in general decomposed into a sum of dephased linearly polarized light.
Circularly polarized light can be interpreted as a special case with A = B. All these polarization states
can be treated with usual vector operations, and with it, it’s possible to determine the final polarization
state of two superimposed waves.
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The action of optically active objects such as linear polarizers and waveplates, can then be described by
multiples of rotation matrices, which act linearly on the polarization states. The general action of an
object is then described by a 2× 2 complex Jones matrices.
Using composition it’s also possible to determine the action of multiple objects on the polarization
state.
Some common optical objects have the following matrix reprsentations (when these is more thae one
written I’m writing different orientations of the fast/transmission axis [0, π, π/4])
Linear polarizer: (

1 0
0 0

) (
0 0
0 1

)
1

2

(
1 ±1
±1 1

)
(8.35)

Quarter wave plate: (
1 0
0 −i

) (
1 0
0 i

)
1√
2

(
1 ±i
±i 1

)
(8.36)

Half wave plate: (
1 0
0 −1

)
(8.37)

Phase retarder: (
eiφx 0
0 eiφy

)
(8.38)

Circular polarizer (quarter wave + diagonal polarizer):

1

2

(
1 ±i
∓i

)
(8.39)

Another thing we can borrow from algebra and use it with Jones calculus is orthogonality and eigenstates.
Two polarization states are said to be orthogonal if

E1 ·E2 =
(
A B

)(C
D

)
= AC +BD = 0 (8.40)

A polarization eigenstate instead is the eigenvector of a Jones matrix, i.e. the only thing that can change
when light with this kind of polarization passes through the object is its phase and/or its amplitude.
Note how, since Jones vectors require purely polarized states, we cannot define nonpolarized light.

§ 8.3 Boundary Conditions for Electromagnetic Waves

§§ 8.3.1 Snell’s Law

Consider a plane boundary separating two different optical media, with refraction indexes n1, n2. It’s
empirically proven from Huygens that the wave will be both transmitted and reflected at the boundary.
These three waves will have the following exponential dependence

ei(k·r−ωt)

ei(kR·r−ωt)

ei(kT ·r−ωt)
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Where kR,kT are respectively the wavevectors for the reflected and transmitted wave.
Said, without loss of generality, t = 0 at the boundary, due to the continuity of the field we must have

eik·r = eikR·r = eikT ·r

Writing in terms of k0 which is the same, we have

k = n1k0

kR = n1k0

kT = n2k0

Said θ the incidence angle, θR the reflection angle and ϕ the transmission angle, writing explicitly the
norm of the scalar product, we get what’s commonly known as Snell’s law

sin θR = sin θ

n1 sin θ = n2 sinϕ
(8.41)

The first one indicates that θ = θR, while the second can be rewritten as

sin θ = n sinϕ (8.42)

Where n = n2/n1 = sin θ/ sinϕ is the relative refraction index of the medium.

§§ 8.3.2 Fermat’s Principle

All of this can be mathematically explained using Fermat’s principle.
Taken two points A,B, Fermat’s principle states that light will travel in the path for which the traveling
time will be minimized. Said n ≡ n (r(t)) we define the following functional

t [r] =

ˆ tB

tA

n (r(t))

c
dt (8.43)

Where we used dt = uds.
We also define the optical path as

lAB =

ˆ B

A

n(s)ds (8.44)

Suppose now that A,B are in two different media with nA, nB as refraction indexes. Putting ourselves
in the coordinate system of the incidence point, with the y axis parallel to the boundary, and with A,B
distant respectively d1, d2 from the origin, we have that the total optical path is

l = d1 + d2 =
√
a2 + x2 +

√
b2 + (d− x)2

Where a, b are the y distances of the two points. Dividing by n/c we have

t(x) =
nA
c

√
a2 + x2 +

nB
c

√
b2 + (d− x)2

Applying the fundamental principle of the calculus of variations, we take the derivative and search for
the extremal

∂t

∂x
=

nAx

c
√
a2 + x2

− nB(d− x)

c
√
b2 + (d− x)2

=
nAx

√
b2 + (d− x)2 − nB(d− x)

√
a2 − x2

c
√
a2 + x2

√
b2 + (d− x)2

= 0
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Since the denominator is always not zero, everything boils down to

n2Ax
2
[
b2 + (d− x)2

]
= n2B(a

2 + x2)(d− x2)

Now, taken the same coordinate system as the previous section, we write

x = d1 sin θ

b = d2 cosϕ

d− x = d2 sinϕ

a2 + x2 = d21

Then, by substitution we get Snell’s law for transmission

n2Ad
2
1 sin

2 θ
[
d22 cos

2 ϕ+ d22 sin
2 ϕ
]
= nBd

2
1d

2
2 sin

2 ϕ =⇒ nA sin θ = nB sinϕ

Putting B in the same region as A (so nB = nA = n, ϕ→ θR) we have the reflection law

d21d
2
2 sin

2 θ = d21d
2
2 sin

2 θR =⇒ sin θ = sin θR (8.45)

§§ 8.3.3 Fresnel Equations

For now we only determined part of the behavior of the waves, since we are still missing what happens
to the amplitudes.
Starting from equation (8.20) we rewrite the equations as

E = − 1

εω
k×H

H =
1

µω
k×E

(8.46)

Now, the behavior at the boundary is described exactly from the boundary conditions (or jump conditions)
of Maxwell’s equations, therefore the polarization of the fields becomes important in the determination
of the behavior! We will firstly consider cases where the E field is either parallel (p or π polarization,
from German Parallel) or transverse (s or σ polarization, from German Senkrecht) to the incidence plane,
i.e. the plane where all three waves lay.
Fresnel’s idea was to find the ratio between the incoming amplitude and the reflected or transmitted
wave. These ratios are known as Fresnel coefficients, and are strongly dependent on wave polarization.
They are indicated as r, t
Consider firstly s polarization. The continuity relations are

E · t̂+ER · t̂ = ET · t̂
H · t̂−HR · t̂ = HT · t̂

(8.47)

Calculating the dot products we have for H

H · t̂ = H cos θ

HR · t̂ = −HR cos θ

HT · t̂ = HT cosϕ
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Therefore, using (8.46) we get the following system of equations{
E + ER = ET

kE cos θ − kE cos θ = kTET cosϕ
(8.48)

Where k = n1k0 and kT = n2k0.
Dividing by k0 then we get {

E + ER = ET

n1(E − ER) cos θ = n2ET cosϕ

Substituting the first equation into the second and dividing by E we have

ER
E

∣∣∣∣
s

= rs =
n1 cos θ − n2 cosϕ

n2 cosϕ+ n1 cos θ

Using n = n2/n1 we have the first coefficient, rs

rs =
cos θ − n cosϕ

cos θ + n cosϕ
(8.49)

We can also write
ER = ET − E

Therefore
n1(2E − ET ) cos θ = n2ET cosϕ

Rearranging and dividing by E

ET
E

∣∣∣∣
s

= ts =
2n1 cos θ

n1 cos θ + n2 cosϕ

Or

ts =
2 cos θ

cos θ + n cosϕ
(8.50)

Now, we switch to the orthogonal polarization state, p polarization. Here, we have the same conditions
for H as we had for E before and vice-versa, yielding{

H −HR = HT

E cos θ + Er cos θ = Et cosϕ

Which becomes, using H = kE {
kE − kER = kTET

E cos θ + ER cos θ = ET cosϕ

Writing again k = nk0 and dividing by k0 we can write either

ET =
n1
n2

(E − ER)

ER = E − n2
n1
ET
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Inserting the first of the two into the system we get, after dividing by E

ER
E

∣∣∣∣
p

= rp =
cos θ − n1

n2
cosϕ

−n1

n2
cosϕ− cos θ

Rearranging and inserting the relative refraction index

rp =
cosϕ− n cos θ

cosϕ+ n cos θ
(8.51)

Using the second instead we have

2E cos θ = ET

(
cosϕ+

n2
n1

cos θ

)
Which, after rearrangement, gives

tp =
2 cos θ

cosϕ+ n cos θ
(8.52)

Therefore, reuniting the results obtained from both polarizations we have

rs =
cos θ − n cosϕ

cos θ + n cosϕ

ts =
2 cos θ

cos θ + n cosϕ

rp =
cosϕ− n cos θ

cosϕ+ n cos θ

tp =
2 cos θ

cosϕ+ n cos θ

(8.53)

Using Snell’s law we can eliminate also the relative refraction index using n = sin θ cscϕ, giving

rs =
cos θ − sin θ cosϕ cscϕ

cos θ + sin θ cosϕ cscϕ
=

cos θ sinϕ− sin θ cosϕ

cos θ sinϕ+ sin θ cosϕ

ts =
2 cos θ

cos θ + sin θ cosϕ cscϕ
=

2 cos θ sinϕ

cos θ sinϕ+ sin θ cosϕ

rp =
cosϕ− sin θ cos θ cscϕ

cosϕ+ sin θ cosϕ cscϕ
=

cosϕ sinϕ− sin θ cos θ

cosϕ sinϕ+ sin θ cos θ

tp =
2 cos θ

cosϕ+ cos θ sin θ cscϕ
=

2 cos θ sinϕ

cosϕ sinϕ+ sin θ cos θ

(8.54)

Using the following trigonometric identities we can simplify things even more

sin θ cosφ− cos θ sinϕ = sin(θ − ϕ)

sin θ cos θ − cosϕ sinϕ = sin(θ − ϕ) cos(θ + ϕ)

cosϕ sinϕ+ sin θ cos θ = sin(θ + ϕ) cos(θ − ϕ)
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And in the end obtain what are known as Fresnel equations for reflection and refraction of electromag-
netic waves

rs = − sin(θ − ϕ)

sin(θ + ϕ)

ts =
2 cos θ sinϕ

sin(θ + ϕ)

rp = − tan(θ − ϕ)

tan(θ + ϕ)

tp =
2 cos θ sinϕ

sin(θ + ϕ) cos(θ − ϕ)

(8.55)

§§§ 8.3.3.1 Fresnel Equations for Irradiance and General Polarization

From equation (8.23) we can define the luminous power of a beam as

W = SI =
niS

2Z0
E2 (8.56)

Where S is the surface of the cross-section of the beam.
It’s not hard to then generalize this concept to reflected and refracted beams. Inserting n1, n2 in the
previous formula, where both indexes are defined exactly as before we get

W =
n1S

2Z0
E2

WR =
n1SR
2Z0

E2
R

WT =
n2ST
2Z0

E2
T

With SR, ST being the cross-sections of the respective beams.
We define the reflectance R and the transmittance T as the ratio of incoming vs reflected/transmitted
power

R =
WR

W
=
n1SR
2Z0

2Z0

n1S
r2 = r2

T =
WT

W
=
n2S cosϕ

2Z0

2Z0

n1S cos θ
t2 =

n cosϕ

cos θ
t2

(8.57)

The polarization here can be either p or s. In general tho, light can be also be polarized in some random
direction which can be described by a mix of p and s polarizations.
In the case of general polarization, we have

E = Esŝ+ Epp̂

ER = rsEsŝ+ rpEpp̂

ET = tsEsŝ+ tpEpp̂
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Squaring and multiplying by ni/Z0 we get both IR and IT

IR =
n1SR
Z0

(
r2sIs + r2pIp

)
IT =

n2ST
Z0

(
t2sIs + t2pIp

)
Dividing by I0 we have then

R =
IR
I0

= r2s
IR
I0

+ r2p
IT
T0

= Rs
Is
I0

+Rp
Ip
I0

T =
n cosϕ

cos θ

(
t2s
Is
I0

+ t2p
Ip
I0

)
= Ts

Is
I0

+ Tp
Ip
I0

(8.58)

§ 8.4 Special Angles

Taken the equations (8.55) using simple mathematical analysis it’s clear that there are some special
angles for which there is some special behavior. These angles are known in literature as

• Brewster angle

• Near grazing incidence angle

• Normal incidence angle

§§ 8.4.1 Brewster Angle

The first one is the so called Brewster angle. Taken Fresnel’s equations for the reflection coefficients

rs = − sin(θ − ϕ)

sin(θ + ϕ)

rp = − tan(θ − ϕ)

tan(θ + ϕ)

It’s clear that rs can never be 0 for θ ∈ [0, π/2], which is not the case for rp. The angle, θB , for which
rp(θB) = 0 is Brewster’s angle.
At this incidence angle, all light reflected is s-polarized. From the tangent formula we have

rp(θB) = 0 =⇒ ϕ =
π

2
− θB

From Snell’s law we have that

sin (θB) = n sin
(π
2
− θB

)
= n cos (θB)

Therefore

n =
sin θB
cos θB
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Which gives

θB = arctan(n) (8.59)

From the definition of relative index of refraction we can also say that

θB =


>
π

4
n1 < n2

π

4
n1 = n2

<
π

4
n1 > n2

(8.60)

§§ 8.4.2 Normal Incidence and Near Grazing Incidence

Another two special angles are at the limits of the interval, at θ = 0 (normal incidence) and θ = π/2
(grazing incidence).
At θ = 0 we have

sinϕ = 0

I.e. 

rs =
1− n

1 + n

ts =
2

1 + n

rp =
n− n2

n+ n2
= rs

tp =
2

1 + n
= ts

(8.61)

At normal incidence then, the polarization of the wave is irrelevant, and the transmitted/reflected
waves’ amplitude will depend only on the properties of the material.
At θ = π/2 instead we get

sinϕ =
1

n
=⇒ cosϕ =

1

n

√
n2 − 1

Which, in terms of Fresnel coefficients
rs = −

√
n2 − 1√
n2 − 1

= −1

rp = 1

ts = tp = 0

(8.62)

I.e. the wave is only reflected, and the difference between the two polarization states is only a phase
shift of π.

§ 8.5 Total Internal Reflection

For each angle of incidence between 0 and π/2 it’s possible to distinguish two kinds of reflection
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• External reflection, when n > 1

• Internal reflection, when n < 1

This distinction is clearer if we rewrite cosϕ in terms of sin θ, as follows from Snell’s law

cosϕ =
1

n

√
n2 − sin2 θ

It’s then clear that in general, cosϕ ∈ C, i.e. there exists an angle θc for which, when θ > θc the cosine
is complex. This angle is known as the critical angle, defined by

sin θc = n =⇒ θc = arcsin(n) (8.63)

In the regime of θ ≥ θc, all Fresnel coefficients are complex and, particularly, it can be proven that

rsrs = rprp = 1

ts = tp = 0
(8.64)

This gives the name to the regime that we’re studying, total internal reflection, or TIR as we’ll call
it. The nonzero Fresnel coefficients are then rs, rp, which can be written explicitly complex using√
n2 − sin2 θ = i

√
sin2 θ − n2

rs =
cos θ − i

√
sin2 θ − n2

cos θ + i
√
sin2 θ − n2

rp =
−n2 cos θ + i

√
sin2 θ − n2

n2 cos θ + i
√
sin2 θ − n2

(8.65)

§§ 8.5.1 Fiber Optics

The main technological usage of TIR are fiber optics. These cables are built similarly to coaxial cables,
where the cable (with refraction index n1) is covered by a coating (with refraction index n2) with
materials which give n = n1/n2 < 1. In order to be in TIR regime, the beam must be incident at a
particular angle, such that θ > θc. For purely technical reasons this angle is known as the acceptance
angle α.
Define an angle related to this α as:

π

2
− α′ = θc

From the definition of θc we have then
cosα′ = n

And therefore, also

sinα′ =
1

n1

√
n21 − n22

We then define α as follows

sinα = n1 sinα
′ =

√
n21 − n22 (8.66)

Which implies

α = arcsin

(√
n21 − n22

)
(8.67)
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§§§ 8.5.1.1 Evanescent Waves

Consider now the field inside a fiber optic cable (in TIR regime in general). The field inside the cable is
the field transmitted from the first reflection, and is

ET (r, t) = ET e
ikT ·r−iωt

But, we have that
kT · r = kTx sinϕ+ kT y cosϕ

But, from Snell’s law, and the fundamental equation of trigonometry, that

cosϕ =
1

n

√
n2 − sin2 θ =

i

n

√
sin2 θ − n2

Where we considered that we are in TIR, i.e. θ > θC and sin2 θ > n2 Therefore, said

a =
kT
n

√
sin2 θ − n2

kx =
kT sin θ

n

Which, if inserted into the field equation, give

ET (x, y, t) = ET e
−a|y|eikxx−iωt (8.68)

Measuring the field along the y axis, there’s a part of the wave which decays exponentially, known
as the evanescent wave. Note that the evanescent wave decays really rapidly, in fact, for visible
light, a ∝ 106 m−1. It’s clear that this wave will be really faint even at really close distances, and it’s
measurable only by really sensible detectors.

§§ 8.5.2 Phase Shift in TIR

One consequence of TIR is that, even if the amplitude of the wave isn’t changed after each reflection
(|r| = 1), the complex nature of the Fresnel coefficients adds in a phase on the wave.
From basic complex analysis, since both rs, rp ∈ C, we can write both the coefficients as a constant (|r|)
times a complex exponential, which will have the added phase as its argument. Therefore, in general

rs = e−iδs =
ae−iα

aeiα

rp = −e−iδp = −be
−iβ

beiβ

Using the following fact

tan(θ) =
Im
{
re−iθ

}
Re {re−iθ}

We can write, using equations (8.65), and noting that δs = 2α, δp = 2β that

tan(α) = tan

(
δs
2

)
=

√
sin2 θ − n2

cos θ

tan(β) = tan

(
δp
2

)
=

√
sin2 θ − n2

n2 cos θ



CHAPTER 8. ELECTROMAGNETIC WAVES 112

Which gives, as a relative phase difference ∆ = β − α

tan

(
δp − δs

2

)
= tan

(
∆

2

)
=

cos θ
√
sin2 θ − n2

sin2 θ
(8.69)

Which gives

∆ = 2arctan

(
cos θ

√
sin2 θ − n2

sin2 θ

)
(8.70)

§§ 8.5.3 Fresnel’s Rhomb

The results obtained from the previous section show that it’s possible to polarize light using TIR and the
right incidence angle. One optical instrument that serves this purpose is the so called Fresnel rhomb, a
literal transparent rhomb that transforms linearly polarized light to circularly polarized light.
The rhomb has the two major sides inclined by 54 degrees (air-air). In this configuration, linearly
polarized light at 45 degrees endures two total internal reflections and gets transmitted as circularly
polarized light.
For each reflection, in this configuration, we get

∆ =
π

4

Summed up for both reflections, we get a total phase change between s and p polarized light of

∆tot =
π

2

Which is what defines circular polarization.

§ 8.6 Reflection and Transmission Matrices

As we saw before, polarization states can be described using a comfortable polarization basis. In the
case of reflection and refraction this basis is obviously given by the versors ŝ and p̂, parallel to the
perpendicular (s) or the parallel (p) direction with respect to the incidence plane. This system is obviously
orthogonal, and the basis vectors are clearly described as

p̂ =

(
1
0

)
ŝ =

(
0
1

)
(8.71)

A generally polarized wave therefore can be described as a linear composition of these two vectors, i.e.

E =

(
A
B

)
= A

(
1
0

)
+B

(
0
1

)
= Ap̂+Bŝ

The reflection and the refraction of a beam, considered their linear behavior with respect to the generic
wave, can then be described as a matrix. This matrix is

rij =

(
−rp 0
0 rs

)
(8.72)
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Analogously, the transmission matrix is

tij =

(
tp 0
0 ts

)
(8.73)

From these results it’s possible to write the transmission and reflection matrices for special angles,
especially for near grazing incidence and normal incidence.

• Normal incidence

rij(0) =
1− n

1 + n

(
−1 0
0 1

)
(8.74)

• Near grazing incidence/grazing incidence

rij

(π
2

)
=

(
−1 0
0 1

)
(8.75)

For TIR the results are slightly different, due to the complex nature of r. As we wrote before, we have

rs = e−iδs

rp = −e−iδp

Therefore

rij =

(
−e−iδp 0

0 e−iδs

)
= e−iδp

(
−1 0
0 ei∆

)
(8.76)

With this definition, the dephasement ensued after TIR is really vivid.
Note that applying this matrix to a generally polarized wave Ewe have in general an elliptically polarized
outgoing wave, as

EiR = rijE
j = e−iδp

(
−1 0
0 ei∆

)(
A
B

)
= e−iδp

(
−A
Bei∆

)
(8.77)

Note that there is a generic phase change outside the resulting wave (which doesn’t affect the
polarization state), while there’s a dephasement on the second component, which depends directly on
δp − δs, that factor, on the other hand, is the one that will change the polarization state into, generally,
an elliptical state.
In the most general case, we can define the Fresnel-Jones matrices, which are the most general
expression of reflection-refraction problems of polarized waves

rij = −
(
tan (θ − ϕ) cot (θ + ϕ) 0

0 sin (θ − ϕ) csc (θ + ϕ)

)
tij =

2 cos θ sinφ

sin (θ + ϕ)

(
sec (θ − ϕ) 0

0 1

) (8.78)
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§ 8.7 Theory of Multilayer Films

The laws of reflection and refraction can be used in multiple ways in order to create special optically
active instruments, like antireflecting lenses for glasses, highly-reflecting lenses, heat-reflecting or
heat-transmitting surfaces and lenses which reflect only one specific wavelength of light.
These peculiar instruments, which some of them are also really common (see antireflecting glasses or
blue-light protection glasses) are made by superimposing various thin strata of material with different
refraction indexes ni.

§§ 8.7.1 Transfer Matrix

In order to study the physics behind, we’ll start with only two layers, which separate an “incoming”
zone with index n0 from an “outgoing” zone with index nT , with index n1 in between.
In this case, we will have, after applying simple logic and the idea of reflection and transmission of light:

• An incoming wave, outside of the film, where the reflection index is some value n0, and the wave
is described by (k,E,H)

• A wave reflected from the first layer (it’s still outside of the layer, hence the refraction index is
n0), described by (kR,ER,HR)

• A wave transmitted from the first layer, here the refraction index is n1, described by (k1,E1,H1)

• A wave reflected from the second layer, (here the refraction index is still n1), described by
(k′
R,E

′
R,H

′
R)

• A wave transmitted from the second layer, finally outside the film, where the refraction index is
nT and the wave will be (kT ,ET ,HT )

If we choose, for ease of calculation, the origin at the first layer, the equations for this layer will be
similar to what we saw before for a single reflection and refraction. The same goes for the second
layer, remembering tho that after having traveled a distance l we will have E′ = Eeikl.
Everything considered then we will have a system of four coupled equations in four unknowns, which
we will separate into two coupled systems that represent the two different layers. We chose, for ease
of calculation, to evaluate only normal reflection.{

E + ER = E1 + E′
R

n0 (E − ER) = n1 (E1 − E′
R)

{
E1e

ikl + E′
Re

−ikl = ET

n1
(
E1e

ikl − E′
Re

−ikl) = nTET
(8.79)

Where we used Hi = (µω)−1nik0Ei on the second equation of both systems. We begin by solving for
the second layer. From the second equation we have

ET =
n1
nT

(
E1e

ikl − E′
Re

−ikl)
Then, inserting it in the first equation

E1e
ikl + E′

Re
−ikl =

n1
nT

(
E1e

ikl − E′
Re

−ikl)
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Reuniting the terms with the same amplitude we get(
1− n1

nT

)
E1e

ikl = −
(
1 +

n1
nT

)
E′
Re

−ikl

Or, developing the sum, multiplying by the inverse of the result on the left and on the right and dividing
by E′

R, we have

E1

E′
R

=
n1 + nT
n1 − nT

e−2ikl E′
R

E1
=
n1 − nT
n1 + nT

e2ikl

Taken again the first equation of the second layer in (8.79) and dividing everything by E1 and E′
R, we

find ourselves a new solvable system 
eikl +

E′
R

E1
e−ikl =

ET
E1

E1

E′
R

eikl + e−ikl =
ET
E′
R

Inserting what we found before we have, for the first equation

eikl +

(
n1 − nT
n1 + nT

e2ikl
)
e−ikl =

ET
E1

Or, solving by regrouping the exponentials

ET
E1

=
2n1

n1 + nT
eikl

Analogously for the second equation we get

ET
E′
R

=
2n1

n1 − nT
e−ikl

Rewriting E1, E
′
R in terms of ET , the whole system (8.79) becomes

{
E + ER = E1 + E′

R

n0 (E − ER) = n1 (E1 − E′
R)


E′
R =

n1 − nT
2n1

ET e
ikl

E1 =
n1 + nT
2n1

ET e
−ikl

(8.80)

Inserting the results of the second system into the first we get{
E + ER =

(
n1 − nT
2n1

e−ikl +
n1 − nT
2n1

eikl
)
ETn0 (E + ER) = n1

(
n1 − nT
2n1

e−ikl − n1 − nT
2n1

eikl
)
ET

Regrouping on the right with respect to the refraction indexes we get on the first equation

E + ER =
1

2n1

[
n1
(
e−ikl + eikl

)
+ nT

(
e−ikl − eikl

)]
ET
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Using the usual identities for sines and cosines and bringing in the factor on the left we get

E + ER =

(
cos(kl)− i

nT
n1

sin(kl)

)
ET

And analogously, for the second equation

n0 (E − ER) = (−in1 sin(kl) + nT cos(kl))ET

Remembering the definition of r and t, we can rewrite the system in terms of both Fresnel parameters
dividing by E  1 + r =

(
cos kl − i

nT
n1

sin(kl)

)
t

n0 (1− r) = (−in1 sin(kl) + nT cos(kl)) t

(8.81)

This system can clearly be rewritten in matrix terms as follows(
1
n0

)
+

(
1

−n0

)
r =

(
cos(kl) − i

n1
sin(kl)

−in1 sin(kl) cos(kl)

)(
1
nT

)
t (8.82)

Here, the left hand side represent the discontinuity equations for the first layer, while the right hand side
represents the discontinuity equations on the second layer. The matrix, known as the transfer matrix,
“transfers” the equation from the first boundary to the second, where the discontinuity equations are
applied.
Generalizing to multilayer films composed by n layers, we can immediately find the transfer matrix of
the whole system using simple matrix multiplication. SaidM i

j the transfer matrix of this system, then

we have, if the matrix of the k−th layer isM ik
jk

that

n∏
k=1

M ik
jk

=M i
j =

(
A B
C D

)
(8.83)

Therefore, the general Fresnel equation becomes(
1
n0

)
+

(
1

−n0

)
r =

(
A B
C D

)(
1
nT

)
t (8.84)

This equation is readily solvable for both r, t. Rewriting everything as a system of two equations, we
have {

1 + r = (A+BnT ) t

n0(1− r) = (C +DnT ) t

From the first equation we get r(t), which inserted in the second equation gives

2n0 − n0 (A+ nTB) t = (C + nT )t

Which solved gives

t =
2n0

n0A+ n0nTB + nTD + C
(8.85)
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Reinserting it into the first equation, we have also the result for r

r =
n0A+ n0nTB − nTD − C

n0A+ n0nTB + nTD + C
(8.86)

If the elements of the transmission matrix are known, then it’s possible to find the reflectance and
transmittance of the complete multilayer by remembering that R = ‖r‖2, T = ‖t‖2

§§ 8.7.2 Antireflecting Films

One of the applications of multilayer theory we indicated before are antireflecting films, which are
the reason that we can build and use antireflecting lenses in cameras and glasses, and for the watch
enthusiasts, also have antireflecting sapphire crystals.
Considering this real-world usage, we will suppose that the antireflecting film is placed over a glass
(or sapphire) surface with refraction index nT , and on the other side the light is immersed in air, with
refraction index n0 = 1, while the layer of antireflecting material has refraction index n1.
The transfer matrix of the system is

M i
j =

(
A B
C D

)
=

(
cos(kl) − i

n1
sin(kl)

−in1 sin(kl) cos(kl)

)
The equation for the reflection coefficient is as before (8.86), which, after substituting the matrix
elements and regrouping the common factor is

r =
(1− nT ) cos(kl)− i

(
nT

n1
− n1

)
sin(kl)

(1 + nT ) cos(kl)− i
(
nT

n1
+ n1

)
sin(kl)

Multiplying and dividing both denominator and numerator we get the much simpler result

r =
n1(1− nT ) cos(kl)− i(nT − n21) sin(kl)

n1(1 + nT ) cos(kl)− i(nT + n21) sin(kl)
(8.87)

Now, here the reflectance is not necessarily 0, but we can manipulate the parameters of the layer in
order to get it to become null for the desired frequency.
The easiest to mechanically manipulate is the thickness l of the layer. In fact, if we take l = λ/4 we
have

kl =
kλ

4
=

2πλ

4λ
=
π

2
(8.88)

Inserting this awesome result we get for r and R

r =
nT − n21
nT + n21

, R =

(
nT − n21

)2
(nT + n21)

2 (8.89)

Now, we have a constraint on n1, i.e. the composition of the layer. In order to have 0 reflectance at
the chosen frequency λ we must find a material such that

n1 =
√
nT (8.90)
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In common use for real-world application, like antireflecting glasses (i.e. nT ≈ 1.5), is magnesium
fluoride, where nMgF2 = n1 ≈ 1.35. This combination doesn’t respect precisely the previous constraint,
but permits a reduction of the reflectance of the glasses by 99%. For negating completely the reflection
of a chosen wavelength, multiple layers are used, where specifically they’re alternated high-low
reflectance films thick λ/4, with only 3 layers it’s possible to block 3 different wavelengths. CHECK
PROPERLY, I wrote λ/4 and not λ0/4! It’s not an error, the thickness depends directly on the material
and its composition, since it also changes the refraction index, and therefore λ will differ.

§§ 8.7.3 High Reflectance Films

The opposite result of what we got with antireflecting films, is that of high-reflectance films, special
films built by alternating layers thick l = λ/4 of high and low refracting indexes.
Said nH the refraction index of the highly refracting material and nL the refraction index of the low-
refracting material (obviously nH > nL) we have, since they’re thick exactly λ/4, that the transfer
matrix of such system is (

MH/L

)i
j
=

(
0 − i

nH/L

−inH/L 0

)
(8.91)

For the first high-low couple of layers the transfer matrix is simply the product of the two

(MHL)
i
j =

(
0 − i

nL

−inL 0

)(
0 − i

nH

−inH 0

)
=

(
−nH

nL
0

0 − nL

nH

)
Alternating 2N stacks of high-low reflectance layer, the transfer matrix is found simply using matrix
powers, i.e.

M i
j =

(
MN
HL

)i
j
= (−1)

N

(
(nH/nL)

N
0

0 (nL/nH)
N

)
(8.92)

From (8.86) then, we have that the reflection coefficient for a high-reflectance film is, supposed for
ease of calculation n0 = nT = 1

r =

(
nH

nL

)N
−
(
nL

nH

)N
(
nH

nL

)N
+
(
nL

nH

)N (8.93)

Which gives a reflectance of

R =

(
n2NH − n2NL

)2(
n2NH + n2NL

) (8.94)

The reflectance clearly goes to unity with N → ∞, i.e., the more stacks we put the more the film
reflects a specific frequency. In the case of layers of zinc sulfide (ZnS, nH = 2.3) and magnesium
fluoride (MgF2, nL = 1.35), with a stack of 8 layers (4 layers of each, or 4 couples of high-low layers),
the reflectance is R ' 0.97, which is higher than that of silver, in the visible range. A stack of 30 layers
gives R & 0.999. The highly-reflected wavelenght band can be broadened by the simple combination
of multiple thicknesses of the layers



9 Coherence and Interference

§ 9.1 Interference

Suppose that we have a single point-like source S which emits an electromagnetic wave E, which
passes through two point apertures S1, S2, and then converges again to a point P on which we put
some detector.
The starting wave is described as the sum of two single waves coming out the pinholes via the
superposition principle, i.e.

E = E(1) +E(2)

Where, in general, the two wavelets can be described generally as usual

E(1) = E1e
ik1·r−iωt+iφ1

E(2) = E2e
ik2·r−iωt+iφ2

(9.1)

Due to the constraint of the system we have that k1 = k2, therefore the sum of the two gives the
general field, which in general depends only on the phase difference of the two wavelets.
These two wavelets are said to be mutually coherent, if the phase difference between the two is
constant, i.e.

∆φ = φ1 − φ2 = const (9.2)

This definition comes up directly when we evaluate the irradiance of the measured field E. In fact, we
have

I =

√
µ

ε
E2 =

√
ε

µ

[
E2

1 + E2
2 + 2Re

{
E(1) ·E(2)

}]
Remembering that

√
ε/µ = nZ−1

0 , and rewriting nE2
i /Z0 = Ii we have that the total irradiance

measured is (in the general case with two different waves)

I = I1 + I2 + 2

√
µ

ε
I1I2 cos (k1 · r− k2 · r+ φ1 − φ2) (9.3)

The last term, which depends on the root of the product of the intensities of the single waves, is called
the interference term. This term is the only of the three that depends on the “angle” θ, defined as

∆(r) = (k1 − k2) · r+ φ1 − φ2 (9.4)

119
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This last interference term is clearly dependent on the polarization of the two waves. In fact, it can
be exactly zero when the scalar product of the two fields of the single waves is zero. I.e. when their
polarization is orthogonal.
In laboratories, for obvious reasons we never measure the instantaneous irradiance, but an average.
Also, the interfering waves must not have the same frequencies and can come from different sources,
therefore the total irradiance we measure will instead be described by the following equation

I = 〈I〉 = lim
T→∞

1

T

√
ε

µ

ˆ T

0

(
E(1) +E(2)

)
· (E(1) +E(2))

†dt (9.5)

The interference term Iint is therefore defined as follows

Iint = 2E1 ·E2

√
ε

µ
lim
T→∞

1

T

ˆ T

0

cos ((k1 − k2) · r− (ω1 − ω2)t+ φ1 − φ2) dt (9.6)

The integral at the end is zero only in a handful of cases, in fact

Iint = 0 =⇒


E1 ⊥ E2

ω1 6= ω2

φ1 − φ2 6= const

(9.7)

§§ 9.1.1 Double Slit Interferometer

The first experiment with interference was prepared by Thomas Young in the early 1800s. This
experimental setup, better known as the double slit experiment is set up, ideally, as a point source
which emits a single wave; this wave then comes through two slits and then a detecting screen shows
the interference pattern.
In general we can say that the two sections of the experiment (one where lays the source, and one
where lays the screen) have different refraction indexes n1 n2, for better emphasizing this we write
k = nk0. Since the electromagnetic wave comes from a single source, we have to impose that the two
wavelets coming out from the slits into the screen have the same color, i.e. ω1 = ω2 = ω, therefore,
the interference term will be

Iint = 2E1 ·E2

√
ε

µ
lim
T→∞

1

T

ˆ T

0

cos (k0 (n1r1 − n2r2) + ∆φ) dt

Due to the different position of the two slits, and since their distance from the measuring point on the
screen is not necessarily equal, we have that the two single wavelets will be described by two different
r vectors.
Now, since the two incoming wavelets are not necessarily parallel, we can write the following

E1 ·E2 =
√
I1I2 cos δ

And therefore, in general, the irradiance will be

I = I1 + I2 + 2
√
I1I2 cos δ cos∆ (9.8)
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Where we omitted the time average (as we will do going forward from now, for notational ease).
Now, due to the origin of the two waves, we know that I1, I2 don’t depend on time and are constants,
but it’s clear that depending on the position of the measuring point on the screen that Imin ≤ I ≤ Imax,
all determined by the last cosine factor of the interference term.
Since −1 ≤ cos∆ ≤ 1 we will have

I =

{
Imax ∆ = 2mπ

Imin ∆ = (2m+ 1)π
m ∈ Z (9.9)

This result can be reproduced also thinking in strictly trigonometric terms. Said L the distance from the
slits to the screens and said d the distance from the half-point between the slits and the measuring
point on the screen, we have, called x′ the measuring point, that, firstly

I = I0 + 2I0 cos∆ = I (1 + 2 cos∆) = 4I cos2
(
∆

2

)
And then that

∆

2
u
πd

λ0

x′

L
(9.10)

I.e.

It = 4I0 cos
2

(
πd

λ0

x′

L

)
Then, the maxima and minima of the irradiance measured on the screen can be described all in terms
of wavelength and distance from the screen, i.e.

I =


Imax ∆ =

mλ0
d

Imin ∆ =
λ0
2d

(2m+ 1)

m ∈ Z (9.11)

§§ 9.1.2 Michelson-Morley Interferometer

Another experiment demonstrating the interference of electromagnetic waves was made in the later
years of the 1800s by Michelson and Morley. This experiment was of critical importance also in other
branches, like mechanics, in fact it proved that without doubt there was no ether in space, but rather
gave the foundation to the special relativistic Lorentz transformations.
This experiment is composed by a point-like source, which passes through a beam splitter, i.e. an
optically active object which divides an incoming beam into two separate beams.
This beam splitter is oriented in a way such that the two outgoing beams are orthogonal between each
other, and after a different distance for each (d1, d2) they meet again at the beam splitter, which aligns
them back up again and sends them to a receiver.
Said di the optical path traveled by the two waves we have that

2d = 2(d1 − d2)

Then, the total irradiance at the receiver will be

I = 4I0 cos
2
(π
λ
2d
)

(9.12)
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Then, as we did before with the double slit interferometer, we will have by finding the maximum and
the minimum of the cosine

I =


Imax 2d = mλ

Imin 2d =

(
m+

1

2

)
λ

m ∈ Z (9.13)

This kind of interferometer is still widely in use in the world of modern physics, in fact it’s the same
kind of interferometer used in LIGO and VIRGO experiments (albeit much more modern). These
interferometers use arms long in the order of kilometers for detecting the slightest change in the
interference pattern given by the oscillation of the optical path length at the passage of a gravitational
wave. Here the point source chosen is a high-power laser.
Another usage of the Michelson-Morley interferometer will see the light in the future with the launch of
the LISA constellation of satellites, which will use huge distances for detecting the faintest gravitational
waves.

§ 9.2 Partial Coherence

§§ 9.2.1 Correlation

It’s time to consider the most generic case possible, and the nature of interference itself.
Consider two beams coming from a point-like source S, with the same frequency and polarization.
Chosen a point R on which the two beams rejoin after two different paths l1, l2, we know for a fact
(since electromagnetic waves travel at a constant speed u = c/n), that one of the two beams will arrive
at a later time at the point.
Said l1 < l2, t being the time needed to cross the path long l1 and t + τ being the time needed to
cross the path l2, we have

E(1)(t) = E1e
ik·r−iωt+iφ1(t)

E(2)(t+ τ) = E2e
ik·r−iωt+iφ2(t+τ)

(9.14)

Where we consider the randomness of phase by noting that it’s time dependent.
By definition of what we said so far, then

τ =
1

u
|l2 − l1| =

∆l

u
(9.15)

And, therefore the irradiance at the point R will then be defined by the usual equation

I = I1 + I2 + 2Z
〈
Re
{
E1(t) ·E†

2(t+ τ)
}〉

Definition 9.2.1 (Correlation Function). From the last equation it’s possible to define a new integral
function, which we will call the correlation function or the mutual correlation. This function is defined
as a function of τ , as follows

Γ12(τ) = lim
T→∞

1

T

√
ε

µ

ˆ T

0

E1(t)E
†
2(t+ τ)dt (9.16)
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From the definition, it’s clear that

Γ12(τ) =

√
ε

µ

〈
E1(t)E

†
2(t+ τ)

〉
We also define the autocorrelation function as

Γ(τ) = Γii(τ) =

√
ε

µ

〈
Ei(t)E

†
i (t+ τ)

〉
(9.17)

Also, by substitution, we can say that

Γ12(τ) =
1

2
Iint

And also that
Γ11(0) = I1

Γ22(0) = I2

Another useful function derived by the correlation function is the normalized version, known as the
degree of correlation γij(τ).
It’s defined as follows

γij(τ) =
Γij(τ)√

Γii(0)Γjj(0)
(9.18)

From the previous definitions it’s possible then to see how the interaction term depends on the
correlation between the two waves, and specifically, on the phase difference between the two. Being
γ a complex function, we can write

Re {γij(τ)} = |γ|ij(τ) cos (∆φij)

Then, the interaction term can be defined in the most general way as follows

Iint = 2
√
I1I2|γ12(τ)| cos (∆φ12) (9.19)

The definition of the autocorrelation as a normalized term of measure of the correlation of two waves,
gives rise to the definitions of perfect incoherence, partial coherence and perfect coherence, respectively
when |γ12| = 1, |γ12| = 0 and 0 < |γ12| < 1.
Therefore, the range of interference is exactly in the set

Iint ∈
[
−2
√
I1I2|γ12|,

√
I1I2|γ12|

]
(9.20)

Definition 9.2.2 (Visibility). Another useful definition is the visibility of fringes V, a constant comprised
between 0, 1, defined as the ratio of the difference of irradiance between the peaks and the shadows
of the interference pattern and the sum of the two intensities

V =
Imax − Imin
Imax + Imin

=
2
√
I1I2|γ12(τ)|
I1 + I2

(9.21)

Note also that if I1 = I2 = I0, clearly
V = |γ12(τ)|

Which implies that the maximum visibility will be obtained when the two waves are in the regime of
total coherence.
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§§ 9.2.2 Coherence Time and Coherence Length

From what we have seen before, the degree of correlation is strictly tied to the signal and its properties,
but especially to its phase.
Consider a quasimonochromatic wave (∆ω ≈ 0). The field is then described as follows

E(r, t) = E0(r)e
−iωt+iφ(t) (9.22)

The phase function φ(t) is as we said before a random function of time. Physically, we can see this
function as a composition of multiple Heaviside step functions, or, more clearly, it describes intervals of
coherence (φ(t) = const) and instants of decoherence.
Said τ0 the coherence time, i.e. the time needed for φ(t) to change from one constant value to the
other, we can begin to analyze the behavior of γ(τ) in different occasions.
Since

E(r, t) = E0(r)e
−iωteiφ(t)

E(r, t+ τ) = E0(r)e
−iω(t+τ)eiφ(t+τ)

The scalar product of E(t) and E(t + τ) is then (omitting the spatial dependence, since it does not
interfere with our calculations)

E(t) ·E†(t+ τ) = E2
0e

−iωτei(φ(t)−φ(t+τ))

Therefore, the degree of correlation depends only on the difference of the two phases

γ(τ) =
1

〈E2〉
〈
E(t) ·E†(t+ τ)

〉
= e−iωτ

〈
ei(φ(t))−φ(τ)

〉
Since we defined φ(t) as a periodic (random) step function with a period of τ0, the expected value is

〈φ(t)− φ(t+ τ)〉 =

{
0 τ > τ0 ∨ 0 < t < τ0 − τ

∆φ τ0 − τ < t < τ0
(9.23)

Or, in common words, it’s zero if we’re evaluating the coherence when φ(t+ τ) has changed already
to another random value, or vice-versa when φ(t) has not yet reached the coherence time τ0. It’s equal
to a constant value ∆φ only and only when we’re checking in an interval which is not greater than the
coherence time.
Considering only the first interval of coherence, then

γ(τ) =
e−iωτ

τ0

[ˆ τ0−τ

0

dt+ ei∆φ
ˆ τ0

0

dt

]
=

(
τ0 − τ

τ0
+
τ

τ0
ei∆φ

)
e−iωτ

Or, evaluating the integrals we have, in general, for a single cycle (or, in common terms, in a single
wave train) the coherence is strictly tied to the coherence time τ0, with the equation

γ(τ) =


τ0 − τ

τ0
e−iωτ τ < τ0

0 τ > τ0

(9.24)

Note that, if we take the evaluation of the integral and check it’s expectation value for T → ∞, the
expected value is zero, due to the random variation of phase ∆φ. Therefore, a wave will tend to
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decoherence for big periods.
Note also that, since we’re not considering two different waves, if there are no attenuation phenomena,
the absolute value of the degree of correlation is the visibility of fringes, i.e.

V = 1− τ

τ0
(9.25)

Considered everything and evaluated the real part of what we found before we have

I = I1 + I2 + 2
√
I1I2Re

{
τ0 − τ

τ0
e−iωτ

}
τ < τ0 (9.26)

Which, if we develop the last operation on the right becomes

I = I1 + I2 + 2
√
I1I2

(
1− τ

τ0

)
cos(ωτ) τ < τ0 (9.27)

Noting that on the interference term we have the real part of the degree of self-correlation, we can say
with ease that the interference pattern will be present only when τ is less than the coherence time τ0,
therefore indicating that peak-shadow patterns only appear with coherent light.
The parameters coherence length and coherence time are two intrinsic parameters of the wave, which
indicate single coherent packets of light ,or wave trains, where the first can be understood experimentally
as the length of the wave train.
Note that also, if ∆d > l0 = cτ0, ∆τ > τ0, i.e. if the wave is non-coherent, then Iint = 0, and the
visibility of patterns is null (V = 0).

§ 9.3 Coherence and Fourier Calculus

§§ 9.3.1 Line Width and Power Spectrum

When dealing with electromagnetic waves it’s important to note that in nature monochromatic sources
do not exist in general.
Every single source that emits electromagnetic waves at some frequency ω0, has always some spread
around the emission frequency called the line width ∆ω, given from dispersion.
This line width is strictly tied to the coherence time τ0 of the source.
Consider now a generic wave train f(t) with coherence time τ0. Its time dependence is generally
described by a complex exponential in the following way

f(t) =

e
−iω0t −τ0

2
< t <

τ0
2

0 |t| ≥ τ0
2

(9.28)

The study of this single wave train is way simpler in the ω space. Applying the Fourier transformation
to our wave train we get

f̂(ω) = F̂ [f ] (ω) =
1

i(ω − ω0)
√
2π

[
ei(ω−ω0)

τ0
2 − e−i(ω−ω0)

τ0
2

]
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Noting the sine on the right, we have finally

f̂(ω) =

√
2

π

sin
[
(ω − ω0)

τ0
2

]
ω − ω0

|t| < τ0
2

(9.29)

From this, we define the power spectrum F̂ (ω) of the wave in ω space as

F̂ (ω) =
∣∣∣f̂(ω)∣∣∣2

Which, in for this train wave is

F̂ (ω) =
2

π

sin2
[
(ω − ω0)

τ0
2

]
ω − ω0

(9.30)

Now, in order to find the line width, we search for the zeroes of the power spectrum, which in this
case are

sin
[
(ωk − ω0)

τ0
2

]
= 0 =⇒ ωk =

2kπ

τ0
+ ω0

The distance between two consecutive orders of shadows (ωk, ωk+1), we have

∆ω =
2π

τ0
=⇒ ∆ν =

1

τ0
(9.31)

I.e., the line width is exactly the inverse of the coherence time. Note that a perfectly coherent (ideal)
electromagnetic wave must have an infinite coherence time, therefore the line width must be zero.
This is obtained only if the power spectrum is a delta distribution around the emission frequency ω0

F̂ (ω) = δ (ω − ω0)

This result, gives us a way to experimentally measure the average coherence time and length of a wave.
By definition we have

〈τ0〉 =
1

∆ν
〈l0〉 = c 〈τ0〉 =

c

∆ν
(9.32)

Since ∆ν/ν = ∆λ/λ we have

∆ν =
∆λ

cλ2

I.e., if we pass from frequencies to wavelengths, we can estimate the coherence length with the
following expression

〈l0〉 =
λ2

∆λ
(9.33)

§§§ 9.3.1.1 Power Spectra and Interference

Given some wave train, how can we find the interference pattern from the power spectrum? This
comes easily as a result of the following theorem
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Theorem 9.1 (Wiener-Khinchin). Given an electromagnetic wave with power spectrum G(ω) = |g(ω)|2,
the autocorrelation function is given by

Γ(τ) = F̂−1 [G(ω)] (τ) (9.34)

I.e., the autocorrelation function of a wave is the inverse Fourier transform of the power spectrum

Proof. Said E(t) the inverse Fourier transform of g(ω), we have

Γ(τ) =

ˆ
R
E(t)E(t+ τ)dt =

1

2π

ˆ
R

[ˆ
R
g(ω)e−iωtdω

] [ˆ
R
g(ω′)e−iω′(t+τ)dω′

]
dt

Due to the independence of the variables, using Fubini’s theorem on the exchange of integrals we can
rewrite everything as follows

Γ(τ) =
1

2π

˚
R3

g(ω)g(ω′)e−i(ω−ω
′)teiω

′τdωdω′dt

Integrating the first exponential with respect to t it transforms exactly to a delta distribution, and
therefore

Γ(τ) =
1

2π

¨
R2

g(ω)g(ω′)δ(ω − ω′)eiω
′τdωdω′

Applying the delta distribution on the integral in ω′ we have then

Γ(τ) =
1

2π

ˆ
R
g(ω)g(ω)eiωτdω

Using zz = |z|2 we obtain the power spectrum, and the theorem is proven

Γ(τ) =
1

2π

ˆ
R
G(ω)eiωτdω = F̂−1 [G(ω)] (τ)

§ 9.4 Multiple Beam Interference

§§ 9.4.1 Laser Cavities

So far we treated only the interference of a single wave with itself and of two different waves (also the
same wave split in two) interfering between each other.
Now we will treat the case of multiple beams (or a single beam interfering with itself) interfering
with each other. Experimentally it can be shown (with instruments like an etalon or a Fabry-Perot
interferometer) that multiple beams interfering with each other will show an interference pattern on a
given screen.
Consider a material thick d with a refraction index n2 and a single wave with amplitude E0 incoming
from outside the material at some angle θ, where the outside has refraction index n1. The result, as we
know already, will be a reflection and a refraction.
Said t1, r1 the Fresnel coefficient for n1 → n2 and t2, r2 the Fresnel coefficients n2 → n2 we have that,
at the first reflection we will get a reflected beam Er,1 with amplitude r1E0 and transmitted wave with
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amplitude E1 = t1E0. The transmitted wave will reach again the boundary of the material (on the
other side) and the process will be repeated with a wave with amplitude E1.
At the end we will have a series of transmissions and reflections, with n−th term

ET,n = t1t2r
2n
2 E0

ER,n = t1t2r
2n+1
2 E0

(9.35)

On each reflection, there will be a phase shift equal to the wavenumber times the optical path traveled.
For one process (two reflections) we have that, if the reflection angle inside the medium is θ, the phase
shift will be

δ = 2kd cos θ =
4n2π

λ0
d cos θ (9.36)

Where λ0 is the vacuum wavelength. Considering every reflection (n→ ∞) together with the phase
shift we have that the final amplitude of the series of reflected waves from the material

ER = r1E0 + t1t2r2E0e
iδ

∞∑
j=0

r2n2 einδ (9.37)

The infinite sum on the right is a convergent geometric sum, which gives the following final result for
the amplitude of the last wave of the reflected series

ER = E0

[
r1 +

t1t2r2e
iδ

1− r22e
iδ

]
It’s provable that r1 = −r2 and t1t2 = 1− r21, then, rearranging the term on the right we have

ER = E0

[
r1 −

t1t2r1e
iδ

1− r21e
iδ

]
= E0

[
r1
(
1− r21e

iδ
)
− t1t2r1e

iδ

1− r21e
iδ

]
= E0r1

[
1− (r21 + t1t2)e

iδ

1− r21e
iδ

]
Using t1t2 = T1 and r21 = R1 and that r21 + t1t2 = 1 we can write that the final amplitude of the
reflected series of waves is

ER = E0r1
1− eiδ

1−Reiδ
(9.38)

Or, using R = |ER/E0|2, we could also write that the reflection coefficient of the slab is

R =

∣∣∣∣ERE0

∣∣∣∣2 = R1

∣∣1− eiδ
∣∣2

|1−Reiδ|

2

Which, using |z|2 = zz as usual for complex numbers, becomes

R = R1
(1− eiδ)(1− e−iδ)

(1−Reiδ)(1−Re−iδ)
= 2R

1− cos δ

1 +R2 − 2R cos δ

Further simplifying, using

1− cos δ = 2 sin2
(
δ

2

)
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We have

R =
4R sin

(
δ
2

)
1 +R2 − 2R− 4R sin2

(
δ
2

) =
4R

(1−R)2
sin2

(
δ
2

)
1 + 4R

(1−R)2 sin
2
(
δ
2

)
Which, defined the Finesse coefficient as

F =
4R

(1−R)2
(9.39)

Becomes

R =
F sin2

(
δ
2

)
1 + F sin2

(
δ
2

) (9.40)

The function on the right (divided by F ) is known as the Airy function.
It’s possible to find easily also the transmission coefficient of the slab T , using

T = 1−R =
1

1 + F sin2
(
δ
2

) , F =
4(1− T )

T 4
(9.41)

The peaks and the shadows of the image on the screen can be calculated by optimization calculus,
using the function

IR(δ) = I0F
1

1 + F sin2
(
δ
2

) = RI0

Deriving with respect to delta then

∂IR
∂δ

= I0F
sin
(
δ
2

)
cos
(
δ
2

)(
1 + F sin2

(
δ
2

)2) = 0

Which implies that the maxima and minima of the irradiance are at the following values of δ{
δm = 2mπ max {R}
δ′m = (2m+ 1)π max {T}

(9.42)

Remembering that δ is a function of the wavelength and optical path, we have

δ(k) = 2kd cos(θ), δ(λ) =
4πd

λ
cos θ, δ(ω) =

2ωn

c
d cos θ

Noting the dependence on the frequency of δ, it’s clear that the slab is useful for distinguishing between
waves with different frequencies, as different frequencies will have different peaks, precisely, noting
that at different peak orders, defined by the whole number m ∈ Z

ωm =
mπc

dn

And that, developing the transmission irradiance around these peaks, i.e. at ω − ωm, we have

IT = I0T
2 1

T 2 + 4(1− T ) sin2
(
dm
πc (ω − ωm)

) u I0

σ2

4
σ2

4 + (ω − ωm)2
(9.43)
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Where σ is a constant which depends only on the properties of the material

σ2

4
=

4T 2c2

d2n2
1

4(1− T )

This is exactly as if we studied the behavior of a cavity. Experimentally it can be interpreted as a laser
cavity.
Summing for each transmission, and using the cavity limits 0 ≤ m ≤ N − 1 noting that what we found
is exactly the power spectrum of the cavity, from the Wiener-Khinchin theorem that the self correlation
of the beam is simply the Fourier transform of the power spectrum, Therefore

γ(τ) = c

N−1∑
m=0

F̂

[
σ2

4
σ2

4 + (ω − ωm)2

]
(τ) = c

N−1∑
m=0

e
|σ|τ
2 eiωmτ

Which, after summation, gives

γ(τ) = ce
|σ|τ
2

1− eiNωmτ

1− eiωmτ
c ∈ C (9.44)

The visibility of fringes is simply V = |γ| =
√
γγ. Evaluating the parenthesis multiplications and writing

the correct trigonometric functions we have (inglobating a
√
2 in a constant k

V(τ) = ke
|σ|τ
2

√
1− cos(Nωmτ)

1− cos(ωmτ)
= ke

|σ|τ
2

∣∣∣∣∣ sin
(
Nωmτ

2

)
sin
(
ωmτ
2

) ∣∣∣∣∣ (9.45)

Normalizing everything, and using |γ(0)| = 1, we have k = N−1, which gives finally

V(τ) = e
|σ|τ
2

N

∣∣∣∣sin(Nωmτ2

)
csc
(ωmτ

2

)∣∣∣∣ (9.46)

§§ 9.4.2 Fabry-Perot Instruments

Fabry-Perot interferometers utilize the results obtained from the study of multi-beam interference with
broad sources of light. They’re usually used to determine the frequency of waves.
Their construction is similar to a laser cavity, where the slab gets substituted by two semi-transparent
mirrors which replicate the cavity. In this case, since there is air inside these mirrors, we have

r1 = r2 = r, t1 = t2 = t

As before, the path difference between the n-th and the n+ 1-th reflection is

d = 2nd cos θ

Therefore, the phase difference in a single double reflection is

δ =
4πd

λ
cos θ
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Hence, the final outgoing reflected and trasmitted amplitude are
ER = rE0 + t2E0

∞∑
n=0

r2n+1einδ

ET = t2E0

∞∑
n=0

r2neinδ
(9.47)

Noting that r2 < 1 and that r2 = R, t2 = T , we have

ET =
t2E0

1−Reiδ

IT =
T 2I0

|1−Reiδ|2
(9.48)

As with the laser cavity we have that
∣∣1−Reiδ

∣∣2 = (1−R)2(1+F sin2(δ/2)), with F being the finesse
of the instrument, defined in (9.39).
Considered also the absorbment of some of the irradiance, i.e. noting that R + T + A = 1, with A
being the absorption coefficient, and considering also that r ∈ C will bring a phase shift itself, precisely,
for each reflection some value δr/2 ∈ [0, 2π) we get that, writing ∆ = δ + δr that firstly

T 2

(1−R)2
=

(
1−R−A

1−R

)2

And therefore, for our realistic interferometer

IT = I0

(
1− A

1−R

)2
1

1 + F sin2
(
∆
2

) (9.49)

As usual, we find the maxima of the Airy function, which correspond to

∆ = 2Nπ =
4πd

λ
cos θ − δr (9.50)

The integer N ∈ N is known as the order of interference of the beams, which indicates the optical
distance difference of two beams with different λ.
At this maxima we have

Imax =
T 2I0

(1−R)2
= I0

(
1− A

1−R

)2

(9.51)

These instruments are used to measure the wavelength of a source with high precision. A real Fabry-
Perot instrument takes the light coming from a broad source of light, collimates it towards the two
mirrors described before and then with another lense collimates the outgoing rays to a single point in
the measuring screen. There are two configurations for a Fabry-Perot instrument, one is the etalon in
which the mirrors are fixed in position, and another, known as the interferometer, where the mirrors
can be moved in order to change the phase difference δ obtained by the multiple reflections.



CHAPTER 9. COHERENCE AND INTERFERENCE 132

§§§ 9.4.2.1 Resolution Power of Fabry-Perot Instruments

In order to actually measure the wavelenghts (or frequencies) of the broad source in question, we gotta
understand what it means to resolve two lines in the interference pattern obtained.
For a simpler evaluation, consider A = δr = 0, and call Γ the line width at half height at the peak.
Consider two lines, one at order m and one at order m+ 1.
In order to call the two peaks resolved, we employ Taylor’s criterion, which states that two lines
are resolved if they, at maximum, intersecate at the half-height point, where the irradiance is I0/2.
Therefore if I = I0/2 at the half height point, we have then, using (9.51)

δ = 2πm+
Γ

2
= ∆

Where we moved from the peak of exactly half line width, bringing ourselves at the intersection point
of the two lines.
Applying the aforementioned criterion, we get then

I0
2

=
T 2I0

1 + F sin2
(
mπ + Γ

4

) =⇒ 1

2
=

(
1− A

1−R

)2
1

1 + F sin2
(
mπ + Γ

4

)
Imposing A = 0, and noting that mπ + Γ/4 << 1 we have, after some algebraic juggling

1 = F sin2
(
mπ +

Γ

4

)
≈ FΓ2

16

Solving for gamma we get that a line will be resolved (for Taylor), if and only if its line width is exactly
equal to the following

Γ =
4√
F

(9.52)

I.e., if the maximas are at a distance dm > Γ. It’s clear that, due to the definition of finesse, the
minimum resolution distance is tied only to the instrument and not to the properties of the wave

§§§ 9.4.2.2 Spectral Resolution

The “goodness” of a measure with a Fabry-Perot instrument is evaluated with what is known as
Resolving Power, RP . This value is a pure number defined by the ratio of the measured wavelength (or
frequency) of the measured wave with the smallest resolvable interval of wavelength (frequency) as

RP =
λ

∆λmin
=

ν

∆νmin
=

ω

∆ωmin
(9.53)

It’s clear that if the instrument can measure a smaller interval, then the resolution power will be greater.
We can tie this value with what we wrote before noting that, close to the maximum of the line

δ =
4πd

λ
cos θ = 2πm =⇒ 2d

λ
cos θ = m m ∈ Z

Or, in terms of only wavelengths
mλ = 2d cos θ
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Differentiating, we can also say that 
m∆λ = 2d sin θ∆θ

∆δ =
4πd

λ
sin θ∆θ

Or, solving

2π∆δ = 2πm
∆λ

λ
=

4√
F

Therefore, we have then
∆λ

λ
=

π

2m

1√
F

(9.54)

Which, inserted into the formula for the RP , we have that

RP =
π

2
m
√
F (9.55)

Therefore, the resolving power is also linearly dependent to the order of interference.
Another important part of spectral analysis of waves using Fabry-Perot instruments is the distance
between two maxima. This is commonly known as the Free Spectral Range of the instrument.
By definition, we have δm = 2πm

δm+1 − δm = 2π

4πd

(
1

λm+1
− 1

λm

)
cos θ = 2π

(9.56)

The free spectral range, or FSR is then defined

FSR =
1
1

λm+1−λm

=
λ2

2d cos θ

Since we’re talking about maxima, we have that mλ = 2d cos θ, which inserted into the previous
equation gives

FSR =
λ

m
(9.57)

Therefore, the FSR gets smaller with higher orders Defining also the reflecting finesse as

F =
π

2

√
F (9.58)

We can also redefine the RP as

RP = mF = mπ

√
R

1−R
(9.59)

Therefore tying closely the resolving power of the instrument to its physical properties.
In general, then, given m ∈ Z the interference order of the wave in study, we can summarize what we
wrote in maths as follows

• The resolving power (RP) is tied to the physical properties of the instrument and grows with m
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• The distance between peaks (FSR) gets smaller with greater m

It’s clear that even if the order of interference grows and with it the resolving power, the distance
between peaks will reduce, and there will be a point where the peaks won’t be resolved anymore. This
fact sigillates etalons to a single specific group of measures, while interferometers can be used with a
wider range of tests.



10 Diffraction

§ 10.1 Fresnel-Kirchhoff Theory

§§ 10.1.1 Huygens Principle

The general idea behind the theory of diffraction comes from a simple fact. Given a sharp object, the
shadow casted from it is not sharp as predicted from geometric optics.
The smearing of the boundary of the shadow comes from a phenomenon known as diffraction. It can
be explained summarily with Huygens principle

Principle (Huygens). Given a generic wave, its propagation can be described by taking each point of
the wavefront and counting it as a source of a spherical wave.
The sum of all the spherical wavelets will define the wave at a later time

Counting all the wavelets when the wave encounters the object, we can see how they envelop the
object and propagate around it, giving the smearing effect we see on the shadow.

§§ 10.1.2 Kirchhoff Integral Formula

Huygens’ principle can be rewritten mathematically using Green’s identities.
Firstly, the chosen electromagnetic wave due to symmetry considerations can be approximated to a
scalar function satisfying the following equation

�uψ =
1

u2
∂2ψ

∂t2
−∇2ψ = 0 (10.1)

By definition, ψ ∈ C2 and it’s said to be harmonic. Taken a second harmonic function ϕ, then we have
that Green’s second identity holds˚

V

(
ψ∇2ϕ− ϕ∇2ψ

)
d3x =

‹
∂V

(ψ∇ϕ · n̂− ϕ∇ψ · n̂) d2s (10.2)

A corollary of this identity comes in handy

Corollary 10.1.1. Given f, g two harmonic functions, then‹
∂V

(f∇g · n̂− g∇f · n̂) d2s = 0 (10.3)

135
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It’s clear then that the two functions ψ,ϕ satisfy this corollary, helping us in our evaluations.
Now, let’s bring ourselves to a real case. Said V a set containing the source of the wave ψ and letting
ϕ be the spherical wavelets indicated by Huygens, described as follows

ϕ(r, t) =
ϕ0

r
eikr−iωt (10.4)

Said without loss of generality that the source of the wave ψ is the point {r = 0} ∈ V , i.e. we have

lim
r→0

ψ(r, t) = ±∞

Or, in other terms, Green’s second identity cannot be applied, since the function diverge at the origin.
Said Ṽ = V \Bε(0) a new set which excludes a ball of radius ε > 0 around the origin, then, we can
apply Green’s identity and its corollary. Note also that

∂Ṽ = ∂V \ ∂Bε(0)

Thus˚
Ṽ

ψ∇2ϕ− ϕ∇2ψd3x =

‹
∂V

ψ∇ϕ · n̂− ϕ∇ψ · n̂d2s−
‹
∂Bε(0)

ψ∇ϕ · n̂− ϕ∇ψ · n̂d2s = 0 (10.5)

Using the previous definition to our spherical wavelets, we have by definition on our integral over the
boundary of the sphere with radius ε

ϕ0

‹
∂Bε(0)

(· · · )d2s = ϕ0

¨
4π

(
ψ

∂

∂r

∣∣∣∣
ε

(
eikr−iωt

r

)
− eikε−iωt

ε

∂ψ

∂r

∣∣∣∣
ε

)
ε2dΩ (10.6)

Writing the derivative and evaluating the limit for ε→ 0, i.e. accounting for the source point, we get

lim
ε→0

¨
4π

(
εeikε−iωt

∂ψ

∂r

∣∣∣∣
ε

− ψ(ε, t)
(
ikεeikε−iωt − eikε−iωt

))
dΩ = 4πψ(0, t)e−iωt (10.7)

Which, inserted into the initial integral gives Kirchhoff’s Integral Formula, which relates the wave at the
source with the wave at the boundary.

ψ(0, t) = −e
−iωt

4π

‹
∂V

eikr

r
∇ψ · n̂− n̂ · ∇

(
eikr

r

)
ψ(r, t)d2s (10.8)

As usual, I ∝ |ψ|2. In literature, the function ψ is known as the “disturbance”

§§ 10.1.3 Fresnel-Kirchhoff Integral

The Kirchhoff integral that we found before, we can describe generally the problem of wave propagation.
The application of the same to the problem of diffraction was developed by Fresnel.
Given a generic aperture Σ, a source S distant r′ from it, with a measuring point P on the other side
of the aperture at a distance r, we take the set V in a way such that its boundary is composed by the
diffraction aperture Σ and a semisphere of radius R containing the measuring point P . We assume:

• ψ and ∇ψ are negligible with respect to the integral on the aperture
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• ψ and ∇ψ are the same with or without the aperture

Then, on the aperture, the optical disturbance is described as follows

ψ(r′, t) =
ψ0

r′
eikr

′−iωt

Then, said ψP the wave at the point P , we have

ψP = −ψ0e
−iωt

4π

‹
∂V

(
eikr

r
∇′

(
eikr

′

r′

)
· n̂− eikr

′

r′
∇
(
eikr

r

)
· n̂

)
d2s

Said S the semispherical part of ∂V , and noting that the integral on it vanishes for R→ ∞, and noting
that on the aperture

n̂ · ∇ = cos(n̂, r)
∂

∂r

n̂ · ∇ = cos(n̂, r′)
∂

∂r′

(10.9)

Where cos(., .) is the angle between the two vectors, we have, after applying ∂r

ψP = −ψ0e
−iωt

4π

¨
Σ

eik(r+r
′)

rr′

[(
ik − 1

r′

)
cos(n̂, r′)−

(
ik − 1

r

)
cos(n̂, r)

]
d2s (10.10)

In the situation where r, r′ >> λ we can neglect the second order terms, and we get Fresnel-Kirchhoff’s
integral

ψP = − ikψ0e
−iωt

4π

¨
Σ

eik(r+r
′)

rr′
(cos(n, r′)− cos(n, r)) d2s (10.11)

This integral is the mathematical expression of Huygens’ principle.
This can be discerned by taking semicircular aperture with radius r, centered on the source of the wave
S. Noting that cos(n̂, r′) = −1 we get

ψP =
ik

4π

¨
Σ

ψΣ
eikr−iωt

r
(cos(n̂, r) + 1) d2s

Where

ψΣ(r
′, t) =

ψ0e
ikr′

r′

This can be interpreted as seeing that the aperture generates spherical “Huygens’ wavelets” at each
point d2s, s

ψH =
1

r
ψΣe

ikr−iωt

Then, the KF integral becomes a summation of all these wavelets times a correction, known as the
“obliquity factor” given by the cosine

ψP (r, t) =
ik

4π

¨
Σ

ψH (cos(n̂, r) + 1) d2s (10.12)

The imaginary unit that multiplies the integral, if written as a phasor, clearly indicates that there is also
a phase shift of the wave after diffraction by π/2, which wasn’t theorized by Huygens together with
the obliquity factor.
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§§ 10.1.4 Babinet Principle

Consider an aperture A which produces a disturbance ψP at some point P . Supposed that the aperture
is described by two complementary apertures A1, A2, from the formula of the KF integral and the
properties of integrals, we have that

ψP = ψ1 + ψ2

Where ψi is the disturbance created by the i-th aperture. Then, if ψP = 0, we have that the disturbance
created by the two complementary apertures are equal and dephased by π radians, while the irradiance
is exactly the same.
This principle is known as Babinet’s principle, and indicates how we can determine the pattern of an
object. Given a spherical aperture, the pattern will be the same as for a spherical particle complementary
to the aperture, plus a π dephasing.

§ 10.2 Fraunhofer Diffraction

In general, it’s not easy to solve the diffraction integral, thus it’s usually approximated in two major
categories: Fresnel and Fraunhofer diffraction:

• Fraunhofer diffraction, when the source and/or the measuring point are far away from the source
(Far field approximation)

• Fresnel diffraction, when the source and/or the measuring point are close to the source (Close
field approximation

Consider the case of a source distant d′ and a measuring point distant d from the aperture plane,
respectively vertically displaced by h, h′ from the center of the aperture. If the aperture is long δ and
the two points are respectively r′, r from the center of it, we have that the variation ∆ of r + r′ is

∆ =
√
d′2 + (h′ + δ)2 +

√
d2 + (h+ δ)2 −

√
d′2 + h′2 −

√
d2 + h2 (10.13)

Approximating it to the second order, remembering that√
1 + x2 ≈ 1 +

x2

2
+O

(
x3
)

We have, at the second order

∆ ≈
(
h′

d′
+
h

d

)
δ +

1

2

(
1

d′
+

1

d

)
δ2 (10.14)

The term δ2 essentially describes the curvature of the wave, and it will be used for distinguishing
between Fraunhofer and Fresnel diffraction. As we said before, the regime of Fraunhofer diffraction is
obtained when the “field is far away”, thus we can neglect the wave curvature and work only with
purely plane waves. This is obtained when

1

2

(
1

d′
+

1

d

)
δ2 << λ

This same result can be obtained in the laboratory using a collimating lens and a focusing lens which
will illuminate the aperture with a (obviously coherent) wave and focus the pattern on the focal plane.
When the plane wave approximation is satisfied, we can easily say that



10.2. FRAUNHOFER DIFFRACTION 139

• The obliquity factor is approximately constant on Σ

• The factor eikr
′
/r′ is approximately constant on Σ

• The factor 1/r is approximately constant on Σ

Thus, taking out all the constants that multiply the integral as C, we have that the FK integral for
Fraunhofer diffraction takes a really simple shape, as

ψP = C

¨
Σ

eikrd2s (10.15)

§§ 10.2.1 Single Slit Diffraction

Consider a narrow 1D slit wide b, then if we’re in the Fraunhofer regime, with the source distant r0 and
the focal point placed at some inclination θ with respect of the wave, we have that, if y is the distance
from the center of the slit

r = y sin θ + r0

d2s = Ldy

Then

ψP = C

ˆ b
2

− b
2

eiky sin θ+ikr0Ldy (10.16)

Bringing outside Leikr0 and incorporating it into the constant C, the integral can be easily calculated,
giving

ψP
LCeikr0

ik sin θ

(
e

1
2 ikb sin θ − e−

1
2 ikb sin θ

)
Expressing the exponentials as a sine, we have

ψP =
2LCeikr0

k

sin
(
1
2kb sin θ

)
sin θ

=
2bLCeikr0

k
sinc

(
1

2
kb sin θ

)
= C ′ sincβ (10.17)

Where

β =
1

2
kb sin θ

C ′ = CbLeikr0
(10.18)

Said I0 = |C ′|2 = |CbL|2, the irradiance of the single slit pattern is

I = I0 sinc
2 β (10.19)

By the definition I = I(θ) and I0 = I(0) is the maximum of our irradiance. The zeroes of the irradiance
function happen instead when

sinc2(β) = 0 =⇒ β = ±mπ m ≥ 1

Or, expanding β into its definition

I(θ) = 0 =⇒ sin θ =
2mπ

kb
= m

λ

b
(10.20)
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I.e. for a given wavelenght λ of light the width of the pattern changes inversely to the slit width b.
Note also how I0 ∝ b2, and how the pattern we found is exactly the same pattern that we’d get from
the interferometric evaluation

§§ 10.2.2 Rectangular Aperture

For the rectangular aperture the evaluation of the integral is pretty much analogous. Said b the width
of the rectangle in the y direction and a the width in the x direction, with the substitution

r = r0 + x sinϕ+ y sin θ

Our integral becomes

ψP = C

ˆ b
2

− b
2

ˆ a
2

− a
2

eikr0+iky sinϕ+ikx sin θabdxdy (10.21)

Using Fubini’s theorem and bringing out the constants, this integral is simply the product of two single
slits

ψP = Cabeikr0
ˆ b

2

− b
2

eiky sin θdy

ˆ a
2

− a
2

eikx sinϕdx (10.22)

Which gives

ψP = abCeikr0

(
2 sin

(
1
2kb sin θ

)
k sin θ

)(
2 sin

(
1
2ka sinϕ

)
k sinϕ

)
= Cab sincα sincβ (10.23)

Where

α =
1

2
ka sinφ

β =
1

2
kb sin θ

Said I0 = I(0, 0) = |Cab|, the irradiance is

I(θϕ) = I0 sinc
2

(
1

2
ka sinϕ

)
sinc2

(
1

2
kb sin θ

)
(10.24)

The diffraction pattern will be as one of two slits going on the x and y axes of the diffraction plane
with a square maxima around θ = ϕ = 0, Thus

αz = ±nπ =⇒ sinϕ = n
λ

a

βz = ±mπ =⇒ sin θ = m
λ

b

(10.25)

As for the single slit
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§§ 10.2.3 Circular Aperture

For a circular aperture with radius R the Fraunhofer integral is all but obvious. Said as usual

r = r0 + y sin θ

d2s = 2
√
R2 − y2 dy

The integral is

ψP = 2Ceikr0
ˆ R

−R
eik sin θ

√
R2 − y2dy (10.26)

With the substitution

u =
y

R
ρk = kR sin θ

The integral becomes a special integral solved by a Bessel function of the first order

ψP (ρ) = Ceikr0
ˆ 1

−1

eiρu
√

1− u2du = 2CπR
J1(ρ)

ρ

Said I0 = I(0) = |CπR|2, the irradiance describes an Airy disk from ρ = 0 till the first zero, then
concentric circles corresponding to the higher orders.
From the irradiance function I(θ) defined as

I(θ) = I0
4J2

1 (kR sin θ)

k2R2 sin2 θ
(10.27)

We get that the first zero corresponds to

J1(ρ0) = 0 =⇒ ρ0 ≈ 3.832

Thus, expanding ρ and said D = 2R

sin θ = 1.22
λ

D
(10.28)

This is the dimension of the first peak, and it’s therefore also what we’d use to determine if two
diffraction patterns are resolved or not by an instrument with aperture diameter D. This value is
commonly known as the diffraction limit of the instrument at the given wavelength. Note that it’s
bigger than the diffraction limit of the single slit. Said ∆θ the distance between the peaks of the two
patterns, we define the Rayleigh criterion for resolution as

∆θ ≥ DL (10.29)

As for our definition of diffraction limit DL, it’s clear then that

DL =


λ

b
Single Slit, Rectangular Aperture

1.22
λ

2R
Circular Aperture

(10.30)
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§§ 10.2.4 Multiple Slit Diffraction

§§§ 10.2.4.1 Double Slit Diffraction

Consider now two equal parallel slits long b, separated by a distance h. As for the problem of the
single slit, it can be evaluated in one single dimension. In order to evaluate the Fraunhofer integral, we
employ the same substitution we did for the single slit, noting tho that since the slits that we have to
integrate over are two, and the integration set is

Σ = [0, b] ∪ [h, h+ b]

Therefore, we have

ψP = Ceikr0
ˆ b

0

eiky sin θbdy + Ceikr0
ˆ h+b

h

eiky sin θbdy (10.31)

Solving the integral we have

ψP =
Cbeikr0

ik sin θ

(
eikb sin θ − 1

) (
1 + eikh sin θ

)
Writing

eikh sin θ + 1 = 2e
1
2kh sin θ cos

(
1

2
kh sin θ

)
, eikb sin θ − 1 = 2ie

1
2kb sin θ sin

(
1

2
kb sin θ

)
We have that the solution can be described as follows

ψP (θ) = 2bCeikr0+ik
(
h
2 +

b
2

)
sin θ sinc

(
1

2
kb sin θ

)
cos

(
1

2
kh sin θ

)
(10.32)

Or, in term of irradiance

I(θ) = I0 sinc
2

(
1

2
kb sin θ

)
cos2

(
1

2
kh sin θ

)
(10.33)

This pattern is clearly a modulation of the single slit pattern. The maxima will be for

cos2
(
1

2
kh sin θ

)
= 0 =⇒ sin θ =

2mπ

kh
= m

λ

h
(10.34)

§§ 10.2.5 Diffraction Gratings

The previous idea can be developed further by creating an aperture made by N equal slits, each long
b and distant h between each other. The diffraction integral will then be a finite sum of single slit
integrals, as follows

ψP = Cbeikr0
N∑
n=0

ˆ nh+b

nh

eiky sin θLdy (10.35)
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The integral inside is easily solvable, giving

ψP (θ) =
Cbeikr0

ik sin θ

(
eikb sin θ

N∑
n=0

eiknh sin θ −
N∑
n=0

eiknh sin θ

)
Or, rewriting the right hand side and explicitly summing, we have

ψP (θ) =
Cbeikr0

ik sin θ

(
eikb sin θ − 1

) 1− eikNh sin θ

1− eikh sin θ

Rewriting everything in terms of sines and cosines we have

ψP (θ) = 2Cbeikr0 sinc

(
1

2
kb sin θ

)
sin
(
1
2Nkh sin θ

)
sin
(
1
2kh sin θ

) (10.36)

And in terms of irradiance

I(θ) = I0 sinc
2

(
1

2
kb sin θ

)
sin2

(
1
2Nkh sin θ

)
N2 sin2

(
1
2kh sin θ

) (10.37)

As before, we have a modulated single-slit pattern, where we normalized the result dividing by N2

§§§ 10.2.5.1 Resolving Power of a Diffraction Grating

As we have seen before, the diffraction pattern of a diffraction grating is given by the irradiance function
(10.37). The maximas are determined by the last factor, and the primary maxima are found for

1

2
kh sin θ = nπ =⇒ sin θ = n

λ

h
(10.38)

Secondary maximas occur instead for

1

2
Nkh sin θ = (2n+ 1)π =⇒ sin θ =

2n+ 1

2N

λ

h
(10.39)

While minima occur for
1

2
Nkh sin θ = nπ =⇒ sin θ = n

λ

Nh
(10.40)

The angular distance between the peak and the minimum can be found via differentiation, noting that
the argument of the sine at the numerator must be equal to π, therefore

∆

(
1

2
Nkh sin θ

)
=

1

2
Nkh cos θ∆θ = π

This implies that

∆θ =
λ

Nh
sec θ (10.41)

Supposing that we have a big enough number of slits N that we can approximate ∆θ < ε, using the
equation for primary maxima that we found before and differentiating with respect to λ we have that,
given the minimal difference of two wavelenghts ∆λ, their angular separation will be the following

∆θ = n
∆λ

h
sec θ (10.42)
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Since we already found the minimal angular separation between a peak and a minima, i.e. our
diffraction limit for the grating, equating we have

n

h
∆λ sec θ =

λ

Nh
sec θ =⇒ λ

∆λ
=
nNh

h

sec θ

sec θ

By definition of resolving power RP , then

RP =
λ

∆λ
= nN (10.43)

This simple solution, clearly shows the power of using diffraction gratings. Their resolving power is
directly proportional to the fringe order n and to the number of slits in the grating N .

§§§ 10.2.5.2 Types of Gratings

There are two major categories of gratings

• Transmission gratings (transparent)

• Reflection gratings (metallic)

They’re both created by incising grooves on the chosen material. A typical grating usually has a
groove density of 600grooves/mm over 10cm of length. Thus, the theoretical RP of this grating is
RPT ' 60000n. Practically, due to absorption and other non conservative effects the experimental RP
is around 90% the theoretical RP. The shape of the grooves is also important, e.g. if the grooves are
sawtooth shaped, it’s possible to make light appear at only one order n, increasing the efficiency of the
grating. The essential requirement is to have grooves distanced by a fraction of wavelenght. Cheaper
replicas can be built by plastic molding.
Reflection gratings are usually made plane or concave, where concave reflection gratings make sure
that light is precisely collimated.

§ 10.3 Fresnel Diffraction

Fresnel’s approximation of the Kirchhoff-Fresnel (KF) integral simply evaluates the maximum distance
difference of r, r′ to the second order, thus evaluating wave curvature. For this reason this approximation
is known as the close field approximation. Thus, at the aperture we have

∆ ≈
(
h′

d′
+
h

d

)
δ +

1

2

(
1

d′
+

1

d

)
δ2 (10.44)

Due to the close field nature of Fresnel diffraction, it’s easily observable in laboratories.

§§ 10.3.1 Fresnel Zones

Consider a plane aperture illuminated by a point source S, and suppose that the surface is perpendicular
to the line connecting the source to the measuring point P . Consider a third point Q on the surface,
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distant R from the point where the line between S and P intersects the surface.
Said O the intersection point, we define

|SO| = h′

|OP | = h

|SQ| = r

|QP | = r′

Thus, as before

r + r′ =
√
h2 +R2 +

√
h‘2 +R2 ≈ h+ h′ +

1

2

(
1

h
+

1

h′

)
R2

Suppose now that we draw a sequence of values of R and therefore multiple points Q such that the
difference of r + r′ that we’ll indicate with ∆, between a value and its successive is exactly

∆n,n+1 =
1

2
λ

By definition then

∆n,n+1 =
1

2

(
1

h
+

1

h′

)(
R2
n+1 −R2

n

)
=

1

2
λ

Thus, evaluating everything, we have

R2
n+1 −R2

n = λ

(
1

h
+

1

h′

)−1

= λf (10.45)

Where f is the aperture’s “focal length”. Noting that R0 = 0, we get R1 =
√
λf , and via induction,

we get
Rn =

√
nλf (10.46)

These radii define what are known as Fresnel zones. Note that also, the area of these zones is constant.
Said An the area of the n−th zone we have

An = π
(
R2
n+1 −R2

n

)
= πλf = πR2

1 (10.47)

These zones are also quite small, in the optical range, i.e. λ ≈ 600 nm and h = h′ ≈ 60 cm we get
R1 ≈ 4 mm, note also that Rn ∝

√
n, therefore this radius grows relatively slowly. Just imagine that

R100 ≈ 4 cm in this case.
Noting that we can consider the total disturbance on the measuring point as the sum of the disturbances
of the single zone, noting that for Babinet’s principle there is a phase inversion of π, then, if Σ contains
N zones we have

|ψ| =
N∑
n=1

(−1)n+1|ψn| (10.48)

Therefore, if the zones contained are exactly N , we have

|ψp| =

{
0 N mod 2 = 0

∼ |ψ1| N mod 2 = 1
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Considering also the obliquity factor in the KF integral we also must have

|ψn| ≤ |ψn+1|

Therefore, if we consider the case of no aperture (Σ = R2), the sum can be considered as an infinite
sum

|ψp| =
∞∑
n=1

(−1)n+1|ψn| =
1

2
|ψ1|+

(
1

2
|ψ1| − |ψ2| −

1

2
|ψ3|

)
+

(
1

2
|ψ3| − |ψ4| −

1

2
|ψ5|

)
+ · · · (10.49)

Therefore, considering that also |ψn| ≈ |ψn+1| for big values of n, the contributes inside the parentheses
cancel out, therefore

|ψp| =
1

2
|ψ1|

This indicates how a bright spot can be seen in the center. This is also true in general due to the relation
of absolute values of adjacent zones, proving a conundrum posed by experimental evaluation, which
have shown the existence of a bright central spot which wasn’t explained by Fraunhofer diffraction.
This spot is known as Arago’s spot.
Another consideration can be made by evaluating the positioning of an object in front of the object.
Using Babinet’s principle again, we can evaluate the behavior of the shadow when the diffracting
object is either offset or centered.
When it’s offset from the center, ψp hardly changes, and higher contributions go quickly to zero, while
if the object is centered, terms diminish at both ends and inside the shadow zone we get I ≈ 0, which
it’s what we usually expect from a shadow.

§§§ 10.3.1.1 Zone Plates

This behavior can be “harvested” by using what’s known as zone plates, Physical objects which block
specific contributions from Fresnel zones. As an example we can build a Fresnel plate which blocks
only even zones, giving therefore

|ψp| =
N∑
n=1

|ψ2n+1| (10.50)

Which makes the plate act as a lens. This lens, if we evaluate its focal length f as

f =
R2

1

λ

We see that it behaves as a very chromatic lens.

§§ 10.3.2 Rectangular Aperture

For evaluating the problem of diffraction from a rectangular aperture in close field regimes, we have in
the coordinates x, y of the rectangular aperture we have

R2 = x2 + y2
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Therefore

r + r′ = h+ h′ +
1

2f

(
x2 + y2

)
The approximations applied to the KF integral are the following:

1. The obliquity is constant and approximately 1 on the aperture

2. (rr′)−1 is approximately constant on the aperture

Thus, the integral becomes

ψP = C

¨
Σ

e
ik
2f

(
x2+y2

)
d2s = C

ˆ x2

x1

eik
x2

2f dx

ˆ y2

y1

eik
y2

2f dy (10.51)

The integrals are better visualized with the following substitutions:

u = x

√
k

fπ

v = y

√
k

fπ

ψ0 =
Cfπ

k

The result is the following integral

ψP = ψ0

ˆ u2

u1

e
iπu2

2 du

ˆ v2

v1

e
iπv2

2 dv (10.52)

The previous two integrals are known as Fresnel integrals. Expanding the complex exponentials, we
could write for each coordinate u, v

ˆ s

0

e
iπz2

2 dz =

ˆ s

0

cos

(
πz2

2

)
dz + i

ˆ s

0

sin

(
πz2

2

)
dz = C(s) + iS(s) (10.53)

These two integral functions define a spiral, known as the Cornu spiral. The solution to the square
aperture problem will be a piece of the spiral corresponding to an appropriate interval ∆s.
In the case of no aperture, i.e. Σ = R2, we have

lim
s→∞

C(s) = lim
s→∞

S(s) =
1

2

lim
s→−∞

C(s) = lim
s→−∞

S(s) = −1

2

(10.54)

We obtain the result for an unperturbed wave

ψP = ψ0 (1 + i)
2
= 2iψ0 (10.55)

Therefore, indicating ψ1 = ψ0 (1 + i)
2
for the general finite case, i.e. for a square aperture we get

ψP =
ψ1

(1 + i)
2 (C(u) + iS(u))

u2

u1
(C(v) + iS(v))

v2
v1

(10.56)
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§§§ 10.3.2.1 Single Slit and Straightedge

Fresnel diffraction from a long slit can be treated using the equations we found before for the 2D
square aperture, constrained to a single dimension.
Taken u ∈ R and v ∈ [v1, v2], integrating and using the limits we found before we get

ψP =
ψ1

1 + i
(C(v) + iS(v))

v2
v1

(10.57)

The straightedge is the limiting case of the single slit for which v1 = −∞, therefore

ψP =
ψ1

1 + i
(C(v2) + iS(v2)) +

1

2
ψ1 (10.58)

§ 10.4 Fourier Theory of Diffraction

Consider the case of Fraunhofer (far field) again, in the most general case of a generic aperture Σ
which might also have generic transmission properties (phase retardation etc…).
All rays leaving Σ in a generic direction which we will specify with the director cosines r̂ = (α, β, γ),
towards a measuring point in the screen which we will call P . Therefore, we can say approximately
that

P = (X,Y ) ' (Lα,Lβ)

Where L is the distance between the aperture and the screen and (X,Y ) are the coordinates of the
screen, note that we assume that the angles are small in according to the far field approximation,
so α ≈ tanα, β ≈ tanβ. Also we assume γ ≈ 1. Said Q a point on the aperture, with coordinates
(x, y) = R. Said n̂ the associated versor of R we have n̂ = r̂ we have that in a small movement of the
point Q

δr = R · n̂ = αx+ βy = x
X

L
+ y

Y

L

The KF integral of this configuration is then

ψ (X,Y ) =

¨
Σ

eikδrd2s =

¨
Σ

e
ik
L (xX+yY )d2s (10.59)

This works for a uniform aperture Σ.
For a non uniform aperture we must introduce an aperture function g(x, y) defined in a way such that
g(x, y)dxdy is the amplitude of the diffracted wavelet by a surface element d2s. Thus, introducing the
following substitution (µ(X), ν(Y )) which we will call the “spatial frequency”

µ =
kX

L

ν =
kY

L

(10.60)

The KF integral becomes a 2 dimensional Fourier transform of the aperture function

ψ(µ, ν) =

¨
Σ

g(x, y)ei(µx+νy) dxdy (10.61)
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Written differently, we can say that the image, aka the diffraction pattern ψ is the Fourier pair of the
aperture function g.
Consider now a 1D infinite grating, for simplicity. The aperture function can be described as an infinite
sum of step functions as follows

gdg(y) =

∞∑
n=0

gn cos(nν0y) ν0 =
2π

h
(10.62)

Its Fourier transform is the diffraction pattern that we already know for the gratings, where the higher
order maxima correspond to Fourier components with n > 1 of g(y)

§§ 10.4.1 Apodization

The process of apodization (a-pod-ization - to remove the feet) is the process of modification of the
aperture function such that the energy is redistributed in the diffraction pattern. It’s employed for
reducing the irradiance of secondary maxima of the wave.
Consider a single slit, here the aperture function is the set indicator function, which we will indicate
with χ. For a slit long b we have

g(y) = χ[−b/2,b/2](y) (10.63)

The Fourier transform of this function is obvious, and after a quick integration we get

F̂ [g(y)] (ν) = b sinc

(
1

2
νb

)
= ψ(ν) (10.64)

Note that this is exactly what we found before in far field regimes.
Suppose that now we apodize g, making it a new function, as an example

gA(y) = cos
(πy
b

)
y ∈

[
− b
2
,
b

2

]
Remembering that

cos
(πy
b

)
=

1

2

(
e

iπy
b + e−

iπy
b

)
And then integrating using the linearity of the integral, plus a couple power rules we get the apodized
diffraction pattern

ψA(ν) =
1

2

ˆ b
2

− b
2

eiy
(
ν+π

b

)
+ eiy

(
ν−π

b

)
dy =

b

bν − π
sin

[
1

2
(νb− π)

]
+

b

bν + π
sin

[
1

2
(νb+ π)

]
Or, using trigonometric identities, we could write

ψA(ν) = cos

(
1

2
νb

)(
b

bν − π
+

b

bν + π

)
(10.65)

The apodized ψA(ν) is clearly smaller than the original unapodized function for higher frequencies.
Apodization techniques are usually used on telescope apertures, permitting that dimmer objects can be
seen next to brighter objects, which clearly helps in the observation of binary systems, or even in this
day and age, exoplanets.
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§§ 10.4.2 Spatial Filtering

Consider again the previous setup, suppose that the xy plane (Σ) is the location of a coherently
illuminated object which is imaged by some optical system like a lens, and then imaged again on the
focal plane of the lens. Said µ, ν the plane of the optical system and XY the plane of the image, we
have that g(x, y) is simply our object. The shadow casted on the XY plane, which we will call g̃(x, y),
is the Fourier transform of the optical disturbance ψ on the lens (µ, ν). Or

S −→ g(x, y) −→ F̂ [g] = ψ(µ, ν) −→ F̂ [ψ] = g̃(X,Y ) (10.66)

If all (µ, ν) are transmitted equally by the optical system, then g̃ ∝ g and the image is a precise
representation of the object. This is clearly only possible for a finite aperture, thus some spatial
frequencies get limited.
Optical phenomena like aberrations, defects, etc…result in a modified ψ. This modification can be
incorporated via a transfer function T , such that the modified ψ, which we will call ψ′ is obtained by
multiplication

ψ′(µ, ν) = T (µ, ν)ψ(µ, ν) (10.67)

The image function obtained, g′, will then be the Fourier transform of Tψ, and the integration limits are
determined by the function T. The transfer function can be modified by placing screens and apertures
on the (µ, ν) plane (the lens). This procedure is known as spatial filtering due to its parallels to electrical
filters.

§§ 10.4.3 Phase Gratings

A phase grating is an object composed by 2 high-low refraction index strata which are perfectly
transparent.
The aperture function of such object is

g(y) = eiφ(u) (10.68)

Where φ(y) is a periodic step function with height ∆φ = kz∆n, where z is the thickness and ∆n =
nH − nL is the difference of refraction index between the two strata.
If ∆φ << 1 we can approximate the exponential to

g(y) ≈ 1 + iφ(y)

Thus, the optical disturbance is

ψ(ν) =

ˆ b
2

− b
2

eiνydy + i

ˆ b
2

− b
2

φ(y)eiνydy = Reψ + iImψ (10.69)

Indicating the real part with ψ1 and the imaginary part with ψ2, we have that the first function is the
whole object diffraction pattern, and the second function is the diffraction pattern of the function φ.
By definition the two function are dephased by π/2.
Phase gratings are used in the phase contrast method together with phase plates which shift ψ2 by an
another ψ/2.
A phase plate is a transparent glass plate whose thickness is z = zplate +

1
4λ. The thicker section is on

the optical object plane (µ, ν). The phase plate applies a parity transformation on the function, which
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makes the image function a sum of the Fourier transform of both.
Phase contrast works then like a phase modulated signal getting transformed to an amplitude modulated
signal through this parity transform
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11 Optics of Solids

§ 11.1 The General Wave Equation

§§ 11.1.1 Macroscopic Fields

The electromagnetic field at any given point of space is described by 4 quantities

1. dQ
dV = ρ, the volumetric density of charge

2. dp
dV = P dielectric polarization, also known as shearing polarization

3. dm
dV = M magnetization

4. dj
dV + 1

c
d
dV

∂E
∂t = J total current density

All these quantities can be considered as smooth with respect to the microscopic variations that we
have due to the discrete composition of matter.
Noting how the polarization is tied to the polarization charge density, and the magnetization is tied
to the magnetization currents, we can modify Maxwell’s equations as follows, where we will indicate
the polarization charge density ρP and the magnetization currents as Jm, the flux of the polarization
charges is here indicated with ΦP

∇ ·E =
1

ε0
(ρ+ ρP )

∇×E = −µ0
∂B

∂t
∇ ·B = 0

∇×B = µ0J+ µ0Jm + ε0µ0
∂E

∂t
+ µ0

dΦP
dt

(11.1)

We then substitute the following two relations for ρP ,Jm

ρP = −∇ ·P
Jm = ∇×M

(11.2)

153



CHAPTER 11. OPTICS OF SOLIDS 154

Therefore, the equations become

∇ ·
(
E+

1

ε0
P

)
=

ρ

ε0

∇×E = −µ0
∂H

∂t
− ∂M

∂t
∇ · (H+M) = 0

∇× (µ0H+M) = J+
∂

∂t
(ε0E+P)

(11.3)

Note that we will treat, for now, only linear media, therefore we can define two new quantities, i.e.
the scalars ε = ε0(1 + χe) and µ = µ0(1 + χm).
Remembering the relations between the vector fields D,H and the vector fields E,B we have, for
linear media

D = εE = ε0E+P

B = µH = µ0H+M
(11.4)

In general these relations are not scalar, but of tensorial nature, where the (electric/magnetic) permittivity
χ is a rank 2 tensor, as we will see later with crystals.

§§ 11.1.2 The Wave Equation in Solids

For finding the general wave equation in solids we firstly proceed to understand how do solids work in
general.
For a neuter solid, we can assume that it is electrically neutral, therefore we can assume ρ = 0,M = 0.
Maxwell’s equations are therefore modified to the following set of coupled PDEs

ε0∇ ·E = −∇ ·P

∇×E = −µ0
∂H

∂t
∇ ·H = 0

∇×H = J+ ε0
∂E

∂t
+
∂P

∂t

(11.5)

Taking the curl of the second equation and the time derivative of the fourth, we get

∇×∇×E+
1

c2
∂2E

∂t2
= −µ0

∂J

∂t
− µ0

∂2P

∂t2
(11.6)

Or, using the definition of the d’Alambertian, after applying the vector identity for the double curl

∇ (∇ ·E) +�E = −µ0
∂J

∂t
− µ0

∂2P

∂t2

We could insert the first equation inside the first addendum, but we’ll limit ourselves to the generic
equation (11.6).
In that equation we define the right hand side as the source terms for the electromagnetic wave E.
We will approximate the equation further later, noting that matter can be in general divided in two
types of media (for what interests us right now)
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1. Dielectric media (nonconducting)

2. Conducting media

§ 11.2 Waves in Dielectrics

We now begin to analyze the behavior of electromagnetic waves in dielectrics. By definition, dielectrics
are non-conducting, therefore microscopically they can be identified with electrons tightly bound to
the atoms, and therefore, with no freely moving electrons, we can say J = 0.
The generic wave equation then becomes

∇×∇×E+
1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
(11.7)

By definition of P, we have that applying an electromagnetic field to the body, the electrons and the
cores of the atom get displaced in opposite direction due to having opposite charge signs, generating
microscopic dipole moment and therefore the polarization P.
Due to the boundedness of the electrons generating this dipole moment field, we can think that the
force exerted on them is elastic. Said K the elastic force constant for this rebound force and used
Newton’s second law we have that the general force applied is

F = −eE = Kr

Where r is the displacement of the electron from the equilibrium state. We can also say, by definition
of the polarization P and by the discreteness of the system, that if there are N electrons with charges
−e, the macroscopic polarization is

Ps = QT r = −Ner

Note: we’re not yet considering dynamic fields, therefore Ps is the static polarization.
Putting the two equations together and solving for r in the first equation, we get the following result

r = − e

K
E =⇒ Ps = −Ne

2

K
E (11.8)

We now “turn on” the time dependence of our wave. Due to the oscillation of E we know that r will
also oscillate, with a damping given from the boundedness of the electrons.
The force equation therefore becomes a damped harmonic oscillator

F = m
d2r

dt2
+mγ

dr

dt
+Kr = −eE (11.9)

We solve this equation using the method of similarity, since we know already that E ∝ e−iωt, thus,
said r ∝ e−iωt we have

dr

dt
= −iωre−iωt d2r

dt2
= −ω2re−iωt

Using the wholeness of the exponential in the complex plane, we get the following solution(
mω2 + imγω −K

)
r = eE (11.10)
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Solving for r and imposing that P = −Ner we have that the polarization is therefore the following

P =
Ne2

K −mω2 − imγω
E

Or, bringing outside Ne2/m and defining the effective resonance frequency ω0 as follows

ω0 =

√
K

m
(11.11)

We have the final result for the dynamic polarization field

P =
Ne2

m

(
1

ω2
0 − ω2 − iγω

)
E (11.12)

The effective resonance frequency ω0 we defined before clearly depends on the medium studied, since
K clearly varies with material.
The name is not random, since for frequencies around ω0 we expect (and see) optical resonance, giving
this frequency also the nickname of the natural frequency.
We can now plug the results on the general wave equation (11.7), getting the following PDE for our
field (note that we indicate c2ε0 = µ−1

0

∇×∇×E+
1

c2
∂2E

∂t2
+

Ne2

c2ε0m

(
1

ω2
0 − ω2 − iγω

)
∂2E

∂t2
= 0 (11.13)

Using the fact that E ∝ P and ∇ ·E = 0 we can expand the double curl as −∇2E, getting the general
wave equation in a dielectric

∇2E =

(
1 +

Ne2

mε0

1

ω2
0 − ω2 − iγω

)
1

c2
∂2E

∂t2
(11.14)

§§ 11.2.1 Resonant Frequency and Dispersion

From the previous equation, we can try to find a general solution in terms of plane waves

E = E0e
iκz−iωt κ ∈ C (11.15)

Noting that ∇2E = −κ2E and ∂2tE = −ω2E we have that this plane wave is a solution if and only if

κ2 =
ω2

c2

(
1 +

Ne2

mε0

1

ω2
0 − ω2 − iγω

)
(11.16)

Noting that z−1 = z|z|−2
for complex numbers, we could rewrite

1

ω2
0 − ω2 − iγω

=
ω2
0 − ω2 + iγω

(ω2
0 − ω2)

2
+ γ2ω2
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Thus we can rewrite κ2 as follows

κ2 =
ω2

c2
+
Ne2ω2

mε0c2
ω2
0 − ω2 + iγω

(ω2
0 − ω2)

2
+ γ2ω2

(11.17)

From κ we define the complex refraction index N as follows

κ =
ω

c
N (11.18)

Using the explicitly complex form of κ = k + iα, we can rewrite the wave solution as follows

E = E0e
i(k+iα)z−iωt = E0e

ikz−iωte−αz (11.19)

The exponential damping of the wave indicates the presence of absorption in the medium. In fact,
noting that I ∝ ‖E‖2 we have

I ∝ e−2αz

The coefficient 2α = a is known as the absorption coefficient of the medium.
Going back to the definition of κ (11.17) we have that the square of the complex refraction index is

N 2 = 1 +
Ne2

mε0

ω2
0 − ω2 + iγω

(ω2
0 − ω2)

2
+ γ2ω2

(11.20)

Indicating N = n+ iη and reusing the relationship between κ and N (11.18) we have

N =
c

ω
κ =⇒ c

ω
(k + iα) = n+ iη (11.21)

Separating real and imaginary parts and equating them we have

Re {N} =
c

ω
Re {κ} =

c

ω
k = n

Im {N} =
c

ω
Im {κ} =

c

ω
α = η

(11.22)

1. From the real part equality we get the usual relation between the real refraction index and what
we will call the wavenumber

k =
ω

c
n

2. From the imaginary equality we get the relation between the absorption coefficient and the
imaginary part of the complex refraction index

α =
ω

c
η
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These relationships we found are not yet explicit. We can begin to try to find their explicit form by
starting again from the square of the complex refraction index. Noting that

N 2 = n2 − η2 + 2inη = 1 +
Ne2

mε0

(
ω2
1 − ω2

(ω2
0 − ω2)

2
+ γ2ω2

+ i
γω

(ω2
0 − ω2)

2
+ γ2ω2

)

Equating real and imaginary parts again, we get a rather complex system of two equations which can
be solved numerically

n2 − η2 = 1 +
Ne2

mε0

ω2
0 − ω2

(ω2
0 − ω2)

2
+ γ2ω2

2nη =
Ne2

mε0

γω

(ω2
0 − ω2)

2
+ γ2ω2

(11.23)

It’s clear that both n and η depend on frequency. This frequency dependence, especially for n, is known
as dispersion.
Plotting the numerical solutions to the previous system we get two particular functional shapes for
both n and η.
Centering ourselves around ω0 we can see that the absorption η has a maximum for ω ≈ ω0, and n > 1
for ω < ω0.
The peak of absorption of the dielectric indicates how transparent dielectrics have their resonant
frequencies in the ultraviolet region of the electromagnetic spectrum, therefore shifting the absorption
peak.
For n, we can define two kinds of dispersion with respect to the natural frequency ω0.

1. Normal dispersion, when ω . ω0 and n increases with increasing frequency

2. Anomalous dispersion, when ω & ω0 and n decreases with increasing frequency.

In general tho, we have that limω→0 n(ω) = 1 and limω→∞ n(ω) = 1.

§§ 11.2.2 Sellmeier Equation

All previous calculations are valid if and only if the electrons are bound equally to their respective atom,
which is impossible considering quantum mechanics.
In general we might assume that each fraction of electrons fj has its resonant frequency ωj and
damping constant γj . We then modify the complex refraction index as follows

N 2 = 1 +
Ne2

mε0

N∑
j=0

fj
ω2
j − ω2 − iγjω

(11.24)

The fractions fj are known as oscillator strengths, due to their quantum harmonic origin.
Note that by definition, we have that at limit frequencies

lim
ω→0

N 2 (ω) = 1 +
Ne2

mε0

N∑
j=0

fj
ωj

= 1 + χe

lim
ω→ω

N 2 (ω) = ∞
(11.25)
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And if we consider only the real part in the approximation γj << 1, we can derive a dispersion formula
known as Sellmeier’s equation

n2 = 1 +
Ne2

mε0

N∑
j=0

fj
ω2
j − ω2

(11.26)

This equation is related to Cauchy’s dispersion relation

n (λ) = A+
B

λ2
(11.27)

Note how Sellmeier’s formula is more general in scope, while Cauchy’s equation is directly retrieved via
experimental considerations in the optical part of the spectrum

§ 11.3 Waves in Conductors

We begin by reconsidering the general wave equation (11.6). As we considered the electrons bound
to the atoms when analyzing dielectrics, we consider conductors as practically the opposite. Here all
electrons are not bound to the atoms but instead they’re freely moving on the surface of the medium.
Due to this, we can say that P ≈ 0, and the wave equation we are going to consider is the following

∇×∇×E+
1

c2
∂2E

∂t2
= −µ0

∂J

∂t
(11.28)

We begin to find a solution by again considering a static field.
We begin by noting that the velocity of the electron, is deeply tied to the current. For N electrons we
have

J = −Nev (11.29)

The force equation that these electron will follow is not anymore a damped harmonic oscillator, but
can be instead considered as the equation of free motion minus a “drag” term given by the attraction
by the atoms. Thus, we can write

m
dv

dt
− m

τ
v = −eE (11.30)

Rewriting the velocity in terms of the current from equation (11.29) we have, after multiplying both
sides by Ne/m

dJ

dt
+ τ−1J =

Ne2

m
E (11.31)

This equation has the associate homogeneous solution

J(t) = J0e
− t

τ (11.32)

Here, the constant τ is known as the relaxation time of the medium. The homogeneous solution is
known technically as transient current.
We now consider the two outstanding cases: static and harmonic electric fields.
In the first case the time derivative of the current is zero, and the force equation reduces to

τ−1J =
Ne2

m
E (11.33)
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From Ohm’s law we can also say that J = σE, where σ is the conductivity of the metal. Inserting into
the previous equation, we have that in the case of a static field it is

σ =
Ne2τ

m
(11.34)

We now try to apply Ohm’s law to the harmonic case. We begin by using the similarity method,
therefore, we have

∂J

∂t
= −iωJ

Therefore, the force equation implies, after substituting σ in the right hand side(
τ−1 − iω

)
J =

σ

τ
E

Solving for J, we get the harmonic version of Ohm’s law

J =
σ

τ (τ−1 − iω)
E =

σ

1− iωτ
E (11.35)

Note how the limit of zero frequency of this solution is exactly Ohm’s law in its original form.

§§ 11.3.1 Skin Depth

We now begin to attack the equation (11.28). Noting that P = 0, we have that ∇∇ · E = 0, and
writing in terms of the d’Alambertian, the equation becomes way easier to solve

�E = −µ0
∂J

∂t
(11.36)

Applying the d’Alambertian to the generic plane wave solution we get

�E = −
(
ω2

c2
+ κ2

)
E

And inserting (11.35) on the right hand side after multiplying by −µ0 and deriving once with respect
to time we have

�E = − µ0σ

1− iωτ

∂E

∂t
(11.37)

And, therefore (
κ2 +

ω2

c2

)
E =

iωµ0σ

1− iωτ
E

Rearranging the equation we have the definition of κ2 in conductors

κ2 =

(
ω2

c2
+

iωµ0σ

1 + iωτ

)
(11.38)

As before, noting that κ = k + iα, we begin analyzing this complex wavenumber in limit cases. Firstly,
considering the case of ω → 0, we have that Ohm’s law applies again, and

κ2LF ≈ iωµ0σ =⇒ κLF =
√
iωµ0σ =

√
ωµ0σ

2
(1 + i)
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Clearly here we have k = α

k = α =

√
ωµ0σ

2
(11.39)

Also, considering the complex refraction index

NLF =
c

ω

√
ωµ0σ

2
(1 + i) =

√
σ

2ωε0
(1 + i)

Which also gives

n = η =

√
σ

2ωε0
(11.40)

These results can be used to better analyze the behavior of waves in conductors. Considering the
e-folding value of the wave amplitude in the medium, we have that it’s deeply tied to α. We define the
depth of penetration of the wave in the conductor the skin depth of the medium δ, defined as follows

δ =
1

α
=

√
2

ωµ0σ
(11.41)

Rewriting this in terms of vacuum wavelength λ0 = 2πc/ω we have

δ =

√
λ0

πcµ0σ
(11.42)

Note that this depth is inversely proportional to the square root of the conductivity, and explains why
good conductors are highly opaque.

§§ 11.3.2 Plasma Frequency and Dispersion

We now analyze κ at all frequencies. As before we have

κ2 =
ω2

c2
+

iωµ0σ

1 + iωτ

And

N 2 =
c2

ω2
κ2 = 1 +

ic2µ0σ

ω

1

1 + iωτ

As for dielectrics, here it’s possible to (hardly) see a particular resonant frequency, known as the plasma
frequency ωp defined as follows

ωp =

√
µ0σc2

τ
=

√
Ne2τ

m

√
µ0c2

τ
=

√
Ne2

mε0
(11.43)

Which lets us rewrite the complex refraction index as

N = 1−
ω2
p

ω2 + iωτ−1
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Again, as with dielectrics, we rewrite the right hand side in a more explicitly complex way by rationalizing
the fraction

N 2 = 1−
ω2
p

ω2 + τ−2
+

i

ωτ

ω2
p

ω2 + τ−2
= n2 − η2 + 2inη (11.44)

Again, by equating imaginary and real parts we get the system we have to solve numerically for finding
the dispersion relation, precisely we have

Re
{
N 2
}
= n2 − η2 = 1−

ω2
p

ω2 + τ−2

Im
{
N 2
}
= 2nη =

1

ωτ

ω2
p

ω2 + τ−2

(11.45)

Both optical parameters are clearly determined by three parameters: frequency ω, plasma frequency ωp
and relaxation time τ .
In general we can get an idea of these parameters. For metals τ ∝ 10−13 s which corresponds to a
resonance in infrared frequencies, and ωp ∝ 1015 Hz, corresponding to visible and near ultraviolet
resonances.
These are quite important results, since (after solution and plotting of the two indexes) it shows how
metals become transparent at high frequencies, since limω→∞ η = 0.
More generally we see how n decreases up to the plasma frequency, while the absorption keeps
decreasing indefinitely. At ωp we have that n = η.

§§§ 11.3.2.1 Waves in Semiconductors

For semiconductors and poor conductors, we can find a complex refraction index as the sum of the
refraction index we found for conductors and dielectrics, which, precisely is

N 2
SC = N 2

C +N 2
D = 1−

ω2
p

ω2 + iωτ−1
+
Ne2

mε0

N∑
j=0

fj
ω2
j − ω2 − iγjω

(11.46)

All solution methods we found before are still valid, and we can derive, albeit with numerical methods,
the values of n and η.

§ 11.4 Reflection and Refraction in Absorbing Media

Let ψ be some electromagnetic wave which happens to be incident to some absorbing medium, with
complex refraction index N = n+ iη and absorption coefficient α. The two things we must keep an
eye on will then be {

N = n+ iη

κκκ = k+ iααα

Suppose that the wave is coming from a non absorbing region from the left, with index n1, and goes
inside the absorbing region on the right with complex refraction index N on the right.
We will have, as usual, three waves: the incident wave, the reflected wave and the transmitted wave,
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with the following exponential dependencies at the boundary:
ψ1 ∝ eik1·r

ψR ∝ eikR·r

ψT ∝ eiκκκ·r

(11.47)

As usual, in the first region we will have k1 = kR and we get the usual law of reflection, while in the
second region we must consider that κκκ = k+ iααα, therefore

k1 · r = (k+ iααα) · r =⇒

{
k1 · r = k · r

ααα · r = 0
(11.48)

Where we equated the real and imaginary part of the left hand side and right hand side.
It’s clear that k and ααα do not have the same direction. This kind of wave is known as non homogeneous
wave. Note that ααα · r = 0 implies that ααα is perpendicular to the boundary.
For non homogeneous waves we can define two planes in the absorbing region:

1. Phase planes, where k is constant

2. Amplitude planes, where ααα is constant

Denoting θ as our incidence angle and φ as the transmission angle we can get via phase matching at
the boundary a “Snell” law. This law is clearly not exactly Snell’s, since the absorbing nature of the
medium makes k actually depend on the transmission angle φ. Precisely we have

k1 · r = k1 sin θ = k(φ) sinφ (11.49)

The functional relation k(φ) can be derived from the modified wave equation

∇2E =
N 2

c2
∂2E

∂t2
(11.50)

Using ∇2E = (κκκ · κκκ)E and ∂tE = −iωE we have

(k+ iααα)
2
E =

ω2

c2
N 2E = k20N 2E

Equating right hand side and left hand side after writing N 2 = (n+ iη)
2
and writing the explicit

squares, we have

k2 − α2 + 2ik ·ααα = k20
(
n2 − η2 + 2inη

)
=⇒

{
k2 − α2 = k20

(
n2 − η2

)
kα cosφ = k20nη

(11.51)

The solution to this system of equation is not immediate, but the result can be shown to be the following

k cosφ+ iα = k0
√
N 2 − sin2 θ (11.52)

For normal incidence sin θ = 0, thus
k cosφ+ iα = k0N
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In a purely formal way we could also imagine to write “Snell’s law” as the following relation

N =
sin θ

sin (z)

θ ∈ [−π
2
,
π

2
]

z ∈ C
(11.53)

From the previous definition, and with the help of this complex “angle”, we can define the following

cos(z) =

√
1− sin2 θ

N 2
(11.54)

Therefore, inserting this into (11.52) we get

k cosφ+ iα = k0N

√
1− sin2 θ

N 2

k cosφ+ iα = k0N cos(z)

(11.55)

Thus

N =
k cosφ+ iα

k0 cos(z)
(11.56)

From the equations (11.54) and (11.56), it’s possible to find the reflectance of the absorbent medium.
We begin by noting that Maxwell’s equations need to be appropriately modified to account for the
previous results, and this can be done with the complex value z we defined before.
As usual, in the first region we have

H =
1

µ0ω
k1 ×E

HR =
1

µ0ω
k1 ×ER

(11.57)

While, in the second region we have

Ht =
1

µ0ω
κκκ×ET =

1

µ0ω
(k×ET + iααα×ET ) (11.58)

Evaluating the modulus of these equations and inserting them for the Senkrecht (s) and Parallel (p)
polarization states, we get the two following systems of equations{

E + ER = ET

(H −HR) cos θ = HT

{
H −HR = HT

(E + ER) cos θ = ET cos(z)
(11.59)

Which, after dividing by E and inserting the relationship between E and H, can be rewritten as follows{
1 + rs = ts

k0 (1− rs) cos θ = (k cosφ+ iα) ts

{
k0 (1− rp) = k0N tp

(1 + rp) cos θ = tp cos(z)
(11.60)

Starting from the equations for s polarization, we have that

(1− rs)k0 cos θ = (1 + rs)(k cosφ+ iα)
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Noting that on the right hand side we can substitute k cosφ+ iα = k0N cos(z), we have

(1− rs)k0 cos θ = (1 + rs)k0N cos(z)

Which, after distributing the product and solving for rs by simple division, we get

rs =
cos θ −N cos(z)

cos θ +N cos(z)
(11.61)

From the equation ts = 1 + rs we get the second result

ts = 1 +
cos θ −N cos(z)

cos θ +N cos(z)
=

2 cos θ

cos θ +N cos(z)
(11.62)

For p polarization the process for finding rp and tp is completely analogous to the non absorbing case.
1

N
(1− rp) = tp

(1 + rp) cos θ =
1

N
(1− rp) cos(z)

Thus, again

rp

(
cos θ +

1

N cos(z)

)
=

1

N
cos(z)− cos θ

Which gives

rp =
cos(z)−N cos θ

cos(z) +N cos θ
(11.63)

Analogously, we have

tp =
1

N
(1− rp) =

1

N

(
1− cos(z)−N cos θ

cos(z) +N cos θ

)
I.e.

tp =
2 cos θ

cos(z) +N cos θ
(11.64)

All reunited in one place, we have
rs =

cos θ −N cos(z)

cos θ +N cos(z)

ts =
2 cos θ

cos θ +N cos(z)


rp =

cos(z)−N cos θ

cos(z) +N cos θ

tp =
2 cos θ

cos(z) +N cos θ

(11.65)

As usual, it’s possible to find the coefficients R and T with the usual evaluations.
Note that for p polarization, if Im {N} 6= 0, also rp 6= 0, i.e. there is no Brewster angle in absorbing
media. Instead, we can define the principal angle of incidence θ1, for which rp(θ1) = min {rp}.
As can be imagined, non polarized light and light which is neither s nor p polarized gets transmitted
in elliptical polarization. The complex index of refraction can then be evaluated by measuring the
transmitted irradiance IT using ellipsometry
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§§ 11.4.1 Normal Incidence

In the case of normal incidence, we have as usual θ = φ = 0, thus rp = rs, where

r =
1−N
1 +N

=
1− n− iη

1 + n+ iη
(11.66)

Which implies

R =
(1− n)2 + η2

(1 + n)2 + η2
(11.67)

Note that it’s the same equation that we get in the non-absorbing case if η = 0.
Remembering that R = R(N ) and that N = N (ω), we have that in the low frequency limit

Re {N} = Im {N} =

√
σ

2ωε0
(11.68)

Thus, the reflectance at low frequencies becomes

R = 1− 2

n
= 1−

√
8ωε0
σ

(11.69)

This formula is commonly known as the Huygens-Rubens formula. Therefore, for frequency in the red
part of the spectrum (big wavelengths), good conductors become better and better reflectors, as is the
case for metals. As an example, we can see that for Cu, Ag, Au we have{

R(λ) ≈ 1 λ ∈ NIR, (λ ≈ 1 µm− 2 µm)

R(λ) u 1 λ ∈ FIR, (λ ≥ 20 µm



12 Optics of Crystals

§ 12.1 The Electric Susceptibility Tensor

Themain property of crystalline matter, in the context of optics, is electrical anisotropy. This indicates that
the polarization produced by the application of an electric field to such matter is direction dependent.
In crystals, there are usually two possible values of propagation velocity in a given direction, tied to
mutually orthogonal polarization states. This property is better known as birefringence, i.e. crystals are
(usually) doubly refracting.
Note tho how some crystals do not exhibit birefringence, as it’s deeply tied to their symmetry. Cubic
crystals like NaCl (table salt) do not exhibit birefringence, while other kinds of crystals do exhibit it.
A practical way to understand the physics behind this phenomenon is thinking that the lattice atoms
bond like springs between each other, but with different strengths K, thus electron displacement
when an electric field is applied is different in each bond direction, thus the dependence P(E) is not a
relation of direct proportionality, but it’s instead a tensorial relation1.

P i = ε0χ
i
jEj (12.1)

The tensor χij is the electric susceptibility tensor. As usual we can again define the electric displacement

field by substituting the constant 1 with the Kronecker delta δij

Di = ε0
(
δij + χij

)
Ej = εijEj (12.2)

We defined here εij as the dielectric tensor, which is the tensorial equivalent of the constant ε.

For ordinary, non-absorbing crystals, the tensor χij is diagonalizable, and the eigenvalues define the
principal susceptibilities of the crystal, each corresponding to a dielectric constant

(εr)i = 1 + χi (12.3)

We thus modify the general wave equation in non-conducting dielectrics (11.7) as follows

εijk∂
jεklm∂

lEm +
1

c2
∂2Ei

∂t2
= −

χij
c2
∂2Ei

∂t2
(12.4)

1here, we will use again the tensor notation we all love

167
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§§ 12.1.1 K-Surfaces

For solving the previous partial differential equation we impose the usual plane wave solution and
shove it inside the partial differential equation. Therefore, as usual

∂

∂xj
= ikj

∂

∂t
= −iω

And the partial differential equation becomes

εijkk
jεklmk

lEm +
ω2

c2
Ei = −ω

2

c2
χijE

j (12.5)

If the susceptibility tensor is diagonal, these become three coupled equations

(
ω2

c2
− k2y − k2z

)
Ex + kxkyEy + kxkzEz = −ω

2

c2
χ1
1Ex(

ω2

c2
− k2x − k2z

)
Ey + kykzEz + kykxEx = −ω

2

c2
χ2
2Ey(

ω2

c2
− k2y − k2x

)
Ez + kzkyEy + kzkxEx = −ω

2

c2
χ3
3Ez

(12.6)

In this configuration, the system is quite complex to solve, so for now, suppose that the wave is
propagating inside the crystal in what we choose as the x direction, thus ky = kz = 0. The system
becomes 

ω2

c2
Ex = −ω

2

c2
χ1
1(

ω2

c2
− k2

)
Ey = −ω

2

c2
χ2
2Ey(

ω2

c2
− k2

)
Ez = −ω

2

c2
χ3
3Ez

The possible solutions are 2. Clearly Ei ⊥ ki, but:

1. Ey 6= 0, then k1 =
√
1 + χ2

2

2. Ez 6= 0, then k2 =
√
1 + χ3

3

Since ω
k is the phase velocity of the wave, we can define two distinct phase velocities

u1 =
c√

1 + χ2
2

u2 =
c√

1 + χ3
3

(12.7)

More generally, we could write everything in terms of refraction indexes n =
√
1 + χ. For a diagonaliz-

able susceptibility tensor we have at most 3 refraction indexes ni, known as the principal refraction
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indexes 
n1 =

√
1 + χ1

1

n2 =
√
1 + χ2

2

n3 =
√
1 + χ3

3

(12.8)

These indexes come in handy to simplify equation (12.6).
Taken back that system of equations, we have that in order to have non banal solutions, we must have
that

det


n2
1ω

2

c2 − k2y − k2z kykz kzkz

kykx
n2
2ω

2

c2 − k2x − k2z kykz

kzky kzky
n2
3ω

2

c2 − k2x − k2y

 6= 0 (12.9)

The result of this equation is a surface in R3, or to be precise, a surface in k-space.
We begin to solve for xy, therefore imposing kz = 0.
Evaluating the determinant we get the following algebraic equation(

n23ω
2

c2
− k2x − k2y

)[(
n21ω

2

c2
− k2y

)(
n22ω

2

c2
− k2x

)
− k2xk

2
y

]
= 0 (12.10)

The solutions are two, which clearly are
k2x + k2y = n23

ω2

c2(n1ω
c

)2 (n2ω
c

)2
− k2y

(n2ω
c

)2
− kx

(n1ω
c

)2
= 0

The first solution is already clear, and it’s a circle with radius n3ω/c. The second can be made clearer

dividing by
n2
1ω

2

c2
n2
2ω

2

c2 . The resulting equation is that of an ellipse

k2x
n2
2ω

2

c2

+
k2y
n2
1ω

2

c2

= 1

Analogous equations can be derived for the planes xz and yz.
The two surfaces, which we will call C1 and Ce2, are then simply the following sets in k−space

C1 =

{
k2x + k2y =

(n3ω
c

)2}
Ce2 =

{(
c

n2ω

)2

k2x +

(
c

n1ω

)2

k2y = 1

} (12.11)

Solving also for the other planes we finally get the complete solution as a sphere S1 and an ellipsoid
E2.
The k then lays on both surfaces, which together form an inner spherical sheet and an outer ellipsoidal
sheet. The two different possible values that k can take then define the two different orthogonal
polarizations of E, with two different phase velocities.
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Said z the propagation direction of the electromagnetic wave and said χ̂χχ1, χ̂χχ2 the two principal directions
of the crystal in the xy plane, we have then that a wave with generic polarization gets decomposed in
the following two components

E(r, t) = (E · χ̂χχ1) e
ik1·r−iωt + (E · χ̂χχ2) e

ik2·r−iωt (12.12)

Each ki corresponds to one of the two possible refraction indexes, defined as before

n1 =
√
1 + χ1

1 n2 =
√
1 + χ2

2

Where χ1
1 and χ

2
2 are the eigenvalues of χij .

We can also see that the two phase surfaces S1, E2 have nonzero intersection. Said OP = S1 ∩E2 the
set of these intersections, if we define axes passing through the origin and these points, we see that
k1 = k2 in these points. These axes are known as the optical axes of the crystal. Here, we also have
u1 = u2 and therefore we have no birefringence.
In general, we can determine wether a crystal is birefringent or not by looking at the eigenvalues of the
χij tensor.
With this categorization, we can define three kinds of crystals

1. Isotropic crystals, χ1
1 = χ2

2 = χ3
3 = χ and the crystal is not birefringent

χij =

χ 0 0
0 χ 0
0 0 χ

 n =
√
1 + χ (12.13)

Due to the non birefringent nature of isotropic crystals we have that there is only one optical axis.
Cubic crystals fall into this category

2. Uniaxial crystals, here only two of the three eigenvalues are equal χ1 = χ1
1 = χ2

2 6= χ3
3 = χ2 and

the crystal exhibits birefringence.

χij =

χ1 0 0
0 χ1 0
0 0 χ2

 nO =
√
1 + χ1, nE =

√
1 + χ2 (12.14)

This kind of crystal has only one optical axis. The two possible refraction indexes are known as
the ordinary refraction index nO and the extraordinary refraction index nE , due to the presence
of only two refraction indexes, two subcategories of uniaxial crystals can be defined

• Positive uniaxial crystals, with nE > nO

• Negative uniaxial crystals, with nO > nE

Trigonal, tetragonal and hexagonal crystals fall in this category.

3. Biaxial crystals, here all eigenvalues are different, and the crystal exhibits birefringence

χij =

χ1
1 0 0
0 χ2

2 0
0 0 χ3

3

 n1 =
√
1 + χ1

1, n2 =
√
1 + χ2

2, n3 =
√
1 + χ3

3 (12.15)

This kind of crystal has two optical axes. Triclinic, monoclinic and orthorombic crystals fall into
this category
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In terms of phase surfaces, we have that isotropic crystals only have the sphere, biaxial crystals have
the sphere and the ellipsoid together and the uniaxial crystal has the sphere and a revolution ellipsoid.
in general, we have that for positive uniaxial crystals the sphere is contained inside the ellipsoid, while
if for negative uniaxial crystals the ellipsoid is instead contained in the sphere.

§§ 12.1.2 Phase Velocity Surface

We can rephrase what we found before in terms of phase velocities. We know that by definition
k = ω/u, and k = uω/u2, where the second is the vectorial counterpart to the previous statement.
From this, it’s possible to write the determinant (12.11) in terms of phase velocities

det

n21 u
4

c2 − u2y − u2z uxuy uxuz

uyux n22
u4

c2 − u2x − u2z uyuz
uzux uzuy n23

u4

c2 − u2y − u2x

 (12.16)

Solving in a way completely analogous to what we found for the k-surfaces, we find as a solution
circles and fourth degree ovals. For the xy planes the two equations define the two following surfaces{

u2x + u2y =
c2

n23

}
{
u2x
n23

+
u2y
n21

=
u4

c2

} (12.17)

These two surfaces are reciprocal of the two k-surfaces and are known as the phase velocity surfaces

§§ 12.1.3 Ray Velocity Surface

Due to the anisotropic nature of crystals it’s clear that k is not parallel to the Poynting vector S = H×E,
since in general k is not parallel to E.
In the case of a beam of light in a generic crystal we can still use the vector k in order to define the
planes of constant phase, but its direction is not anymore parallel to the direction of propagation of
the wave.
Calling θ the angle between k and S, i.e.

θ = arccos

(
S · k
‖Sk‖

)
(12.18)

We can define the ray velocity v which will define the real direction of the ray.

v =
u

cos θ
(12.19)

From this definition, we can see how it’s possible to define a ray velocity surface.
We begin to rewrite the equations in terms of the electric displacement vector

Di = ε0
(
δij + χij

)
Ej

Substituting the definition into the wave equation we have

εijkk
jεklmk

lEm = − ω2

c2ε0
Di
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Using the properties of the Levi-Civita symbol we have

ki
(
kjEj

)
− k2Ei = − ω2

c2ε0
Di

Since kiDi = 0 by definition of Di, we can multiply both sides by Di, getting2

k2D ·E =
ω2

c2ε0
D2 (12.20)

Using u = ω/k and that the vector D and E are separated by θ as we defined before, due to their
tensorial relationship through χij . We can write then

D ·E = ED cos θ =
u2

c2ε0
D2 (12.21)

Putting ourselves in the coordinate system of the crystal, i.e. we rotate into the eigenbasis of χij , we
have that

1.

εij = 1 + χij =

n21 0 0
0 n22 0
0 0 n23


2.

Di = εijE
j =⇒ Di = ε0n

2
(j)E

i

Thus, the ray velocity surface can then be written in terms of D as the solution of the following set of
equations 

(
c2

n21
− v2x − v2z

)
Dx + vxvyDy + vxvzDz = 0

vyvxDx +

(
c2

n22
− v2x − v2z

)
Dy + vyvzDz = 0

vzvxDz + vzvyDy +

(
c2

n23
− v2x − v2y

)
Dz = 0

(12.22)

As usual, the solution can be found as the roots of the determinant of the associated matrix. Taken the
determinant for only one of the three possible planes thanks to symmetry relations, we find again the
double surfaces {

v2x + v2y =
c2

n23

}
{
n21v

2
x + n22v

2
y = c2

} (12.23)

These surfaces are again a sphere and an ellipse, but these define the ray axes of the crystal, using
again origin and intersection of the surfaces.

2For clarity I switched back again to the boldface vector notation



12.2. BIREFRINGENCE 173

§ 12.2 Birefringence

We now treat mathematically the concept of birefringence. Consider a wave inside a birefringent
crystal transmitting through one of the boundaries of the crystal. Due to having two possible values for
k we must consider two transmitted waves, this ones are the waves that will create the double image
that we see in the process of birefringence.
Called the incoming wave (k,E,H) and the two transmitted waves (k1,E1,H1) and (k2,E2,H2) we
have at the boundary {

k2 sinφ2 = k sin θ

k1 sinφ1 = k sin θ

This, as we saw already before, might look like a version of Snell’s law for crystals. This is not the case,
remember, since ki depends directly on φi.
This changes if and only if we’re treating an uniaxial crystal. Said φO and φE the ordinary and
extraordinary transmission angles, noting that the ordinary wavevector kO is by definition on the
spherical phase surface, i.e.

‖kO‖ = n2O
ω2

c2

We have, just for the ordinary wave, again Snell’s law

sin θ = nO sinφO (12.24)

This doesn’t hold for kE , since it lays on the phase ellipsoid.
In general though, we can say that

• For positive uniaxial crystals nO < nE
φE ≤ φO

• For negative uniaxial crystals nE < nO
φE ≥ φO

This feature of uniaxial crystals can be used in order to create polarizing prisms. Consider the same
wave as before, coming from inside an uniaxial crystal, and hitting the boundary. Suppose that the
optical axis is perpendicular to the plane of incidence.
Here, if EE is the extraordinary wave and EO is the ordinary wave we have that they are respectively
parallel and perpendicular to the optical axis.
We can distinguish even more these two crystals if we have either positive or negative uniaxial crystals.
For negative crystals, where φE ≥ φO and nE ≥ nO, we have that Snell holds for the ordinary angle,
and

nE <
1

sin θ
< nO (12.25)

This is the condition for total internal reflection for the ordinary wave! Therefore what happens, is
that the ordinary wave gets totally reflected, while the extraordinary wave gets transmitted. Since the
extraordinary wave is parallel to the optical axis, we get a completely polarized wave on the direction
of the optical axis.
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§ 12.3 Optical Activity

In general, birefringent material that acts on polarization via the rotation of the polarization plane, is
known as optically active. If a polarized wave travels a path long l inside such media, its polarization
plane will get rotated by an angle θ ∝ l.
It’s possible to define a specific rotatory power δ for this kind of medium, which indicates the amount
of rotation per unit length.
These objects are divided in two categories depending on the handedness of the rotation applied to
the polarization plane:

• Levorotatory

• Dextrorotatory

This phenomena can be explained supposing that this media is anisotropic, and has a “right” and a
“left” refraction indexes nR and nL. Using Jones’ vectors, specifically in the circular polarization basis,
we can say that a wave in such medium will can be written in terms of the following basis

|RCP 〉 =
(

1
−i

)
eikRz−iωt

|LCP 〉 =
(
1
i

)
eikLz−iωt

(12.26)

Suppose that we shine into this material a linearly polarized wave |k〉, where

|k〉 =
(
1
0

)
In the previous basis this wave can be represented as follows

|k〉 = 1

2
(|RCP 〉+ |LCP 〉)

After traveling a distance l, a dephasement is introduced to both left and right components, precisely,
the wave will be described as follows

|k(l)〉 = 1

2
eikRl |RCP 〉+ 1

2
eikLl |LCP 〉 = 1

2
e

1
2 i(kR+kL)l

(
e

1
2 i(kR−kL)l |RCP 〉+ e−

1
2 i(kR−kL)l |LCP 〉

)
(12.27)

Introducing the two following angles 
ψ =

l

2
(kR + kL)

θ =
l

2
(kR − kL)

We have that

|k(l)〉 = 1

2
eiψ
(
eiθ |RCP 〉+ e−iθ |LCP 〉

)
= eiψ

(
cos θ
sin θ

)
(12.28)
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Dropping the general phase at the beginning, we see that the end result is a linearly polarized wave
that has been rotated by an angle θ.
Writing θ in terms of nR, nL we have

θ =
lω

2c
(nR − nL) =

πl

λ0
(nR − nL) =⇒ δ =

π

λ0
(nR − nL) (12.29)

Where δ is again our specific rotatory power. Note that this will also depend implicitly on wavelength
due to dispersion in the material.

§§ 12.3.1 Susceptibility Tensor of Optically Active Media

Given an optically active medium, it’s clear that if Ex and Ey get rotated, the susceptibility tensor will
be similar to a rotation matrix, i.e. with off-diagonal imaginary values. Precisely, such tensor will take
the following matricial form

χij =

 χ1
1 iχ12 0

−iχ12 χ2
2 0

0 0 χ3
3

 (12.30)

For a wave traveling through the medium along the z axis, we have

(
ω2

c2
− k2

)
Ex = −ω

2

c2
(
χ1
1 + iχ2

1Ey
)

(
ω2

c2
− k2

)
Ey = −ω

2

c2
(
χ2
2Ey − iχ12Ex

)
ω2

c2
Ez = −ω

2

c2
Ez

(12.31)

The last equation gives the banal solution Ez = 0, while the other two can be solved by finding the
roots of the following polynomial

det

(
ω2

c2

(
1 + χ1

1

)
− k2 iω

2

c2 χ12

−iω
2

c2 χ12
ω2

c2

(
1 + χ2

2

)
− k2

)
= 0 (12.32)

The equation to solve is a biquadratic equation with k as a parameter

k4 − k2
ω2

c2
(
1 + χ2

2 + χ1
1

)
− ω4

c4
(
χ2
12 −

(
1 + χ1

1

) (
1 + χ2

2

))
= 0 (12.33)

Which, has solutions for

k =
ω

c

√
1 + χ1

1 ± χ12 (12.34)

Solving again for E we get
Ex = ±iEy (12.35)

Where the sign depends on the chirality (handedness) of the polarization of the wave.
Remembering also that ωc k = n we also have that the right and left refraction indexes are

nR =
√
1 + χ1

1 + χ12

nL =
√
1 + χ1

1 − χ12

(12.36)
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Thus, the specific rotatory power δ is

δ =
π

λ0
(nR − nL) ≈

χ12π

nOλo
(12.37)

§§§ 12.3.1.1 The Special Case of Quartz

A cool example of an object which is both birefringent and optically active is quartz. Solving the
algebraic equation for finding the k-surfaces of this material, we find that the ellipsoid and the sphere
have a null intersection. The separation between the surfaces depends directly on χ12, therefore it
becomes also a measure of the specific rotatory power

§ 12.4 Magneto-optic and Electro-optic Effects

§§ 12.4.1 Faraday Rotations

If an isotropic dielectric is immersed in a magnetic field, and a beam of nearly polarized light is sent
through the material in the direction of the field, we can measure a rotation of the polarization plane
of the wave, i.e. the magnetic field activates the dielectric.
This was first discovered in 1845 by Faraday, which saw that the amount of rotation of the polarization
plane is proportional to the magnetic field intensity and the distance traveled in the medium.
Said V a proportionality constant, then we have

θ = V Bl (12.38)

The constant V is commonly known as the Verdet constant.
The physical explanation of this effect comes from the application of the force equation to bound
electrons.
Said B the magnetic field intensity, then we have that the force equation for the bound electrons is as
follows

m
d2r

dt2
+Kr = −eE− ev ×B (12.39)

Again, using the similarity method and supposing an harmonic solution r ∝ eiωt we have

Kr−mω2r = iωer×B− eE (12.40)

Using again P = −Ner we have(
K −mω2

)
P = Ne2E− iωeP×B (12.41)

Rewriting P i = ε0χ
i
jE

j , we have that the susceptibility tensor must be similar to the tensor for optically

active media. Writing for ease of notation ω0 =
√
K/m the natural resonance frequency of the
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dielectric and ωc = eB/m the cyclotron frequency, the tensor will have the following components

χ1
1 =

Ne2

mε0

(
ω2
0 − ω2

(ω2
0 − ω2)

2 − ω2ω2
c

)

χ3
3 =

NeP2

mε0

(
1

ω0 − ω2

)
χ12 =

Ne2

mε0

(
ωωc

(ω2
0 − ω2)

2 − ω2ω2
c

) (12.42)

Although a dielectric becomes optically active when a B field is applied, the birefringent effects are
minimal unless ω ≈ ω0, in what’s known as the Voigt effect.

§§ 12.4.2 Kerr Effect

As we said before, when a magnetic field is applied to a dielectric, the medium becomes optically active,
but not birefringent (unless the frequency is in the proximity of the optical resonance frequency).
Consider now an optically isotropic substance placed in a strong E field, it has been observed in 1875
by Kerr that the substance becomes birefringent. This effect is observed in both gases and liquids.
The main idea of explanation of this effect comes from the alignment of molecules along the direction of
the electric field, making the material behave like an uniaxial crystal, where the optical axis is determined
by the direction of the field.
The strength of the effect is proportional toE2, where if we indicate n‖, n⊥ as respectively the refraction
index in the direction parallel and perpendicular to the electric field, we have that

n‖ − n⊥ = KE2λ0 (12.43)

The constant K is known as the Kerr constant.

§§ 12.4.3 Other Magneto-optic and Electro-optic Effects

Other effects of the same branch as these are

• Cotton Moutton effect: It’s the magnetic analog of the Kerr effect in liquids. The alignment of
the molecules is here given by the magnetic field B, and we also have that the strength of the
effect is proportional to the square of the field B2.

• Pockels effect: For some birefringent crystals the indexes of refraction ni are affected by the
strengths of the fields E,B.
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13 Lasers

§ 13.1 General Description

The laser, an abbreviation of light amplification by means of stimulated emission of radiation, are
objects that are capable to emit coherent electromagnetic radiation up to frequencies of 109 Hz. Their
behavior comes from the laws of quantum mechanics themselves and they were known already before
the 1950s, these lasers emitted microwave radiation and therefore are known as masers.
The first laser was a He-Ne laser built at Bell laboratories. At around the same time ruby lasers were
developed. Both emit coherent light in the red, while the He-Ne laser also emits light in the infrared
spectrum.
Since these two lasers we managed to develop various kinds of lasers which emit at different frequencies.
In general lasers work as optical oscillators which have an amplifying medium inside the resonator, also
known as laser cavity.
The amplification of light is achieved via means of external excitation. The oscillation in the cavity can
be seen as a standing wave.
The final output is an intense beam of highly monochromatic light, which can be used in various fields.

§ 13.2 Stimulated Emission

The physical explanation of the inner workings of a laser starts from quantum mechanics itself.
Consider a quantum system with energy levels n = 1, 2, 3, · · · with associated energies En and level
populations Nn. If the system is at thermal equilibrium at some temperature T we can evaluate the
ratio of population of two levels using Boltzmann statistics.
Said β = (kBT )

−1
and considered the first two levels we have

N2

N1
=
e−βE2

e−βE1
= e−β(E2−E1) (13.1)

Since we’re working with photons we have E2 − E1 = ~ω, therefore

N2

N1
= e−β~ω (13.2)

Where ω12 is the difference of frequency between the second and the first level.
Said ρ(ω) the radiation density at a given frequency andB12, B21 the stimulated emission and stimulated

179



CHAPTER 13. LASERS 180

absorption coefficients, we have that the rate of change per unit time of population of the first or the
second level is 

dN1

dt
= N1B12ρ(ω)

dN2

dt
= N2B21ρ(ω)

(13.3)

Including also the spontaneous emissions from the levels we also add

dN2

dt
= N2A21 (13.4)

At thermal equilibrium the total amount of population changes must equalize, i.e.

N2A21 +N2B21ρ(ω) = N1B12ρ(ω) (13.5)

Solving for the radiation density we have

ρ(ω) =
A21

B21

1
N1B12

N2B21
− 1

(13.6)

Using (13.2) and noting that ρ(ω) must follow Planck’s blackbody formula, thus

ρ(ω) =
~ω3

4π3c2
1

eβ~ω − 1
=
A21

B21

1
B12

B21
eβ~ω − 1

=⇒


A21

B21
=

~ω3

4π3c2

B12 = B21

(13.7)

Note that we can also define the ratio between spontaneous and stimulated emission is the following

SE

E
=
B21

A21
ρ(ω) =

1

eβ~ω − 1

What it indicates is that the actual spontaneous emission is really small for visible light at ordinary
temperatures for the sources 102K < T < 103K.
This also indicates how actually the majority of radiation is actually spontaneous random emission, thus
also incoherent. We will use light amplification in order to amplify the amount of coherent stimulated
radiation.

§§ 13.2.1 Light Amplification

Consider a medium in which radiation passes through. Suppose that its atoms have random energy
levels En. We will consider a two level system only in this case, where E1 < E2. The equations which
will regulate spontaneous absorption and emissions are the usual (13.3).
Since B21 = B12 we will have more stimulated emission if and only if the higher level E2 is more
populated than the lower level E1. This process is known as population inversion.
If our radiation beam passes multiple times inside this medium we will get a steady gain of power of
the beam thanks to the addition of stimulated emission of radiation.
The stimulated radiation will have the same phase dependency of the initial beam, and therefore the
final result will be highly coherent.
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§§§ 13.2.1.1 Gain

In order to quantify this energy gain, consider a beam which propagates in a medium where population
inversion is possible. For a collimated beam the spectral radiation density ρ(ω) is tied to the irradiance
I(ω) in the interval [ω, ω +∆ω] with the following relation

ρ(ω)∆ω = Iω
∆ω

c
(13.8)

Including in this the results we found for stimulated absorption and emission we get

B12ρ(ω)∆N1 =
B12

c
I(ω)∆N1 (13.9a)

B21ρ(ω)∆N2 =
B21

c
I(ω)∆ω (13.9b)

For each transition (13.9a) we get one quanta less of energy (∆E = −~ω), but we get plus one quanta
for each (13.9b) transition.
Thus, for unit time we have

∂ρ

∂ω
∆ω = ~ω (B21∆N2 −B12∆N1) ρ(ω) (13.10)

But, since c−1 dt = dx, we have, using (13.8)

∂I

∂x
=

~ω
c

(
∆N2

∆ω
− ∆N1

∆ω

)
B21I(ω, x) (13.11)

This result indicates that per unit length of travel inside the amplifying medium, we will get an increase
of irradiance equal to

∂ log (I)

∂x
=

~ω
c∆ω

B21 (∆N2 −∆N1) (13.12)

Via integration of (13.12) we have

I(ω, x) = I0e
αωx (13.13)

The constant αω is known as the gain constant, which is specific to the system. By definition

αω =
~ω
c∆ω

B21 (∆N2 −∆N1) (13.14)

Due to line broadening, this value is actually taken at the center of the spectral line. Said the spectral
thickness Γ ≈ ∆ω, this result is correct up to a numerical constant c = O

(
100
)
. Approximating also

∆Ni ≈ Ni we have that the maximum possible value the gain constant is

αω,max =
~ω
c∆ω

B12 (N2 −N1) (13.15)

Using the fact also that
A21

B12
=

~ω3

4π3c2
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We have that

αω,max ≈ ~ω
c∆ω

4π3c2

~ω3
A21 =

2π3c

ω2∆ω
A21 (N2 −N1) (13.16)

Or, in terms of wavelength

αω,max ≈ 2π3cλ2

∆ω
A21 (N2 −N1) (13.17)

§§§ 13.2.1.2 Gain Curve

In order to determine the dependency between gain and the frequency of the wave we need to consider
the effect of line broadening. Considering a nonzero temperature we have that atoms in thermal
motion will have a Gaussian dependency of their velocities.
Considering the isotropy of the system we can consider only the motion on the x direction

P (vx)∆vx =

√
mβ

2π
e−

1
2mβv

2
x∆vx (13.18)

Due to Doppler effect, the atoms will absorb and emit photon radiation in this direction at a slightly
different frequency ω than the natural resonant frequency ω0, thus

ω − ω0

ω0
=
vx
c

(13.19)

Substituting it into the Boltzmann equation for velocity we have that atoms in a given energy state |i〉
will absorb and emit radiation with the following probability density function

P (ω)∆ω =
c

ω0
e
− βmc2

2ω2
0

(ω−ω0)
2

∆ω (13.20)

This implies then that

∆Ni =

√
βmc2

2π
Nie

− βmc2

2ω2
0

(ω−ω0)
2 ∆ω

ω0
(13.21)

Considering again the previous simpler two level approximation, we have that after substituting the
values for ∆N1,∆N2

αω =
~ω0

cδω

√
βmc2

2π
(N2 −N1)e

− βmc2

2ω2
0

(ω−ω0)
2B21

ω0
∆ω

Simplifying we have

αω =
~B21

c

√
βmc2

2π
(N2 −N1) e

− βmc2

2ω2
0

(ω−ω0)
2

(13.22)

Clearly, the variation of the gain constant follows a Gaussian curve centered on the resonant frequency
ω0. Setting the exponential equal to 1

2 we get the half width half maximum line width Γ 1
2
, thus

e
− βmc2

2ω2
0

(ω−ω0)
2

=
1

2
=⇒ (ω − ω0)

2
=

2ω2
0 log(2)

βmc2
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Which, taken the square root gives Γ 1
2

Γ 1
2
=

1

2
Γ = ω0

√
2 log(2)

βmc2
(13.23)

This implies that the maximum value is

αω,max =
1

2

λ0
∆ω

√
log(2)

π
(N2 −N1)A21 (13.24)

§§ 13.2.2 Experimental Production of Population Inversions

• Photon excitation, also known as optical pumping

• Electron excitation

• Inelastic atomic collisions

• Chemical reactions

For optical pumping, an external light source is employed for producing a high population in non-ground
state levels in the laser medium via selective absorption. This method is used in solid state lasers, like
ruby lasers.
Direct electron excitation are used instead in gas lasers, like argon lasers. Here the laser medium carries
itself the discharge current.
In inelastic atomic collisions the electric discharge is used in a way such that two different elements
A,B transfer the excitation via collision. The general reaction of excitation transfer is as follows

A? +B → A+B?

If B? is metastable, it will have a population inversion and subsequent laser transition. The He-Ne
laser uses this process, where the excited helium transfers the excitation to the neon atoms, which will
undergo laser transition.
Chemical lasers instead use chemical reactions which leave a molecule or an atom in an excited state,
like HF lasers, which use the following reaction

H2 + F2 → 2HF? → 2HF + γ (13.25)

§ 13.3 Optical Resonators

§§ 13.3.1 Laser Oscillations

The optical cavity of a laser, known as the resonator, is composed by two mirrors that can be either
plane or curved, where inside the amplifying the medium. If a sufficient population inversion is reached,
the radiation gets amplified and establishes itself as a standing wave between the mirrors. The energy
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is coupled to the resonator via partially transmitting mirrors.
The plane resonator works in a similar way to Fabry-Perot interferometers.
The emitted result is equally spread bands with a free spectral range of

ωn+1 − ωn =
πc

d
(13.26)

Where c is the speed of light and d is the distance between the mirrors.
The frequencies we get are known as longitudinal and transverse modes of the resonator. Oscillations
can occur at one or more frequencies depending on the spacing of modes. Usually the standing
waves oscillate at multiple modes. If high spectral purity is needed, it’s possible to fine tune the laser
parameters in order to get single mode oscillation. The inherent line width Γ is then determined by the
so called quality factor Q of the resonator.
In general Γ ∝ 1 Hz, but it’s in practice possible to obtain Γ ∝ 103 Hz, depending on thermal and
mechanical stability of the system.

§§§ 13.3.1.1 Oscillation Threshold

In the amplifying medium, as we said before, we have

I(ω, x) = I0,ωe
αωx

Suppose that we have a standing wave, as for a cavity. At every passage there will be a loss of energy
due to scattering, reflections etc. In order to have laser oscillations, we need that the gain is higher
than the loss. Said δ the amount of loss, we have

I(ω, x)− I0,ω ≥ δI(ω)

If the cavity is long l, then, after a passage we have

I0,ω
(
e2αωl − 1

)
≥ δI(ω, x)

If 2αωl << 1 we can approximate by power series, which implies

2αωl ≥ δ (13.27)

When the condition is satisfied the oscillation grows in irradiance till it gets into equilibrium with the
loss. Note that δ is independent of the irradiation itself.
When the gain is at equilibrium with the oscillation, the system is said to incur in hole burning. Here
the line profile looks like an inverted harmonic oscillator, known as the Lorentz profile. The line width
of this profile is inversely proportional to the radiative lifetime of the element.
If ΓL ≥ Γ all atoms are said to be in communication with the oscillating laser mode. This process is
known as homogeneous broadening. If ΓL < Γ only a fraction of atoms participate in a given laser
mode, and this process is known as inhomogeneous broadening

§§ 13.3.2 Resonator Stability

In order to talk about the stability of the oscillation, we have to firstly discuss about optical resonators
themselves.
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In general, the spatial modes of electromagnetic radiation in a closed cavity can be described by 3
integers, related to the standing wave pattern.
For lasers, the cavity is not closed. Here the resonator still supports a standing wave known as a
quasi-mode. Part of the energy of the mode will spill around the mirror and is then loss via diffraction,
the diffraction loss of the resonator is really important in low frequency lasers like He-Ne lasers, with a
gain per pass of a few percent.
Consider now the wave itself which we will call ψ, and call the coordinates on the two mirrors (x, y)
and (x′, y′). If ψ(x, y), ψ(x′, y′) are the complex amplitudes, then using KF theory we have

ψ′(x′, y′) = − ik

4π

¨
L

ψ(x, y)
eikr

r
(1 + cos θ)d2x (13.28)

Where we indicated the cavity with L. Taken a point on the first mirror with respect to the second
mirror, we have using trigonometry r =

√
d2 + (x′ − x)2 + (y′ − y)2

cos θ =
d

r

Where we indicated with d the distance between the centers of the two mirrors.
Considering a pair of identical mirrors, at equilibrium we must have ψ′ ∝ ψ, therefore

γψ(x′, y′) =

¨
L

ψ(x, y)K(x, y, x′, y′)d2x (13.29)

This is what’s known as an integral equation with eigenvalue γ and kernel K. With simple comparison,
we have that

K(x, y, x′, y′) = − ik

4πr
eikr(1 + cos θ)

Noting that γ ∈ C, for each mode ψn, we will have an associated phase shift of arg (γn).

Since the irradiation of a mode can be evaluated as ‖ψn‖2, we can write the general diffraction energy
loss formula

δD =
In − Iloss

In
= 1− ‖γn‖2 (13.30)

Going back to the definition of the kernel, by comparison we can also find the Fraunhofer diffraction
kernel as

KF (x, y, x
′, y′) = Ce−ik(xx

′+yy′) (13.31)

This is as usual, the kernel of a 2D Fourier transform. If we evaluate the integrals, in the most general
case we will get a composition of Hermite polynomials and a Gaussian. The generic state will then be
defined as

|TEM〉npq = Hp

(√
2x

w

)
Hq

(√
2y

w
e−

x2+y2

w

)
(13.32)

Where w is a weight, p, q are the transverse mode numbers and n is the longitudinal mode number.
Generally, resonators are made by the following typologies of mirrors:

• Plane parallel mirrors
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• Plane concave mirrors

• Confocal mirrors

The most common are the latter. Confocal resonators are the by far the easier to collimate, needing
only 0.25 degrees of precision, while the others need a collimation precision of around 1 arcsec.
The diffractive loss of the system is evaluated in terms of the Fresnel number NF , defined in terms of
mirror curvature r and separation d as follows

NF =
r2

λd
(13.33)

A resonator is said to be stable only if NF > 1, which means that after one reflection the beam stays
collimated with the optic axis of the mirrors.
Note that the diffractive losses are negligible in a confocal resonator when NF > 1, making this
configuration the most efficient of the three.

§§§ 13.3.2.1 Spot Size

Let’s go back a bit and check the weight parameter w we introduced before when talking about
transverse modes.
We have that the e-folding distance of the radiation is exactly

√
x2 + y2 = w, therefore√

x2 + y2 = r =⇒ I = e−2

The parameter w is then known as the spot size of the mode |TEM〉0,0, which is the dominant
oscillation mode. In general, it depends on the longitudinal distance from the midpoint z and the
wavelength λ as follows

w2(z) = w2
0 +

(
λz

πw0

)2

(13.34)

Here, w0 is a parameter indicating the spot size at the center, and it depends on the distance of the
two mirrors and their curvature R

w2
0 =

λ

π

√
d

2

(
R− d

2

)
(13.35)

Also, we can define the radius of curvature of the wave in terms of the parameters of the resonator

rc = z +
d

4z
(2R− d) (13.36)

With these formulas, for a confocal resonator, where R = d, we have
w0l =

√
λd

2π

w =

√
λd

π

(13.37)

In this special configuration we have that, at the mirrors rc = R and w has its maximum, and at the
center rc = 0 and w reaches its minimum. Clearly, if we substitute symmetric wavefronts with mirrors
with rc = R we get again a confocal resonator.
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§ 13.4 Laser Typologies

§§ 13.4.1 Gas Lasers

In gas lasers, the optical cavity is created by two external mirrors, coated by multilayer films needed for
getting high reflectivity R at the desired λ. These mirrors are in confocal configuration.
The gas chamber is fitted with two Brewster windows for obtaining the maximum transparency for
highly p-polarized light. The external excitation can be provided by

• AC/DC electrodes

• Electrodeless HF discharges

• High voltage pulses

The simplest and most efficient way is through electrodes, with AC being the simplest, and DC the
most advantageous for continuous lasers

§§§ 13.4.1.1 He-Ne Lasers

In He-Ne lasers, in order to get the laser transition, helium atoms are excited via electron collisions. The
populations of the

∣∣3S〉 , ∣∣1S〉 states then build up thanks to dipole selection rules, and, we have also
that

EHe
1S = ENe

3s

EHe
1S = ENe

2s

Giving a high probability of energy transfer. Since also ENe
3s > ENe

3p and ENe
2s > ENe

2p with a sufficient
buildup of population, an inversion is possible.
The optimal pressure for obtaining the laser transition is p ≈ 1 atm, with a concentration ratio of helium
and neon is of 7 moles of helium per mole of neon.
The laser transitions are 

|3s〉 → |2p〉 λ u 632.8 mm

|3s〉 → |3p〉 λ u 339 µm

|2s〉 → |2p〉 λ u 1.1523 µm

(13.38)

The first one is the prevalent transition, and emits photons in red, while the other two emit IR photons.

§§§ 13.4.1.2 Other Gas Lasers

Electric discharges in pure gases and mixtures produce laser transitions at wavelengths between the far
infrared and the ultraviolet parts of the spectrum.
All noble gases exhibit laser behavior, zinc, cadmium, mercury, lead and other metals exhibit laser
behavior with pulsed discharges, together with the halogens.
It’s also possible to build gaseous molecular lasers with N2.
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§§ 13.4.2 Optically Pumped Solid State Lasers

In solid state lasers, the optically active atoms are embedded in crystals or glasses. The solid is usually
made as a cylindrical rod, polished and coated in order to behave like a resonator, or either provided
with external mirrors.
The pumping is achieved with external light sources like high intensity lamps.

§§§ 13.4.2.1 Ruby Lasers

In ruby lasers specifically, the rod is made of synthetic sapphire doped with 0.05% dichromium trioxide.
Here the chromium substitutes the aluminum in the lattice.
During pumping the chromium excites from the ground state A4 to the states 3T1 and

4T2 which decay
via rapid radiationless transition RRLT to the excited level 2E from which a population inversion can
happen with λ = 6934 Å.

§§ 13.4.3 Dye Lasers

Stimulated emission in liquids was first observed in 1966 at IBM labs using dye solutions pumped with
a ruby laser first, and then with a fast flash lamp.
The organic compounds that were used are fluorescine and rhodamine, and the population inversion
was obtained exciting the molecules to the fluorescence states. Due to the broad band of possible
states, the frequency of dye lasers can be tuned with prisms, gratings and interferometers placed inside
the cavity, permitting the construction of lasers at various frequencies.

§§ 13.4.4 Semiconductor Diode Lasers

The most compact laser possible is the diode laser, also known by the name of injection laser.
In the simplest configuration possible, the diode laser is composed by a P-N junction provided by a
doped crystal like gallium arsenide. When a forward bias is applied to the diode, electrons are injected
into the P side of the junction, and holes are formed in the N section.
The electron-hole interaction results in recombination radiation. This radiation, if the current is high
enough, can produce a population inversion in the system. The laser action is then produced at the
junction boundary. The action layer is quite small (d ∼ 1 µm), and the gallium arsenide crystals behave
as partially reflective mirrors, creating a resonator cavity.
The emitted wavelength is between 830 and 850 nm

§ 13.5 Q-Switching and Mode Locking

In high power pumped lasers, the laser action begins when the population inversion transition density
reaches the threshold where the gain exceeds the loss in the amplifying medium.
The inverse of the loss per cycle is known as the resonant Q of the cavity, hence by definition, a higher
Q implies a lower density of population inversions.
It’s possible to delay laser oscillations via Q switching in the cavity, using shutters known as Q switches.
The Q switch is closed at the beginning of the pump cycle when the population inversion density is
lower, and opened again when it’s at the maximum.
Q switches can be created using the rotation of the mirrors around an axis perpendicular to the optical
axis, electro-optic shutters created with Pockel cells and using saturable absorbents, dyes which become
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transparent when strongly irradiated, creating a passive Q switch.
With Q switching it’s possible to create gigawatt and terawatt laser pulses, which can then be used for
high energy projects, such as laser fusion.
Another method of laser manipulation is mode locking. Given a nonlinear absorbent like a bleachable
dye, placed inside the resonator cavity, it’s possible to modify the laser output to short regular pulses.
The time interval between pulses is a whole fraction of the cycle time, where for each pulse the radiation
is bunched up into narrow packets that bounce back and forth in the cavity.
A Fourier analysis shows that the spectrum consists of discrete frequencies separated by exactly the
pulse frequency.
In a round trip, the travel time is

τ = 2
d

u
= 2

nd

c

With d the mirror spacing. The frequency is then separated by

νB =
1

τ
=

u

2d
=

c

2nd

Here, the resulting modes are coherent, and the laser is said to be mode or phase locked. The pulse
line width is Γ ∝ ∆ν−1, and the total bandwidth is occupied by coherent modes. For N modes, we
have that the pulse width is 1

N the pulse interval, creating very short multimode pulses.
In gas lasers these mode locked pulses are limited to a few ns pulses, whereas it’s possible to have 3
ps pulses in dye or neodymium-glass lasers. These short pulses are thick around 1 mm, and can be
considered as energy sheets traveling at the speed of light.
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14 Geometric Optics

§ 14.1 Reflection and Refraction at a Spherical Surface

§§ 14.1.1 Mirrors

Virtually, every surface of an optical instrument can be bunched up in two categories

• Plane surfaces

• Curved surfaces

The path taken by light when interacting can be conveniently treated using ray theory, or geometric
optics.
Consider two main cases now:

1. Reflection by a spherical surface

2. Refraction through a spherical surface separating 2 different mediums

Consider in both cases the origin of the ray as a point source P . Said O the intercept of the line that
connects the mirror to the source and called Q the point where the beam intercepts the line OP as in
figure.

Figure 14.1: The two configurations described above

Call the distance OP = s the object distance, OQ = s′ the image distance and the radius of
curvature OC = r. We will have for the case of the spherical mirror that

PC = s− r =⇒ sin θ

s− r
=

sin θ1
r

191
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And

CQ = r − s′ =⇒ sin θ′

r − s′
=

sin θ2
r

Since we must have θ = θ′, we get the law of reflection for spherical mirrors

r − s′

s− r
=

sin θ1
sin θ2

(14.1)

Analogously for the refracting surface we have

r sin θ = (r + s) sin θ1 r sinφ = (s′ − r) sin θ2

Applying n1 sin θ = n2 sinφ we get
sin θ1
sin θ2

=
n2
n1

s′ − r

r + s
(14.2)

Where n = n2

n1
.

Note how a bundle of rays originating from an axial point doesn’t have the same focus. In fact the
focus is function of θ1. This characteristic is typical of spherical optical surfaces and leads to what’s
known as spherical aberration.
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§§§ 14.1.1.1 General Mirror Equation and Focal Length

Consider now the case of the source point placed at a height h from the optical axis of the mirror.
The image at the pointQwill then be at a height h′ from the same axis at the pointQ as in the next figure.

Figure 14.2: Source offset by h, spherical mirror

From the previous figure, we can see two triangles which we can use for finding the relationship
between the position of the source and the position of the image. Precisely we choose the triangles
PP ′C, PP ′O and the triangles CQQ′, QQ′O. Since PP ′ = h, QQ′ = h′, OP ′ = s, OQ′ = s′,
P ′C = s− r, Q′C = r − s′ we can say without doubts that

tan θ =
h

s

tan θ′ =
h′

s′

tanϕ =
h

s− r

tanϕ′ =
h′

r − s′

(14.3)
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Since it’s also true that {
tan(θ) = − tan(θ′)

tan(ϕ) = − tan(ϕ′)

We get that 
h

s
= −h

′

s′
=⇒ h

h′
= − s

s′

h

s− r
= − h′

r − s′
=⇒ h

h′
= − s− r

r − s′

Using the previous equalities we get

s

s′
=

s− r

r − s′
=⇒ r − s′

s′
=
s− r

r
= 1− r

s

Fixing the relationship with algebra we get finally

r

s
+
r

s′
= 2 =⇒ 1

s
+

1

s′
=

2

r
(14.4)

This equation is exact, and is commonly known as the general mirror equation. The chosen signs are
merely a convention.
We define the focus f of a mirror the convergence point of rays coming from a source placed at infinity.
Imposing s = ∞ we then have

1

s′
=

2

r
=

1

f
(14.5)

In general, in geometric optics, for calculating the path of the rays in the method of ray tracing of the
first order, the so called paraxial approximation is employed. In this approximation, the source is far
enough to consider the approximation θ ≈ sin θ ≈ tan θ. In this approximation, the general mirror
equation (14.4), with the definition of focal distance becomes

1

s
+

1

s′
=

1

f
(14.6)

For a spherical mirror, the focus is at the half radius point, as we have proven now in paraxial approxi-
mation.
With the previous formula, it’s also possible to evaluate the magnification and orientation of the
reflected image.

M =
h′

h
(14.7)

Notice the sign here: ifM > 0 both h, h′ share the same sign and therefore the image is not flipped.
Another convention is given to the mirror radii. If the mirror is convex, as we defined before r < 0 and
the reflected image is called real, while it’s called virtual in the remaining case.
It’s possible to redefine the magnification starting from the previous parameters and using the general
mirror equation, getting

M = −f − s′

f



14.2. LENSES 195

Which, after inserting the general formula becomes

M = −s
′

s
(14.8)

In the second case of transmission through a convex lens, the solution is completely analogous, giving
us the following mirror equation

n1
s

+
n2
s′

=
n2 − n1

r
(14.9)

A thing which is not really clear from the previous evaluations, is that in general s′ ∈ R, therefore there
might be configurations where s′ < 0 or also that f < 0. In general, the convention used is that r > 0
when the mirror is concave with respect to the source, and vice versa. Note how having a negative
image distance in this framework simply means that the rays diverge.

§ 14.2 Lenses

§§ 14.2.1 Thin Lenses

Consider a simple lens with radii r1, r2 and negligible thickness d. If the lens is immersed in air (n1 = 1)
and made of glass (ng), with the help of the previous equations that when the ray passes through the
first and second curved surfaces we have that

1

s1
+

1

s′1
=
ng − 1

r1
1

s2
+

1

s′2
=

1− ng
r2

(14.10)

For the full lens the straightforward result is then

1

s
+

1

s′
= (ng − 1)

(
1

r1
− 1

r2

)
=

1

f
(14.11)

The last formula is valid only in paraxial approximation, and it’s known commonly as the Lensmaker
formula.
With the derivation that we used it’s clear that with multiple lenses in contact, the total focal distance
can be calculated via inverse addition. Therefore, called fe the effective focal lens of an optical system,
we can say

1

fe
=

N∑
i=1

1

fi
(14.12)

Note that if we introduce a separation l between two lenses, the equation should be modified
accordingly, as follows

1

fe
=

1

f1
+

1

f2
+

l

f1f2
(14.13)
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§§ 14.2.2 Thick Lenses

Consider now the case of lenses which have a non-negligible thickness d. Here, the object and image
distance are measured from the position of two principal planes placed at distances

d1 = fd

(
1− n

r2

)
d2 = fd

(
1− n

r1

) (14.14)

The focal length of the lens is evaluated from the following equation

1

f
= (n− 1)

[
1

r1
+

1

r2
− d

(n− 1)2

nr1r2

]
(14.15)

§§ 14.2.3 Chromatic and Spherical Aberration

Due to the presence of dispersion all previous formulas are color dependent. This kind of aberration is
known as chromatic aberration and can be corrected by using multiple lenses with different dispersion
relations, such combination is known as an achromatic combination and is obtained if and only if

δ1 =
1

n1 − 1

dn1
dλ

1

n2 − 1

dn2
dλ

f1 = f

(
1− δ1

δ2

)
f2 = f

(
1− δ2

δ1

) (14.16)

Note that the process of achromatization of a lens is possible only in a finite interval of wavelengths.
One other typical aberration for lenses is the spherical aberration. Here, we have that the focal distance
also varies with the height of the rays with respect to the optical axis of the lens. Considering a paraxial
ray hitting the lens at a height h from the optical axis, the variation of focal length ∆f is

∆f =
1

2
h2f2

n− 1

n2

[
1

r31
+

(
1

f
+

1

r2

)(
n+ 1

f
+

1

r2

)]
=

1

2
Kh2 (14.17)

It’s also possible to find that the minimum possible variation is

∆fmin for
r1
r2

=
n+ 4− 2n2

n+ 2n2
(14.18)

§ 14.3 Ray Equations

Considep a set of paraxial rays traveling in the general direction of the optical axis of an object, which we
will indicate with z. The position and direction of any ray can be determined with only two parameters

1. The distance from the optical axis ρ
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2. The angle between the ray and the optical axis θ

In the particular case of a free traveling ray, starting from a position z1 to a position z1 + d, if at z1 the
ray is described by the parameters (ρ1, θ1), then, remembering that sin θ ≈ tan θ ≈ θ(

ρ2
θ2

)
=

(
ρ1 + θ1d

θ1

)
(14.19)

If the ray passes through two different dielectrics, then at the boundary(
ρ2
θ2

)
=

(
ρ1
n1

n2
θ1

)
(14.20)

While, if the boundary is curved with curvature R(
ρ2
θ2

)
=

(
ρ1

n1

n2
θ1 − ρ1

r

(
1− n1

n2

))
(14.21)

Note that for lenses and curved mirrors, using the general mirror equation, it reduces to the simpler
equation (

ρ2
θ2

)
=

(
ρ1

θ1 − ρ1
f

)
(14.22)

These vectors should not be confused with Jones vectors, but as for those, every interaction can be
evaluated with 2 × 2 matrices known as ray matrices. In general, we can define the following ray
matrices for the previous interactions (

1 d
0 1

)
free travel(

1 0
0 n1

n2

)
plane dielectric(

1 0
1
R

(
n1

n2
− 1
)

n1

n2

)
curved dielectric(

1 0
− 1
f 1

)
thin lens / mirror

(14.23)

Note that, as usual, if the system is composed by multiple smaller elements, like in the case of two
lenses with focal lengths f1, f2, the total ray matrix of the system is(

a b
c d

)
=

(
1 0

− 1
f1

1

)(
1 0

− 1
f2

1

)
=

(
1 0

− 1
f1

− 1
f2

1

)
=

(
1 0

− 1
fe

1

)
Note how we gained again the result we found before

§§ 14.3.1 Periodic Lenses and Resonators

Ray matrices are fundamental in the study of multiple lens systems and resonators. We’ll begin
considering a system of two lenses with equal focal length f , uniformly distant d between one another.
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Considering the refraction of one lens and the subsequent free travel, we have that at the surface of
the second lens the ray will be(

ρ2
θ2

)
=

(
1 0
− 1
f 1

)(
1 d
0 1

)(
ρ1
θ1

)
=

(
1 d
− 1
f 1− d

f

)(
ρ1
θ1

)
(14.24)

Now consider a resonator, where the ray will pass multiple times through the system. One question we
might ask is: is there a ray which is invariant for the system described?
The answer is yes, and it can be determined via the usage of the spectral theorem. The secular equation
for the last matrix is

det

(
1− λ d
− 1
f 1− d

f − λ

)
= (1− λ)

(
1− d

f
− λ

)
= λ2 + λ

(
2− λ

f

)
+ 1 = 0 (14.25)

Said α = 1− d
2f we have that the equation simplifies notably, and gives the following result

λ1,2 =

{
−α±

√
α2 − 1 |α| > 1

−α± i
√
1− α2 = e±iφ |α| < 1

(14.26)

Note that α ∈ R by definition, and therefore λ ∈ C. For a general eigenray of the system, after N
lenses, we have that (

ρN
θN

)
= λN

(
ρ1
θ1

)
(14.27)

This system is the exact idea of system that we have in lasers. The idea of ray stability is then clearly the
need to have the beam as close as possible to the optical axis after N passages. We thus prefer the
case where |α| ≤ 1, such that λN = e±iNφ. This result is then

0 ≤ 1− d

2f
≤ 1 =⇒

{
0 ≤ d ≤ 4f lenses

0 ≤ d ≤ 2r mirrors
(14.28)

Note that we always need that f ≥ 0, therefore we are stuck to using converging or flat lenses or
mirrors.
In the confocal configuration of the resonator, as for laser chambers, we need to have the focuses of
the lenses/mirrors to coincide, i.e. d = 2f = R, and the stability criterion is satisfied.
If the two lenses are different, then we will define two values of α, as

α1 = 1− s

2f1
α2 = 1− d

2f2

And the stability condition becomes
0 < α1α2 < 1 (14.29)
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15 Direct Current Circuits

§ 15.1 Basic Components and Laws

§§ 15.1.1 Resistors, Capacitors and Inductors

An electric circuit is an interconnection of components in a closed loop of conductors, where current
flows.
The simplest possible circuit is composed by a simple dcvsource in a closed loop of cables. Circuits are
described graphically via technical diagram as the following one for a simple dcvsource in a closed loop

Figure 15.1: Simple closed loop dcvsource

Other components which we will treat in this chapter are resistors R, capacitors C and inductors
(aka coils) L. They are described by the following drawings

R C L

Figure 15.2: From right to left: a resistance, a capacitor and an inductor

These components can be inserted in circuits in various ways, creating different effects which will

201
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be studied using the basic laws that we can obtain from classical electromagnetism

§§ 15.1.2 Ohm’s Law

Ohm’s law is one of the basic laws of circuit analysis. The derivation is simple enough, and has already
been treated before, but just as a refresher it will be re-derived here and then rewritten in more familiar
terms.
A metal can be summarized in electromagnetism as a sea of free electrons roaming freely on its surface,
moving at speed v. These electrons will collide with each other, and the average distance of free travel
before a collision (aka mean free path) is defined as follows

λ = τv

Where the quantity τ has dimensions of time, and is known as the relaxation time of the metal.
Using Coulomb’s force law together with Newton’s second law we get that the acceleration a is

a = − e

m
E

And therefore, the average velocity is

〈v〉 = aτ = −eτ
m
E

Also, by definition we have that the total current density is −Nev, i.e.

J =
Ne2τ

m
E

Which gives us the static version of Ohm’s law

J = σE, σ =
Ne2τ

m
(15.1)

With σ being the conductivity of the metal.
For an homogeneous linear metallic cable with section S we can say without much doubt that the
conductivity σ doesn’t depend on the electric field, and with a simple calculation, we can say that, if
the cable is long l

V =

ˆ
l

E · t̂dl = El, I =

¨
S

J · n̂d2s = JS

Substituting we get

I =
σS

l
V

Definition 15.1.1 (Resistance). We define the resistance R of a conductor the amount of resistivity per
surface times its length, i.e.

R =
l

σS
=
ρ

S
l

The resistance is measured in ohms Ω
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The previous definition gives us the well known Ohm’s law for circuit analysis

V = RI (15.2)

The electronic component which is tied to this quantity is the resistor. Resistors with a resistance values
comprised between 0.01 Ω and 1012 Ω can be found commercially, with power ratings between 1/8 W
and 250 W with a precision in between 0.005% and 20%.
The cheapest resistors are made using a carbon mix, and they guarantee a resistance ±5% from the
nominal value.
Note that in real world applications, external factors can influence the resistance of components and
circuits, changing the final, actual, resistance value. Here’s a short list:

• Welding induces a permanent change in resistance values of around 2% of the nominal value

• Vibrations (2G) and shocks (100G) induce permanent changes of around 2% of the nominal value

• Humidity (95% at 40 degrees C) induce a temporary change of the value between 6 and 10%

• Temperature changes from:

– 25 to -15 degrees C change real resistance values from 2.5% deviation to 4.5% deviation

– 25 to 85 degrees C induce changes between 3.3% to 5.9%

Other defects in resistors which change the resistance value are parasitic inductances at high frequencies,
noise at low frequencies and defects in the mix.
A higher priced but more precise kind of resistors are metallic film resistors, which guarantee tolerances
of around 1% and oscillations around the nominal value of less than 0.1%.

§§ 15.1.3 Ideal Generators

An ideal generator is an object which provides a voltage V or a current I to the circuit. Ideal generators
are generators for which their resistance is zero.
There are two types of generator, as it was hinted before: voltage and current generators.
A voltage generator is an energy source which keeps the voltage V constant between its poles,
independently from the load.
A current generator is slightly more complex. It varies the voltage between its poles in order to keep
the current I constant. Diagrams for both generators follow

V

R

Figure 15.3: Ideal voltage generator connected to a resistance
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I

R

Figure 15.4: Ideal current generator connected to a resistance

§ 15.2 Simple Circuits

We are now ready to attack the first and simplest examples of circuits in the realm of circuit analysis.
The simplest possible circuit is one composed from resistances connected in series to an ideal generator.
Consider this simple circuit

V

I

R1R2R3

Figure 15.5: Simple circuit composed by an ideal voltage generator connected in series to three resistors
R1, R2, R3

We have using Ohm’s law that the voltage drop at each resistor is exactly

Vi = RiI

And since the voltage at each side of the generator is equal to V , we must have

V =
∑
i

Vi = I
∑
i

Ri = Rs

The value Rs is the total resistance of the circuit and it’s therefore known as the equivalent resistance
of the circuit, for a series of resistors.
We now see the same problem, but for a circuit composed by a voltage generator and three resistances
connected in parallel, as in the following scheme
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V R1 R2 R3

I I1 I2 I3

Figure 15.6: Circuit with three resistors connected in parallel to a voltage source

From Ohm’s law we deduce that the voltage must be the same and equal to V for each resistor,
thus, using again Ohm’s law we can find the unknown current drops on each resistor. We have

Ii =
V

Ri

And, since the total current is I and must remain constant, we get

I =
∑
i

Ii = V
∑
i

1

Ri

We define the equivalent resistance for parallel resistors then as follows

1

Rp
=
∑
i

1

Ri
=

(
1

R1
+

1

R2
+

1

R3

)
=
R1 +R2 +R3

R1R2R3

Thus, finally

V = RpI =
R1R2R3

R1 +R2 +R3
I (15.3)

We consider now a more complicate case of a circuit with resistors connected both in parallel and in
series, like the one in the next figure

V

I

R1

R3

I3

R4

I4

I5

R5

I6

R6

R2

Figure 15.7: Complex circuit with multiple resistors connected both in parallel and in series

This circuit is also known as a network, and in order to simplify it we use the formulas we defined
before.
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• The current passing through the resistor R1 and R2 must be the same

• The voltage between R5 and R6 is the same

We define then the two following equivalent resistance, reducing the problem

Rs1 = R1 +R2
1

Rp1
=

1

R5
+

1

R6

The reduced intermediate circuit is then

V

Rs1

R3

R4

Rp1

Figure 15.8: The previous circuit after the first iteration of simplification

We proceed the analysis by simplifying further this circuit, noting that

• Rp1 and R4 are connected in series

• The series between R4 and Rp1 is connected in parallel to R3

Thus

Rs2 = R4 +Rp1 = R4 +
R5R6

R5 +R6

And, therefore

Rp2 =

(
1

Rs2
+

1

R3

)−1

=
Rs2R3

Rs2 +R3
= R3

R4 +
R5R6

R5+R6

R3 +R4 +
R5R6

R5+R6

The circuit now can then be simplified to this one

V

Rs1 Rp2

Figure 15.9: Second iteration of the simplification of the circuit



15.2. SIMPLE CIRCUITS 207

Finally, the total resistance RT is simply the series sum of the previous two, giving the following
result

RT = Rs1 +Rp2 = R1 +R2 +R3

R4 +
R5R6

R5+R6

R3 +R4 +
R5R6

R5+R6

This is the total or equivalent resistance of the circuit, i.e. if we reconstruct the circuit as only the
generator and a single resistance with value RT , we will get a completely equivalent circuit.

§§ 15.2.1 Kirchhoff Laws

The previous considerations work almost every time, but they tend to end up in tedious and long
calculations. Here the geometry and topology of the circuit come in handy. We give two main
definitions

Definition 15.2.1 (Node). A circuit node is a point in which multiple conductors converge

Definition 15.2.2 (Mesh). A mesh is a closed path starting and ending in one single node

With the previous two definitions, every circuit, independently from its complexity, can be considered
as the union of multiple nodes and meshes. Two theorems come in help for our calculations

Theorem 15.1 (First Kirchhoff Law). The sum of currents entering and exiting each node is zero, in
formulas, for a node k, we have if we indicate positive currents the one entering the node and with
negative currents the ones exiting the node, we have∑

i

I
(k)
i = 0 (15.4)

Consider the following part of a random circuit

I0

I1 I3k

Here, from Kirchhoff’s first law, we get that

I0 + I3 − I1 = 0

Theorem 15.2 (Second Kirchhoff Law). The sum of voltages in every mesh is equal to zero. This is the
direct consequence of Ohm’s law applied to the first theorem. Consider the following simple circuit:
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V

I

V1

From Ohm’s law we have that V1 = RIi, thus∑
Vi = 0

Consider now a real example, like the following circuit

R1

V1

I1 I3

R3

A

R1

V2

I2

Figure 15.10: A slightly more complex circuit with multiple voltage sources

This circuit is quite complex to solve with only Ohm’s law, but it’s directly solvable using Kirchhoff
laws. Firstly we choose what’s the “positive“ direction of current, which we choose it as the clockwise
direction.
On the mesh on the left we must have, using the second Kirchhoff law

V1 − V2 = R1I1 −R2I2

And at the node A, we have
I1 + I2 − I3 = 0

At the second mesh on the right, instead we have

V2 = I2R2 + I3R3

We now have a system we can solve, which is the following
V1 − V2 = R1I1 −R2I2

I1 + I2 − I3 = 0

V2 = I2R2 + I3R3
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Solving the second equation for I3 and inserting it in the first equation we have{
V2 = I2R2 + (I1 + I2)R3 = (R3 +R2) I2 +R3I1V1 − V2 = R1I1 −R2I2

Substituting the first equation into the second one we get then

V1 − V2 = R1I1 −
R2

R2 +R3
(V2 − I1R3)

After some juggling and rearrangement we can get to the final result, which we will omit

§ 15.3 Special Configurations

§§ 15.3.1 Voltage Dividers

Consider the following circuit, known as a voltage divider

V

I

R1

R2

A

B

VAB

Figure 15.11: A voltage divider with a variable resistor R2

In this circuit we want to know the voltage at the ends of R2, i.e. VAB . We can calculate it in two
ways. Using Ohm’s law we must have

V = V1 + V2 = R1I +R2I

Thus

I =
V

R1 +R2
=⇒ VAB = R2I2 =

R2

R1 +R2
V

Or using Kirchhoff’s laws, we have {
I1 − I2 = 0

V = I1R1 + I2R2

Solving we get the exact previous result.
Note how with the previous result, the value of VAB is deeply tied to the value of the resistance R2,
thus we can reduce the outgoing voltage by changing the resistor. Note that VAB is 50% V only when
r1 = R2
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§§ 15.3.2 Wheatstone Bridge

A particular case of the voltage divider is known as the Wheatstone bridge

R0

V

I A

R
3

D

R 4

B

R

R
1 R 2

C

Figure 15.12: Diagram of a Wheatstone bridge

The idea of this circuit is to regulate the current flow between the nodes B and D. The shape of
the circuit makes it seem more complex than it actually is, but it’s possible to redraw it as two voltages
dividers as follows

R0

V

I A A

R4

R

D

R3

R2

C

R1

B

C

Figure 15.13: Redrawing of the Wheatstone bridge as two voltage dividers connected in parallel

The final objective of this bridge is to balance resistances in a way such that IBD = 0. From the
previous diagram, where the circuit has been redrawn as a voltage dividers gives us the answer to this
problem, without making systems using Kirchhoff’s law.
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We have 

VBC = R1I1 =
R1

R1 +R4
V

VDC = R2I2 =
R2

R2 +R3
V

IBD =
VBD
R

VBD = VBC − VDC

Thus

IBD =
V

R

(
R1

R1 +R4
− R2

R2 +R3

)
Solving for IBD = 0 we have

R1R3 = R2R4 (15.5)

When this condition is satisfied, the bridge is said to be balanced.
The Wheatstone bridge can be used to measure the resistance value of a resistor using a variable resistor
(R(x)) and three equal resistances on the bridge, the setup is described with the following diagram

R0

V

I A

R

D

R

B

R5

R
(x)

R

C

Figure 15.14: Diagram of a Wheatstone bridge in a setup which we can use for evaluating the resistance
value

We have to make sure that the resistance R5 >> R in order to be sure that there is basically no
current flowing through the poles B,D, so that

VBD(x) = V

(
R(x)

R(x) +R
− 1

2

)
≈ V

4R
(R(x)−R)

Wewill easily find the resistance value by variatingR(x) untilR(x0) = R and thus the bridge is balanced
and VBD = 0. Clearly this evaluation is really sensible, and permits a very precise evaluation of the
value of the unknown resistance R

§§ 15.3.3 Superposition Principle of Circuits

Another very useful principle for evaluating circuits is the superposition principle. It states simply that
for circuits with more than one source, the total current flow I is equal to the sum of the currents of
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the circuits with only one source. This is a direct derivation from the Kirchhoff theorems. Take as an
example the circuit (15.10), it can be divided in these two circuits

R1

V1

R2 R3 R1

R2

V2

R3

Figure 15.15: The two circuits which summed give back the circuit (15.10)

If we call the current passing through R3 I3, we must have

I3 = I3a + I3b

Calling the first circuit a and the second b, we can use Kirchhoff to find
V2 = V3 I2R2 = I3aR3

I1 =
V1
Req

I1 − I2 − I3a = 0

The equivalent resistance Req is simply the one obtained by R2, R3 connected in parallel and the resistor
R1 connected in series to the two parallel resistors, thus

Req,a = R1 +
R2R3

R2 +R3

Noting that the second circuit is equal to the first but R1 is switched to R2 we have

Req,b = R2 +
R1R3

R1 +R3

Solving for I3 for either of the two gives

I3a =
R2

R3
I2

I1 =
V1
Req,a

V1
Req,a

=

(
1 +

R2

R3

)
I2

I3a =
R2V1

R2 +R3

1

R1 +
R2R3

R2+R3
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And therefore, with the previous trick, we have

I3 = I3a + I3b =
R2V1

R2 +R3

R2 +R3

R1 (R2 +R3) +R3R2
+

R1V2
R2 +R3

R1 +R3

R2 (R1 +R3) +R1R3

§ 15.4 Thevenin and Norton Theorems

§§ 15.4.1 Thevenin Theorem

All previous considerations can be synthesized into two theorems that can be used to reduce complex
resistor-source networks to simple single source - single resistor circuits. The first theorem is the
Thevenin theorem

Theorem 15.3 (Thevenin theorem). Given an electrical network containing only voltage sources, cur-
rent sources and resistors can be replaced at its terminals by an equivalent ideal voltage source VTh
connected in series to a resistance RTh.

• The equivalent voltage VTh is the voltage between the short circuited terminals

• The equivalent resistance RTh is obtained evaluating the equivalent resistance when

– All ideal voltage sources are substituted by a short circuit (cable)

– All ideal current sources are replaced by an open circuit

• The current flowing between the two chosen terminals will be simply calculated by using Ohm’s
law

Let’s take as an example this circuit with two sources and evaluate the Thevenin equivalent circuit
at the terminals A,B

V1 V2

R3 VTh

R1 R2

R3 RThR1 R2

Figure 15.16: Example circuit, on the right with two voltage sources (for finding VTh) and on the right
with the two sources shorted in order to find RTh

The solution is trivial and has already been discussed, thus we gloss over to the general application
of the theorem. Consider an unknown network with two open dipoles, thanks to this theorem we can
always say that its behavior at the dipoles can always be approximated to a single voltage source VTh
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connected in series with a resistor RTh, and defined the impedance G = R−1 we can use Kirchhoff for
finding 

ITh =
∑
i

GiVi −GV =
VTh
RTh

VTh =
∑
i

Gi
G
Vi −

ITh
G

(15.6)

§§§ 15.4.1.1 Voltage Divider with Thevenin

We can see the power of this theorem directly by re-evaluating the voltage divider in the following
configuration

V1

R1

R

IR

R2

C

B

Figure 15.17: Voltage divider with a connected resistor R

We want to find IR. How do we proceed?
We begin by shorting V1 and opening the circuit at the connection with R, thus obtaining the following
circuit

I

R1IR1

VThR2IR2

B

C

Figure 15.18: First application of the Thevenin theorem to the previous circuit
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We have

I =
V1

R1 +R2
=⇒ VBC = IR2 =

R2

R1 +R2
V1 = VTh

From the same circuit, we have

RTh =

(
1

R1
+

1

R2

)−1

=
R1R2

R1 +R2

Thus, having found the Thevenin equivalent voltage and the Thevenin equivalent resistance that

IR =
VTh

R+RTh
=

R2V1
RR1 +RR2 +R1R2

§§§ 15.4.1.2 Wheatstone Bridge with Thevenin

Another good example for showing the power of the Thevenin theorem is solving the Wheatstone
bridge using it. The circuit we are looking at is the following

R 4

VTh

R
3

R
1 R 2

Figure 15.19: Thevenin theorem application to the Wheatstone bridge

As before, this circuit if divided in two is simply two voltage dividers, where

Vth,1 =
R1V

R1 +R4

Vth,2 =
R2V

R2 +R3

Rth,1 =
R3R1

R1 +R3

Rth,2 =
R4R2

R2 +R4

Considering the current flow we have

VTh = Vth,2 − Vth,1 = V

(
R1

R1 +R4
− R2

R2 +R3

)
Solving for RTh we have

RTh = Rth,1 +Rth,2 =
R3R1

R1 +R3
+

R4R2

R2 +R4
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Which implies

ITh =
VTh

R+RTh
=⇒ VTh 6= 0 ⇐⇒ R1R3 6= R2R4

Which is the usual condition for having a non-balanced Wheatstone bridge.

§§ 15.4.2 Norton Theorem

The second theorem which lets us simplify circuits into simple ideal source-resistor networks is the
Norton theorem, which states

Theorem 15.4 (Norton). Every linear circuit containing only resistors and sources can be simplified to
a single circuit composed by a single current source connected in parallel to an equivalent resistance
RNo.
If we consider a random circuit with two open poles we have that

• INo is the current obtained by shorting the poles

• RNo is the equivalent resistance obtained by shorting voltage sources and opening current sources

As stated this theorem is directly dual to the Thevenin theorem, noting that, if we consider the
following diagram

INo

INo

R

IR

RNo

IRNo

Figure 15.20: Norton equivalent circuit with a load R

We have then 
IRNo

RNo = RIR =⇒ IRNo
=

R

RNo
IR

INo = IRNo
+ IR =

(
R

RNo
+ 1

)
IR

But
VTh = INoRNo = (R+RNo) IR

Therefore

IR =
VTh

R+RNo
This finally implies 

RTh = RNo

VTh = INoRNo

INo =
VTh
RTh

(15.7)
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§ 15.5 Real Generators

A real generator is a current or voltage source with two poles, one positive and one negative, and
can be described, in the case of a voltage generator, using the Thevenin theorem as in the following
diagram

V

ρ

V

+

−

Figure 15.21: Real voltage generator, here Rth = ρ and V = Vth

The equivalent Thevenin resistance is known as the internal resistance. A particularity of real voltage
generator is that, if we connect a load R to the two poles we have

∂V

∂I
6= 0

For Thevenin, also 
I =

V

R+ ρ

VR = RI =
R

R+ ρ
V

For a current generator instead we have the same setup we’d get from Norton’s theorem
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I ρ V

+

−

Figure 15.22: Real current generator, here RNo = ρ and I = INo

Both generators can be approximated to ideal generators when ρ << R, withR being the resistance
of the connected load

§§ 15.5.1 Joule Effect

The main effect of real generators is Joule effect. Considering a simple battery, there’s a energy
conversion from chemical energy to electric energy, and part of it gets dissipated both in the internal
resistance of the source and of the load as thermal energy.
The work done by the source is

dW = V dQ = V Idt

Where we used dQ = Idt
The power P is by definition the time derivative of work, thus

P =
dW

dt
= V I (15.8)

Thanks to this definition, we can define the power dissipated in the load R as

PR = VRIR

Where 
VR =

R

R+ ρ
V

IR =
V

R+ ρ

Thus

PR =
RV 2

(ρ+R)
2
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J The dissipated power is clearly dependent on the resistance of the load, thus we can optimize the
impedance through optimization methods. We have

∂PR
∂R

= V 2 ρ−R

(ρ+R)
2

Finding the maximal extreme of the first derivative we get that it’s true only if and only if R = ρ.
When the load resistance has this particular value, it’s said to be impedance matched. Here, we have

maxPR =
V 2

4ρ

Note that an impedance matched load is doesn’t correspond to the maximum impedance. We can
imagine to define a power transfer efficiency as η, where

η =
PR

Psource + PR
=

R

R+ ρ
(15.9)

Note that η ≈ 1 if and only if R >> ρ.
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16 Alternate Current Circuits

§ 16.1 RC Filters

§§ 16.1.1 RC Circuit in DC

Let’s begin to consider what happens when currents aren’t anymore constant in time but instead are
variable. The simplest possible circuit that we can imagine with variable currents (but with a continuous
source) is the following one

R

VR

CVC(t)

IC(t)

V

I

Figure 16.1: Diagram of a circuit which charges a capacitor with DC current and then lets it discharge
freely to ground

If we consider two time frames, one when the switch is on the other configuration and charges the
capacitor, till a time t0, when the capacitor is fully charged, and then gets switched and the charged
capacitor discharges on the ground, we have, during the charge of the capacitor

V = VR + VC = RI +
Q

C
= R

dQ

dt
+
C

C

221
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Where we used the following identities 
C =

Q

VC

I =
dQ

dt

Solving for the current we have

RC
dQ

dt
= CV −Q

And solving this ordinary differential equation between t = 0 and t = t0 we get

log

(
CV −Q

CV −Q(0)

)
= − t

RC

Which after solving for Q becomes, noting that at t = 0 we have Q(0) = 0

Q(t) = CV
(
1− e−

t
RC

)
(16.1)

We define the relaxation time of the circuit τ = RC, and after substituting the solution into the
definition of the capacitance and solving for VC we have

VC(t) = V
(
1− e−

t
τ

)
(16.2)

If we solve for VR, noting that VR = RI = RQ̇ we get that the voltage at the poles of the resistor at a
time t is

VR(t) =
RCV

τ
e−

t
τ = V e−

t
τ (16.3)

The circuit is said to be stable when t & 4τ , so that we can assume the capacitor as fully charged.
We can now analyze the case when the capacitor is discharging, i.e. when the switch is flipped and
the resistance and capacitor are isolated, and the circuit is practically the following

C VC(t)

IC(t)
R

VR(t)

Figure 16.2: Diagram of the discharge of the capacitor C
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Here, since we’re directly connected to ground, we must have V = 0, thus

I(t)R+ VC(t) = 0

Thus, through substitution we have

R
dQ

dt
= −Q(t)

C
=⇒ Q(t) = Q(0)e−

t
RC

But Q(0) = CVm and thus  Q(t) = CV e−
t
τ

VC(t) =
Q(t)

C
V e−

t
τ

(16.4)

§§ 16.1.2 RC Circuit in AC, Low Pass Filters

Consider now the same circuit using an alternate voltage source V (t). Consider the special case where
this source is an harmonic source, as

V (t) = V0 cos (ωt)

The circuit diagram is the following

V (t)

R

CVC(t)

Figure 16.3: Alternate current version of the resistor-capacitor circuit treated in the previous section

As we have already saw before, we have
VC =

Q

C

VR = R
dQ

dt

Thus, the characteristic differential equation of the circuit is

V (t)−R
dQ

dt
− Q

C
= 0

Or, noting that
Q

C
= VC =⇒ Q = CVC =⇒ R

dQ

dt
= RC

dVC
dt
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We have

V (t)−RC
dVC(t)

dt
− VC(t) = 0 (16.5)

Substituting the functional expression of V (t), we get a not-so-difficult first order differential equation

RC
dVC
dt

+ VC(t) = V0 cos(ωt) (16.6)

We solve it by searching a solution via the similarity method, i.e. supposing that VC(T ) ∝ cos(ωt). Said
V0C the proportionality constant we get, adding a generic phase

dVC
dt

= −ωV0C sin (ωt+ ϕ)

This is better expressed using phasor notation, which is built using Euler’s identity. Keeping in mind

that we actually measure the real part of this complex function, i.e. V
(M)
C (t) = Re {VC(t)}, we get by

deriving and plugging back into the differential equation

VC(t) +RC
dVC
dt

= V0Ce
iωt+iϕ + iωRCV0Ce

iωt+iϕ = V0e
iωt

Solving, we have

(1 + iωRC)V0Ce
iϕ = V0 =⇒ V0Ce

iϕ =
1− iωRC

1 + (RCω)
2V0

And therefore, substituting τ = RC

V0C(t)e
iϕ =

(
1

1 + (τω)
2 − iωτ

1 + (τω)
2

)
V0 (16.7)

Or, in terms of measured voltages

V
(M)
C =

V0
1 + ω2τ2

cos (ωr + arctan (−ωτ)) (16.8)

Note that this solution is strongly dependent on the frequency ω of the input voltage, in fact, we
specifically have, ignoring the phase ϕ = arctan (−ωτ) lim

ω→0
V0C(ω) = V0

lim
ω→∞

V0C(ω) = 0
(16.9)

This behavior clearly shows that the voltage is nonzero only when ω < ωR, with ωR being the resonance
frequency. This type of circuit is widely known as a low pass filter, i.e. a circuit which permits the
passage of voltage only to a limit resonant frequency.
We now might want to see how does the current behave in this circuit. We have

I(t) =
dQ

dt
=⇒ I(t) = C

dVC
dt

= iωV0Ce
iωt+iϕ = iωCVC(t)
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Thus 
VC(t)e

iϕV =
V0

1 + iωτ
eiωt

I(t)eiϕI =
iωCV0
1 + iωτ

eiωt
(16.10)

we can evaluate easily the phase of the current, and we have

ϕI = arctan

(
1

ωτ

)
Thus it’s clear that the phases of current and voltage are different, and precisely we have that since

tan (ϕI − ϕV ) =
tanϕI − tanϕV
1 + tanϕV tanϕI

=
1
ωτ + ωτ

1− ωτ
ωτ

= ∞

Thus ϕI − ϕV = π
2

§§§ 16.1.2.1 Generalized Ohm Law

From what we saw before, we can imagine to compile a new generalized Ohm law, which works also
with different components and variable currents.
From what we saw before, we have for a resistor-capacitor circuit

I(t) = iωCVC(t)

From V = RI we can define the capacitor impedance ZC as follows

VC(t) = ZCI(t) =⇒ ZC =
1

iωC
(16.11)

Let’s consider now an inductor L. From Lenz’s law we have

VL(t) = L
dIL
dt

= iωLIL

Thus, again from V = RI we get

ZL = iωL (16.12)

Thanks to this considerations we can say that for circuits containing only resistors, capacitors and
inductors in alternate current we have V = ZI, where

ZR = R

ZC =
1

iωC
ZL = iωL

(16.13)

Consider now the classic voltage divisor, where instead of having resistor we install a generic component
which can be either a resistor, a capacitor or an inductor, connected as follows
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Vin(t)

Z1

Z2 Vout

Figure 16.4: A generic voltage-divider like circuit in alternate current

Since we already know that the impedances Z work exactly as do the resistances, we get

Vout(t) =
Z2

Z1 + Z2
Vin(t) (16.14)

If we suppose Z1 as a normal resistor and Z2 as some capacitor, using the previous formulas we get

Vout(t) =
1
iωC

R+ 1
iωC

Vin(t) =
1

1 + iωRC
Vin(t) (16.15)

Note that this is exactly the RC circuit we solved before at length.

§§ 16.1.3 CR Circuit, High Pass Filters

The previous section can be used to immediately solve the CR circuit, since it has the exact same shape
as this voltage divider, as in the following diagram

Vin(t)

CVC(t)

RVR(t) Vout

Figure 16.5: A CR circuit in an alternate current regime

From what we wrote before, using the generalized Ohms law we find immediately that

Vout(t) =
R

R+ ZC
Vin(t) =

iωRC

iωRC + 1
Vin(t)
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We find immediately that the phase is

ϕV = arctan

(
ImVout(t)

ReVout(t)

)
= arctan

(
1

ωRC

)
Considering also the ratio of voltage between the input and output

Vout
Vin

=
ωRC√

1 + (ωRC)
2

It’s clear that for low frequencies, specifically for ω << ωc = τ−1 the ratio between these voltages
goes quickly to zero. This behavior is typical of the so-called high pass filters

§ 16.2 RL Filters

Thanks to what we have defined before, finding the behavior of RL and LR circuits is almost immediate.
Consider firstly a LR circuit, as in the following diagram

Vin(t)

LVL(t)

RVR(t) Vout

Figure 16.6: A LR circuit

The solution is almost immediate, in fact we have

Vout(t) =
ZR

ZL + ZR
Vin(t) =

R

iωL+R
Vin(t) =

1

1 + iωτ
Vin(t) (16.16)

Where we defined the relaxation time of the circuit τ as

τRL =
R

L
(16.17)

The input-output voltage ratio is then
Vout
Vin

=
1

1 + iωτ
(16.18)

Which clearly indicates this circuit as a low pass filter.
For a RL circuit, as in the following diagram instead
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Vin(t)

RVR(t)

LVL(t) Vout

Figure 16.7: A LR circuit

As before, we have

Vout =
ZL

ZL + ZR
Vin(t) =

iωL

iωL+R
Vin(t) (16.19)

The ratio of outgoing voltage is then clearly dependent on ω and thus this circuit is a high pass filter

§ 16.3 Integrator and Derivator Circuits

A special behavior of filters is to output a voltage which is proportional to either the derivative or the
integral of the input voltage.

§§ 16.3.1 Integrator Circuits

We begin by considering a RC circuit. We must have that

Vin(t) = VC(t) + VR(t)

But, if
|VC(t)| << |VR(t)|

Then

Vin(t) ≈ VR(t) = RI(t) =⇒ I(t) =
1

R
Vin(t)

Thus, the outgoing voltage, Vout(t) = VC(t) is

Vout(t) =
1

C

ˆ t

0

I(t)dt =
1

RC

ˆ t

0

Vin(t)dt =
1

τ

ˆ t

0

Vin(t)dt (16.20)

Due to this, RC circuits are integrators.
Another example of integrator circuit is the LR circuit. As before, we must have

Vin(t) = VR(t) + VL(t)

When |VR(t)| << VL(t), we have that Vout = VR

Vin(t) ≈ VL(t) = L
dI

dt
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And therefore

VR(t) = RI(t) =
R

L

ˆ t

0

Vin(t)dt+RI(0) =
1

τ

ˆ t

0

Vin(t)dt+RI(0) (16.21)

§§ 16.3.2 Derivator Circuits

Consider now the previous circuits with components inverted. In the first case we will have the CR
circuit, where, if

|VR(t)| << |VC(t)|

We have that the input voltage is approximately equal to the capacitor voltage, thus

Vin(t) ≈ VC(t) =
1

C

ˆ t

0

I(t)dt

This clearly implies that

dVin
dt

=
1

C
I(t)

Which, consequently, implies that the outgoing voltage will be proportional to this derivative, in fact,
since Vout ≈ VR with these conditions

VR(t) = RI(t) = RC
dVin
dt

= τ
dVin
dt

(16.22)

The evaluation is similar in the RL circuit, where, when

|VL(t)| << |VR(t)| =⇒ Vin(t) ≈ VR, Vout ≈ VL

we have

Vin(t) = RI(t) =⇒ I(t) =
1

R
Vin(t)

Which, consequently implies

VL(t) = L
dI

dt
=
L

R

dVin
dt

= τ
dVin
dt

(16.23)

Thus RL circuits behave as derivator circuits, as do CR circuits.
In general we have that:

• Low pass filters (RC, LR circuits) behave as voltage integrators

• High pass filters (CR, RL circuits) behave as voltage derivators

The more is the frequency in the band of frequencies passed by the filter, the more the circuit behaves
like an integrator or a derivator
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§ 16.4 RLC Circuits

§§ 16.4.1 RLC Circuit in Series

A special kind of filter is the RLC circuit, described in the following diagram

V (t)

I(t)

L

VL(t)

RVR(t)

CVC(t)

Figure 16.8: RLC Filter diagram

Remembering that the voltages are

VR(t) = RI(t)

VL(t) = L
dI

dt

VC(t) =
1

C

ˆ t

0

I(t)dt

Thus, due to Kirchhoff’s mesh law, we have that the voltage V (t) must be equal to the sum of these
three, and deriving with respect to t in order to change the integro-differential equation into a second
order differential equation, we have

dV

dt
= L

d2I

dt2
+R

dI

dt
+

1

C
I(t) (16.24)

We can solve this equation with the usual techniques of ordinary differential equation theory, thus
searching for the sum of an homogeneous solution and a particular solution. For the homogeneous
equation we have 

L
d2I

dt2
+R

dI

dt
+

1

C
I(t) = 0

Lλ2 +Rλ+
1

C
λ = 0

(16.25)

Solving the equation and the characteristic polynomials we reach that

λ = − R

2L
±

√(
R

2L

)2

− I

LC
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Which implies

I(t) = I±e
−Rt

2L±t
√(

R
2L

)2− 1
LC (16.26)

We simplify everything by substitution with the following parameters
a =

R

2L

b =

√(
R

2L

)2

− 1

LC

We can rewrite the current as the simple function

I(t) = I+e
−(a−b)t + I−e

−(a+b)t (16.27)

We get the following cases 

(
R

2L

)2

>
1

LC
b ∈ R(

R

2L

)2

>
1

LC
b = 0(

R

2L

)2

>
1

LC
b ∈ C

(16.28)

We can now begin to evaluate the transient response of the circuit

§§§ 16.4.1.1 Overdamped Response

The first case that we will consider is when b ∈ R, b 6= 0, the circuit with these conditions is said to
be overdamped. For physical reasons we can say immediately that I(0) = 0, thus, imposing Cauchy
conditions to the current solution and the characteristic equation of the circuit we have

I(0) = I+ + I− = 0

RI(0) + L
dI

dt

∣∣∣∣
t=0

+
q0
C

= 0

Deriving the homogeneous solution we have

dI

dt
= I+ (b− a) e−(a−b)t − I−(a+ b)e−(a+b)t

dI

dt

∣∣∣∣
t=0

= I+(b− a)− I−(a+ b) = 2bI

Where we considered that I− = −I+ = I0. Inserting it into the equation we get

2LbI0 = −q0
C

=⇒ I0 = − q0
2bLC

Indicating the natural frequency of the circuit ω0 as

ω0 =

√
1

LC
(16.29)
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We have finally, remembering that I(t) = I0f(t)

I(t) = −q0ω
2
0

2b
e−at

(
ebt − e−bt

)
Substituting the exponentials with the hyperbolic sine function we get

I(t) = −q0ω
2
0

b
e−at sinh(bt) = − q0ω

2
0√(

R
2L

)2 − 1
LC

e−
R
2L t sinh

t
√(

R

2L

)2

− 1

LC

 (16.30)

§§§ 16.4.1.2 Critically Damped Response

The second case is when b = 0, i.e. when the circuit is critically damped. Going back to the definition
of a, b we have that b = 0 implies (

R

2L

)2

=
1

LC

Thus, considered the characteristic polynomial of the differential equation

Lλ2 +Rλ+
1

C
λ = 0

Which, has solutions

λ12 = a± b

Thus, being b = 0 with this circuit response, the solution to the polynomial is a degenerated single
solution with an algebraic multiplicity of 2, λ = a, thus the homogeneous solution for the current is

I(t) = I1e
− R

2L t + tI2e
− R

2L t = (I1 + tI2) e
−at (16.31)

Imposing the initial condition I(0) = 0 we then get

I(0) = I1 = 0 =⇒ I(t) = tI2e
−at I2 = I0

And
dI

dt

∣∣∣∣
t=0

= (1− at) I0e
−at∣∣

t=0
= I0

We have then

LI0 = −q0
C

=⇒ I0 = − q0
LC

= −q0ω2
0

Thus, the current function in a critically damped RLC is

I(t) = I0te
−at = −q0ω2

0te
−at = −q0ω2

0te
− R

2L t (16.32)
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§§§ 16.4.1.3 Damped Oscillatory Response

The last case is the damped oscillatory regime, i.e. when(
R

2L

)2

< ω2
0 =⇒ λ± = −a± ib

We have an oscillatory solution to the current.
Imposing the Cauchy condition I(0) = 0 we have

I(0) = I+ + I− = 0 =⇒ I+ = −I−

Thus, since

I(t) =
(
I+e

ibt + I−e
−ibt) e−at

We get

I(t) = I0e
−at (eibt − e−ibt

)
= 2iI0e

−at sin(bt)

Noting that

I0 = − q0
2bLC

= −q0ω
2
0

2b

We get the final solution for the current in an RLC circuit in damped oscillatory conditions

I(t) = − iω
2
0q0
b

e−at sin (bt) = − iω2
0q0√(

R
2L

)2 − 1
LC

e−
R
2L t sin

t
√(

R

2L

)2

− 1

LC

 (16.33)

Note that although the current is harmonic in this configuration, there’s still Joule dissipation on the
resistor R.

§§ 16.4.2 General Solution in AC Regimes

We can now evaluate the general solution to the circuit equation with a sinusoidal voltage source. The
equation we need to solve is

dV

dt
= L

d2I

dt2
+R

dI

dt
+
I

C

Where {
V (t) = V0e

iωt+iϕV

I(t) = I0e
iωt+iϕI

Substituting into the equation we get

iωV0e
iϕV = −ω2LI0e

iϕI + iωReiϕI +
I0
ω0C

eiϕI

Rearranging the equation and multiplying both sides by e−iϕI we have

V0e
i(ϕV −ϕI) =

[
R+

(
iωL− 1

iωC

)]
I0 = ZRLCI0 (16.34)
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We get the values for I0 and ϕ = ϕV − ϕI
I0 =

V

|ZRLC |
=

V0√
R2 +

(
ωL− 1

ωC

)2V0
ϕ = arctan

[
1

R

(
ωL− 1

ωC

)] (16.35)

Note how ZRLC is exactly what we’d get from the generalized ohm law, and that also ZRLC ∈ C in
general.
Also ZRLC ∈ R only in the special resonant case of ω = ω0, where ZRLC = R and ϕ = 0

§§ 16.4.3 Quality Factor

Definition 16.4.1 (Quality Factor). In order to understand better the behavior of the RLC circuit we can
define a parameter, known as the quality factor as follows

Q0 =
ω0L

R
=

1

R

√
L

C
(16.36)

Thus, the current we evaluated previously can be rewritten as follows

I0 =
V0√

1 +Q2
0

(
ω2−ω2

0

ωω0

)2 (16.37)

It’s clear that only some frequencies will pass through the filter, defining the RLC circuit as a band pass
filter. Note that the closer is the quality factor to infinity, the more selective the filter is

Definition 16.4.2 (Bandwidth). We define the bandwidth∆ω of the RLC band pass filter as the distance
between the points of the frequency response where

I∆ω =
1√
2
Imax (16.38)

It’s clear then that the bandwidth depends on the quality factor of the circuit

In order to evaluate the bandwidth of the filter we begin by finding where I/I0 is equal to 1/
√
2

Thus, we have
I

I0
=

1√
2
=

1√
1 +Q2

0

(
ω2−ω2

0

ωω0

)2
Clearly we must solve

Q2
0

(
ω2 − ω2

0

ωω0

)2

= 1



16.4. RLC CIRCUITS 235

Thus, we have
ω2 − ω2

0

ωω0
= ± 1

Q0
=⇒ ω2 − ω2

0 ∓
ωω0

Q0
= 0

Solving for ω in order to find the intersections we get

ω = ± ω0

2Q0
±

√(
ω0

2Q0

)2

+ ω0 (16.39)

Imposing only positive solutions, since ω > 0 always we get that the bandwidth is

∆ω = ω2 − ω1 =
ω0

Q0
=
R

L
(16.40)

For commercial filters we have that Q0 ∝ 102. For getting higher quality factors expensive components
are needed, like inductors composed by superconductors

§§ 16.4.4 Ohm’s Law and RLC Circuits

§§§ 16.4.4.1 RLC in Series

We can use Ohm’s law in order to evaluate RLC circuits and find all the parameters we need. We start
with an RLC circuit in series, with a resistor R as the circuit load, as in the following diagram

VG(t)

RG

RL L
C

Vout(t)R

Figure 16.9: RLC circuit with a real generator and a real inductor, every component is connected in
series to a load R

Since everything is in series we have that the equivalent impedance of the circuit is Zeq is

Zeq = ZG + ZL + ZC

Where ZG and ZL are respectively the total impedances of the generator and inductor. Thus

Zeq = RG + (RL + iωL) +
1

iωC
(16.41)
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Thanks to V = ZI we have

I(t) =
Vout(t)

Z
=

VG(t)

RG +RL + i
(
ωL− 1

ωC

) (16.42)

Writing R0 = RL +RG we can evaluate from the previous expression the quality factor, as

Qs =
ω0L

R0
=

1

RG +RL

√
L

C

Looking back to the current expression, we can also write the voltage on the inductor and capacitor,
where 

VC(t) = ZCI(t) =
ZC
Zeq

VG(t) =
1

iωC

VG(t)

RG +RL + i
(
ωL+ 1

ωC

)
VL(t) = ZLI(t) =

ZL
Zeq

VG(t) = iωL
VG(t)

RG +RL + i
(
ωL+ 1

ωC

)
Thus, evaluating the ratio between the measured output and input voltage, we have that

VMC
VMG

=
1

ωC

1
√
R2 +

(
ωL− 1

ωC

)2
VML
VMG

=
ωL√

R2 +
(
ωL− 1

ωC

)2
When at resonance, i.e. when ω = ω0, then we have

VMC
VMG

=
VML
VMG

= Qs =⇒ VMC = VML = QsV
M
G

Being Q > 1, we also have that both VMC , VMC > VG and we are actually measuring a higher voltage
on the two components.
Remember that ϕC = −ϕL, therefore there is no current flow on the load.

§§§ 16.4.4.2 RLC in Parallel

We now consider the dual version of the RLC circuit in series, the RLC circuit in parallel, which has the
following diagram

VG(t)

I(t)

Vout(t)L

IL(t)

C

IC(t)

R

IR(t)

Figure 16.10: RLC circuit in parallel
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The evaluation is completely analogue, we just gotta remember that

1

Zeq
=

1

ZR
+

1

ZC
+

1

ZL
=

1

R
+ i

(
ωC − 1

ωL

)
(16.43)

Which therefore implies

I(t) =
VG(t)

Zeq
=

[
1

R

(
ωC − 1

ωL

)]
VG(t) (16.44)

And, thus

IM0 = VMG

√
1

R2
+

(
ωC − 1

ωL

)2

And the phase of the current will be

ϕ = arctan

[
R

(
ωC − 1

ωL

)]
(16.45)

§ 16.5 Transfer Functions

Thanks to the circuits being linear, for which the superposition theorem holds, we can imagine to write
the output of two circuits combined using some function.

Definition 16.5.1 (Transfer Function). Given two circuits C1 and C2, said Vi1, Vo1 and Vi2, Vo2 the input
and output voltages of the two circuits, we can define a transfer function of the two as

T1(ω) =
Vi1
Vo1

T2(ω) =
Vi2
Vo2

(16.46)

These functions completely describe the behavior of the two circuits.
Note that when we connect the two circuits

T12 6= T1T2

Since the connection of the second circuit to the first induces a modification of the response of the
circuits at the connection point. If this modification is Vx(ω), we can tho write

T12 =
Vo2
Vx

Vx
Vi1

(16.47)

This can be in general be computed by using the formula of the voltage divider. Suppose to have
two circuits connected one after the other. If the equivalent impedance of the first circuit is Zi1, the
input voltage Vi1, with equivalent output voltage Vo1 and output impedance Zo1 and the second circuit
has an equivalent output voltage Vo2 with equivalent impedance Zo2, we get that

Vi2 =
Zi2

Zi2 + Zo1
Vo1
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Thus

T12 =
Vo2
Vi1

=
Vo2
Vi2

Vi2
Vi1

=
Vo2
Vi2

Zi2
Zi2 + Zo1

Vo1
Vi1

Substituting the first equation into the second we get

T12 =
Zi2

Zi2 + Zo1
T2T1 (16.48)

Let’s see this in practice by connecting an RC circuit to a CR circuit as follows

Vi1

R1

C1 Vx

C2

Vo2R2

Figure 16.11: Cascade connection of a RC and CR circuit

As for before we have

Vx =
Zi2

Zi1 + Zi2
Vi1

Where Zi2 is the equivalent impedance of C2, R2 and C1. Thus

Zi2 =
1

iωC1
+R2 +

1

iωC2

Thus, re-inputting it into the previous equation we have

Vx =
Vi1

1 + iωR1C1 +
R1

R2+
1

iωC2

But we also have

Vo2 =
R2

R2 + ZC2
Vx =

iωC2R2

1 + iωC2R2
Vx

Thus

Vo2 =
iωC2R2

1 + iωC2R2

Vi1

1 + iωR1C1 +
iωC2R1

1+iωC2R2

Which then implies

T (ω) =
iωC2R2

(1 + iωC2R2) (1 + iωR1C1) + iωC2R1
(16.49)
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§ 16.6 Dissipated Power in AC

Consider a simple capacitor connected to an ideal voltage generator in an alternate current regime

V (t) C

I(t)

Figure 16.12: Simple circuit in AC regime

The dissipated power in this sinusoidal regime is as usual

P (t) = V (t)I(t) (16.50)

Thus, using Ohm’s law

V (t) = ZI(t) =
I(t)

iωC
=⇒ I(t) = iωCV (t)

Note that in this special case, being the current a perfectly imaginary number we will have ϕI =
π
2 .

Since V (t) is sinusoidal, we have that P (t) can be positive or negative depending on which phase of
the cycle we are in. When P (t) > 0 we are giving power to the capacitor, i.e. charging the capacitor,
and vice versa when it’s negative.
In general we must then have, if the current and voltage are in phase

〈P 〉 = 1

T

ˆ T

0

V (t)I(t)dt =
ω

2π

ˆ ω
2π

0

V0I0 sin (ωt) cos (ωt) dt = 0 (16.51)

But, when current and voltage are not in phase, we have

cos (ωt+ ϕI) cos (ωt) = cos2 (ωt) cos (ϕI) + sin (ωt) cos (ωt) sin (ϕI)

Thus

〈P 〉 = V0I0
T

cos (ϕI)

ˆ T

0

cos2 (ωt) dt

Integrating in one period we have

〈P 〉 = V0I0
2

cos (ϕI) (16.52)

If we define Ieff = I0/
√
2, Veff = V0/

√
2 as the effective current and voltage, we have

〈P 〉 = VeffIeff cos (ϕI) (16.53)

The cosine of the current phase is known as the power factor.
For circuits which are purely active the real part of the impedance is zero, and with it the power factor,
thus

〈P 〉active = 0

Note tho that being I(t) 6= 0 inside the generator, there will be dissipated power in R thanks to Joule
dissipation
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§§ 16.6.1 Quality Factor as a Measure of Dissipated Energy

Consider the definition of the quality factor Q0. We have

Q0 = ω0
L

R

We can write, at resonance ω0 = 2π
T0
, thus with some algebraic play we have

Q0 =
2π

T

L

R

I20/2

I20/2
=

2π

T

2

RI20

LI20
2

We immediately recognize the two following quantities

1

2
LI20 = EM

1

2
RI20 = PJ

I.e. the magnetic energy inside the inductor, and the dissipated power in the resistor via Joule effect.
Thus

Q0 =
2π

T

EM
PJ

= 2π
EM
EJ

(16.54)

Thus, the quality factor Q0 can be seen as 2π times the energy inside the resonator (the inductor) and
the dissipated energy in the resistor.

§ 16.7 Diodes

§§ 16.7.1 Semiconductor Diodes

In electronics we can find circuit components which are not linear. These nonlinear components have
as a main factor that I 6∝ V , thus, components for which Ohm’s law doesn’t work.
One special kind of nonlinear component is the diode. The most common types of diodes use Silica or
Germanium component, both tetravalent semi-metals.
In order to ease the conduction in these elements, their crystalline structure is doped with impurities
e.g., for silica

• Phosphorus doping, adding one valence electron

• Gallium doping, removing one valence electron, i.e. adding one hole

This doping elements are added in very small parts, usually 1 part per million, but still manage to
increase the conductivity of the silica structure by an order of 102.
In diodes, in order to obtain these particular structures, a junction is created between two doped
semiconductors. This junction is known as a NP or PN junction, representing the connection of:

• N crystals, doped mainly with P, As, An, i.e. doped with pentavalent atoms

• P crystals, doped mainly with B, Ga, In, i.e. doped with trivalent atoms
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The connection between these crystals inside a diode creates an electric dipole field between the two
junctions, thus generating an electric potential ϕ.
The extra electrons in the N crystal manage to jump the potential, going towards the P crystal if and
only if Ee− > ϕ.
These electrons are in thermal equilibrium, thus we can use Boltzmann statistics in order to evaluate
them.
We want to find the number of electrons with energy dE. Indicating β = 1

kT we have

dN = e−βEdR

Thus

N (Ee− > ϕ) = C

ˆ ∞

ϕ

e−βEdE =
C

β
e−βϕ (16.55)

The probability of having electrons with energies greater than ϕ that actually manage to jump is then,
if NT is the total number of electrons

P (jump) =
N (Ee− > ϕ)

NT
= e−βϕ (16.56)

And thus, the current between the junction is INP ∝ P (jump).
At equilibrium we will have INP = IPN .

§§ 16.7.2 Voltage Rectifiers

We now begin to evaluate diodes inside of circuits. Consider a diode connected to some battery, which
will add a new electric field E′. If the battery has a voltage V , we will have, inside the junctions

E′
e− = ϕ− e|V | (16.57)

Thus, the diode will be directly polarized, and

INP = Ae−β(ϕ−e|V |)

IPN = Ae−βϕ
(16.58)

The total current between the junctions is then

Ie− = INP − IPN = Ae−βϕ
(
eβe|V | − 1

)
(16.59)

This direct polarization can inverted, thus obtaining for the circuit

I = I0
(
e−βeV − 1

)
(16.60)

This can be used for building rectifiers.
There are two main kinds of rectifiers, half-wave rectifiers, and bridge rectifiers. A half-wave rectifier is
built as follows
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Vin(t) Vout(t)R

Figure 16.13: Half-wave rectifier

In this circuit we will have
Vin(t) ∝ sin (ωt)

Vout(t) ∝

{
sin(ωt) Vin(t) > 0

0 Vout(t) < 0

(16.61)

Thus, as output, we will get only the positive half-wave of the input voltage.
A bridge rectifier instead creates with a good approximation DC current from an AC source, and they’re
built as follows

4

1

3

2

Vin(t)

VoutR

Figure 16.14: Bridge full-wave rectifier

In this circuit, we have diodes 1 and 3 in inverse polarization, thus working as PN components,
while diodes 2 and 4 are directly polarized, i.e. NP components.
As for the voltage, we will have

Vout ∝ Vin(t) (16.62)

§§ 16.7.3 Zener Diodes

For common diodes, exists a voltage VB, also known as breakdown voltage, for which there is full
ionization of the crystal junction, thus destroying the component.
A special type of diode built in order to sustain V > VB is the Zener diode, which is used usually to
stabilize DC voltages, in circuits like the following
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V

R

VBZD

Figure 16.15: DC Stabilizer circuit with a Zener diode ZD

Zener diodes are also used to limit sinusoidal voltages, with a clipping effect at V− = −0.6 V and
V+ = VB

§ 16.8 Transmission Lines

§§ 16.8.1 Electromagnetic Kirchhoff Laws

The need to transport voltages and currents between long distances, creates a major problem.
Since relativity holds, the signal never travels faster than the speed of light c, adding a delay and a
phase shift, which are negligible if and only if ω << 1 GHz.
These kinds of circuits are known as transmission lines, and are indicated in circuits as follows

ZG

Vin(t)

Z0

ZL

Figure 16.16: Diagram of a transmission line Z0 connecting a real generator to a generic load ZL

The component Z0, known as a transmission line, can be schematized as follows
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B

A A

B

RA LA

VAB

RB LB

C G

dx

Figure 16.17: Approximation of a piece of transmission line long dx

Using mesh calculus we can write
dVA = −RAI(x, t)dx− LA

∂I

∂t
dx

dVB = RBI(x, t)dx+ LB
∂I

∂t
dx

(16.63)

Thus
∂V

∂x
= − (RB +RA) I(x, t)− (LA + LB)

∂I

∂t

We define {
Rudx = RA +RB

Ludx = LA + LB
(16.64)

And thus, we get a set of coupled differential equations for voltage and currents
∂V

∂x
= −

(
Ru + Lu

∂

∂x

)
I(x, t)

∂I

∂x
= −

(
Gu + Cu

∂

∂t

)
V (x, t)

(16.65)

Where we indicated with Gu the admittance of the line and with Cu the capacitance
The operators inside the parentheses are known as the unitary impedance operator Ẑu and the unitary
admittance operator Ŷu

§§ 16.8.2 Telegrapher’s Equations

In general, transmissions lines are used with sinusoidal voltage sources.
From the system of equations we can write, by deriving with respect to x both equations

∂2V

∂x2
= ẐuŶuV (x, t)

∂2I

∂x2
= ẐuŶuI(x, t)
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And considering that since V ∝ eiωt we have
∂V

∂t
= iωV (x, t)

∂I

∂t
= iωI(x, t)

And using the approximation {
Ẑu ≈ R+ iωL

Ŷu ≈ G+ iωC

We can write the equations as two second order uncoupled partial differential equations, known as
the Telegraphist equations 

∂2V

∂x2
= γ2V (x, t)

∂2I

∂x2
= γ2I(x, t)

(16.66)

The solution of these equations can be found by searching for the following solution

V (x) = A1e
−γx +A2e

γx, Ai = aie
iϕi , Z0 = z0e

iψ

Where we omitted the time dependency of the voltage, it being eiωt.
We define also

γ = α+ iβ =
√
R+ iωL

√
G+ iωC =

√
ẐuŶu

With this definition of γ and the two complex amplitudes Ai we have

V (x) = a1e
−i(β−ϕ1)e−αx + a2e

i(β+ϕ2)

Multiplying both sides by the time dependence and finding the measured voltage along the line, we
get

VM (x, t) = Re {V (x, t)} = a1e
−αx cos (ωt− βx+ ϕ1) + a2e

αx cos (ωt+ βx+ ϕ2) (16.67)

This is clearly a wavefunction, thus, taken the solution at constant phase we have

ω − β
∂x

∂t
= 0 =⇒ ∂x

∂t
=
ω

β
= u (16.68)

Which is the phase velocity of the voltage wave inside the transmission line. Note that by definition,
we have that the phase velocity is the imaginary part of γ, i.e.

u = Im {γ}
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§§§ 16.8.2.1 Non Dissipative Solution

If we consider the ideal case of a non-dissipating transmission line, i.e. Ru = Gu = 0, the solution is
clearly way simpler, but especially we get

γ = iω
√
LC =

iω

τ
(16.69)

Where τ is again the relaxation time for the LC oscillator in the line. Since also β = ωτ we have that
the phase velocity of the wave will be the inverse of this relaxation time

uND =
1

τ
(16.70)

§§ 16.8.3 Coaxial Cables

A great example of transmission line used every day in laboratories and houses is the coaxial cable.
A coaxial cable can be imagined as a conductive cable covered by an insulating cladding.
Considering the moving currents inside the conductor, we have thanks to Maxwell’s equations{

∇ ·B = 0

∇×B = µJ

From the second equation we get that the magnetic induction field around the conductive section of
the cable is ˛

∂C

B · t̂dl = 2πrB = µI =⇒ B(r) =
µ

2πr
I

And thus, thanks to the first equation of the two

‹
C

B · nd2s = µlI

2π
log

(
b

a

)
Where a, b are the internal and external radii of the insulating cladding and l the length of the cable.
Note that also, by definition

Lu =
L

l
=

1

l

Φ

LI
=

µ

2π
log

(
b

a

)
(16.71)

For the capacitance of the coaxial cable it’s even easier. Using the formula for the capacitance of a
cylinder we have

Cu =
C

l
=

2πε

log
(
b
a

) (16.72)

Then, γ is easily calculable as

γ =
√
LuCu =

√
µε =

n

c
(16.73)
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A Special Relativity

§ A.1 Principle of Relativity

The principle of relativity states a quite simple but deep affirmation: All interaction propagate at a
constant speed independent from the chosen frame of reference. This speed is usually denoted as c
and it’s informally known as the speed of light, which has the following value (in SI units)

c = 2.998× 108 m/s (A.1)

In the part on classical mechanics we always intended between the lines that all interactions are
instantaneous and therefore we’d have c → ∞ formally. This can be interpreted as taking classical
mechanics as an approximation of Einstein’s relativity for which v/c << 1, which is the case for our
really slow classical particles.
Note that this constant speed of propagation precludes that time isn’t universal, and it is frame
dependent. In order to understand this it’s useful to get two coordinate frames K and K̃, where one
is moving with respect to the other with a constant speed V .
Suppose now that a point A emits a signal towards two other points B and C

K
K̃

V
A B C

Figure A.1: The two frames K and K̃

In the frame K̃, where A is at rest, we see that the signal reaches both points at the same time,
but the same CANNOT be true for the other system, since the relativity principle would be violated.
Thinking in a different way, suppose that you’re standing at the origin of the K system. If the velocity
of the signal is constant in all reference frames we can for sure say that it’s so where we’re standing,
therefore we end up seeing B moving towards the signal and C moving away from it, both with speed
V . In this system we therefore must see a delay in when the two points receive such signal.
Although counterintuitive we’re experimentally more than sure that this is actually a better approximation
of nature than our beloved Newtonian mechanics.

249
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§ A.2 Spacetime

Since time it’s not anymore an universal thing and behaves itself as a coordinate, we can now think of
our universe as a 4D manifold with time as a new coordinate. This is known as Minkowsky Spacetime
or in short as Spacetime. This new definition follows:

Definition A.2.1 (Event). Given a spacetime with coordinates (ct, x, y, z) with c the speed of light, we
define a point in spacetime as an event in such.
Since time only “flows” one way, we have that for every particle corresponds a wordline which connects
all the events pertaining to such. Note that events are also known as universe points

Given the principle of relativity one might also ask rightfully how to formulate mathematically all of
this, bringing out some invariants that might help with further derivations. Take again the previous
system and call l the distance traveled by the signal after being emitted from A. Calling t1 and t2 the
emission time and the arrival time respectively, we have that for obvious reasons

l = c(t1 − t2) (A.2)

But, we can also write as follows

l =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (A.3)

With (x1, y1, z1) being the departure coordinates and (x2, y2, z2) the arrival coordinates in K In K̃,
analogously we have

l̃ = c(t̃2 − t̃1)

l̃ =
√
(x̃2 − x̃1)2 + (ỹ2 − ỹ1)2 + (z̃2 − z̃1)2

(A.4)

Tying up both equations we end with the following result{
c2(t2 − t1)

2 − (x2 − x1)
2 − (y2 − y1)

2 − (z2 − z1)
2 = 0

c2(t̃2 − t̃1)
2 − (x̃2 − x̃1)

2 + (ỹ2 − ỹ1)
2 + (z̃2 − z̃1)

2 = 0
(A.5)

In “layman” words this basically means, that the following quantity

s212 = c2(t2 − t1)
2 − (x2 − x1)

2 − (y2 − y1)
2 − (z2 − z1)

2 (A.6)

Called, interval, is a relativistic invariant, and therefore invariant with respect to changes of coordinate
frames in the context of special relativity.
From (A.5) we have that if the two points are infinitesimally close to eachother we can define the
infinitesimal interval as

ds2 = c2dt− dx2 − dy2 − dz2 (A.7)

The invariance of such differential quantity is easy to show considering the previous case we stated
where ds = ds̃ = 0 we have, using basic intuition that

ds2 = a(V )ds̃2 (A.8)

Where a(V ) is a function of the relative velocity between the two considered frames. It cannot depend
on direction due to the isotropy of space.
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Consider now three inertial reference frames K,K1,K2, and let V1, V2 be the velocities of the frames
K1,K2. We can therefore say, using (A.8) that

ds2 = a(V1)ds
2
1 = a(V2)ds

2
2

ds21 = a(V12)ds
2
2

(A.9)

Where we defined the velocity between K1,K2 as V12. Rewriting the equation we have

ds2 = a(V1)a(V12)ds
2
2 = a(V2)ds

2
2

Equating the coefficients of the differential ds2, we have

a(V12) =
a(V2)

a(V1)
(A.10)

The previous equation then might be true if and only if a(V12) depends only on the angle between the
velocities V1, V2. This cannot be true due to the isotropy of spacetime, as we stated for the previous
problem, and therefore a(V ) might only be a constant function. Taking a(V12) = 1 for consistency
between frames of reference, we have finally demonstrated that the differential spacetime interval is
invariant

ds = ds̃ (A.11)

This definition of ds gives rise to three kinds of intervals:

1. Spacelike intervals if s212 < 0

2. Timelike intervals if s212 > 0

3. Light-like intervals if s212 = 0

These three distinctions let us answer two previously impossible questions: is it possible to find a
reference frame where two events happen at the same time or at the same place in our three-
dimensional perception?. The answer is surprisingly yes. It depends on the kind of the interval between
the two points.
Let’s work with the first assumption, taken two events in spacetime E1, E2, defined t12 = t2 − t1 and
l12 as our usual 3D distance between the events, we have

s212 = c2t212 − l212

Let’s now search a system where l′12 = 0. In order to have this, using that s12 = s′12 we have

s12 = c2t12 − l212 = c2t
′2
12 = s

′2
12 > 0

I.e. the spacetime interval between the frame of reference at rest with respect to the two events and
the new unknown frame of reference is timelike.
Analogously, if we wanted to find a new system where the two events happen at the same time, we
might have set t′12 = 0, therefore getting

s12 = c2t12 − l212 = l
′2
12 = s

′2
12 < 0 (A.12)
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§§ A.2.1 Spacetime Diagrams

The idea of spacetime and absoluteness of the velocity of interactions can be described well by a 2D
spacetime diagram. Taken an origin for our system of coordinates (ct, x) we have that, considering v
as the slope of a constant wordline, that |v| < c.

ct

x

v = c

v = −c

Unreachable

Unreachable

Past

Future

Figure A.2: Simple spacetime diagram. Note how all the events beyond the asymptote (or horizon)
v = ±c are inaccessible from 0

Thought in higher dimensions we have that all the past and future of an event are enclosed inside a
cone bordered by our horizon |v| = c which separates physical impossibilities from the actual physical
past and future of what we’re considering.
Note that if v = ±c we must have x = ±ct, giving us a spacelike interval for our diagram.
Considering instead past and future it’s also easy to see that the past is always spacelike, since
c2t2 − x2 < 0, and that the future is always timelike. Note also that past and future must be absolute

§ A.3 Proper Time

Since time is not a relativistic invariant, we need to search for a good substitute of it. Given a clock
fixed at the origin of some inertial frame K ′. After some time dt, the clock has moved (in our system)
by the following quantity √

dx2 + dy2 + dz2

By definition, in K ′ this clock is at rest, therefore we have

dx′ = dy′ = dz′ = 0
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Imposing the invariance of intervals we have that

ds2 = c2dt2 − dx2 − dy2 − dz2 = c2dt
′2 (A.13)

Therefore, it must be true that

dt′ = dt

√
1− dx2 + dy2 + dz2

c2dt2
(A.14)

This is the expression for the passing of time in the system where the clock is at rest, and it’s called the
proper time of the clock, usually indicated with τ . Writing the sum of differentials as dr2 and using the
definition of v2, we have that

dτ = dt

√
1− v2

c2
=

ds

c
(A.15)

Integrating and using the fundamental theorem of calculus, we have that a given time interval will be
“felt” differently by the clock, where

∆τ =

ˆ τ2

τ1

√
1− v2

c2
dt < ∆t (A.16)

This tells us that a moving clock will tick slower than a clock at rest (note also on how this definition
depends directly on the chosen frame).
This difference of measured time is known as time dilation.

§ A.4 Formalization of the Principle of Relativity

All of what we found before can be crammed into themost fundamental element of relativity: coordinate
transformations.
Consider two reference frames K, (ct, x, y, z) and K ′, (ct, x, y, z). Mathematically, what we call
interval is the usual 4D distance in a seminegative definite metric, and due to its invariance we must
have that all coordinate transformations between these two systems must be rototraslations (isometries).
Translations can be immediately ignored since they only move the origin of the system, and therefore
we choose our faithful rotations in order to find these coordinate transformation laws.
All the possible rotations are between the planes xy, xz, yz and tx, ty, tz. All rotations xy, xz, yz are
our usual 3D rotations and are of no use, therefore we choose the rotations tx, ty, tz. Taking tx as the
chosen one we have that the spacetime interval is

s2 = c2t2 − x2

Therefore, all searched rotations must preserve this relationship. The first idea one might have is to
look at the symmetry of the system and deduce immediately that such rotation must be hyperbolic in
nature. We therefore define the following(

x
ct

)
=

(
coshψ sinhψ
sinhψ coshψ

)(
x′

ct′

)
(A.17)

Taking x′ = 0 it all reduces to this single equation

x

ct
=
V

c
= tanhψ (A.18)
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It’s common to indicate such value with the pure number β, called the Lorentz Boost, where

β =
V

c

Solving (A.18) we have that

β =
sinhψ√

1 + sinh2 ψ
= 0 =⇒ sinh2 ψ =

β√
1− β2

(A.19)

And

cosh2 ψ = 1 + sinh2 ψ =⇒ coshψ =
1√

1− β2
= γ (A.20)

Where γ is known as the Lorentz/Gamma Factor.
Substituting back into (A.18) we have back our searched transformations(

x
ct

)
=

(
γ βγ
βγ γ

)(
x′

ct′

)
(A.21)

Note that the inverse transformation is simply given imposing β → −β.
The complete transformation between the two reference frames will finally be a 4D linear system as
follows 

ct
x
y
z

 =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1



ct′

x′

y′

z′

 (A.22)

These transformations are known as Lorentz Transformations and are the fundamental transformations
between frames of reference in special relativity. These transformations formalize the principle of
relativity. For v << c these transformations bring back the usual Galilean transformations corrected by
a first order factor in c, as we expected

ct
x
y
z

 =


1 β 0 0
β 1 0 0
0 0 1 0
0 0 0 1



ct′

x′

y′

z′

 (A.23)

§§ A.4.1 Length Contraction and Time Dilation

Using Lorentz transformations it’s possible to mathematically formalize all relativistic effects. One of
such is known as length contraction, where the measured length of an object depends on the chosen
reference frame.
As a matter of example take a “rigid” rod in a system K, long ∆x, and consider the system K ′ where
the rod is at rest. In this system we have

∆x′ = x′1 − x′2 = γ(x2 − x1)− γβc(t2 − t1) = γ∆x− γβc∆t (A.24)
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Since we’re measuring the length directly, we can say without problems that ∆t = 0, and we get

∆x′ = γ∆x =
∆x√
1− β2

=
∆x√
1− v2

c2

(A.25)

Therefore, for β 6= 0 we have ∆x′ < ∆x. We call ∆x = l0 as the proper lenght of this rod.
Note that a major consequence of this is that a rigid body in the classical sense of the term cannot be
conceived in Special Relativity.
A second effect that we stated before and didn’t formalize properly is that of time dilation. Taken
a clock at rest in a system K ′ and two events happening at some coordinate (x′, y′, z′) of K ′. We
have that the time elapsed between the two events will be ∆t′ = t′2 − t′1, and therefore, using Lorentz
transformations we get, in K

∆t = γ

(
t′1 +

β

c
∆x′

)
(A.26)

Imposing that the events happen at the same place (x′, y′, z′) we have ∆x′ = 0 and therefore

∆t = γ∆t′ (A.27)

Therefore, the clock in the still frame is measuring smaller time intervals, and the timemeasured is dilated.

§§ A.4.2 Velocity Transformations

As we have seen velocities have an upper bound which is the speed of light. It’s possible to find the
transformations of velocities from the transformations (A.21) and applying them to differentials.
We have 

dt
dx
dy
dz

 =


γ βγ

c 0 0
βγ
c γ 0 0
0 0 1 0
0 0 0 1



dt′

dx′

dy′

dz′

 (A.28)

Rearranging the terms we have finally 

vx =
v′x + βc

1 + β
c v

′
x

vy =
v′y

γ
(
1 + β

c v
′
x

)
vz =

v′z

γ
(
1 + β

c v
′
x

)
(A.29)

Approximating for v << c we get the usual velocity composition formula with an added relativistic
correction 

vx ≈ v′x + V

(
1− v2

′

x

c2

)

vy ≈ v′y − v′xv
′
y

β

c

vz ≈ v′z − v′xv
′
z

β

c

(A.30)
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Or, in vector form

vi = vi
′
+ V i − vi

′

c2
(V iv′i) (A.31)

Note how v and v′ are tied asymetrically in the transformation. Consider now a simple planar motion
in the xy plane, where vi = (vx, vy, 0), we can find the law of transformation of angles considering
that vi can be rewritten in polar coordinates, as follows

vx = v cos θ

vy = v sin θ

vz = 0

Applying the transformations, we have
v cos θ =

v′ cos θ′ + βc

1 + β
c v

′ cos θ′

v sin θ =
v′ sin θ′

γ
(
1 + β

c v
′ cos θ′

) (A.32)

Where we used that the motion in the new system will be still planar.
Rewritten in other terms, we have

tan θ =

v′ sin θ′

γ
(
1+ β

c v
′ cos θ′

)
v′ cos θ′+βc

1+ β
c v

′ cos θ′

=
v′ sin θ′

γ (v′ cos θ′ + βc)
(A.33)

Which explicitates the change of direction of velocity between different coordinate systems.

§ A.5 4-Vectors
1

As we have already suggested before, the 4-tuple xµ = (ct, x, y, z) can be seen as a set of coordinates
in spacetime, or as a radius vector. The square of vectors in spacetime can be seen as a non-euclidean
scalar product as follows

xµxµ = gµνx
µxν = (x0)2 − (x1)2 − (x2)2 − (x3)2 (A.34)

Where gµν is the metric tensor of spacetime

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.35)

From what we wrote for special relativity itself, we have a new definition

1From here on, all greek indexes (µ, ν, σ, · · · ) are to be intended as spacetime indexes, and latin indexes (i, j, k, · · · ) as usual
3D indexes if not otherwise stated
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Definition A.5.1 (4-Vector). A 4-vector is a 4-tuple that transforms between coordinate frames using
Lorentz transformations, as

aµ = Λµνa
ν (A.36)

Where λµν is the already defined transformation matrix of the Lorentz transformations.

Using the metric tensor one can transforms between covariant vectors and contravariant vectors
using aµ = gµνa

ν , and due to the semidefinite signature of the metric one has that ai = −ai, where ai

is the spatial part of the vector. Note also that inserting it into the formula for a scalar product (aµbµ)
one gets back what we had defined before.
It’s also possiible to define 4-scalars, which are relativistic invariants. One of such 4-scalars is the square
of a 4-vector or the scalar product between 2 4-vectors.
Another way of writing 4-vectors is with a tuple composed as follows

aµ = (a0, ai) (A.37)

Where the first component is known as the polar component of the 4-vector, and the second is known
as the axial component of the 4-vector. Therefore we can write

xµ = (ct, xi)

xµ = (ct,−xi)
(A.38)

§§ A.5.1 4-Velocity and 4-Acceleration

It’s possible to define a 4-vector analogue to the velocity of a particle. Indicating with τ the proper
time we define the 4-velocity uµ as

uµ =
dxµ

dτ
(A.39)

Since dτ = c
γdt we have

uµ =
γ

c

dxµ

dt

In other words
uµ =

(
γ,
γ

c
vi
)

Note that the square of uµ is a relativistic invariant and special in nature due to its unitary value, in fact

uµuµ = γ2 − γ2
v2

c2
= 1

The 4-acceleration wµ is defined analogously derivating again with respect to the proper time, hence

wµ =
γ

c
duµ t =

(
γ

c

dγ

dt
,
γ

c2
dγvi

dt

)
(A.40)

Deriving with respect to time we have firstly that

dγ

dt
=

viai(
1− v2

c2

) 3
2

=
γ3

c2
viai
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And therefore

wµ =
duµ

dτ
=
γ

c

(
γ3

c2
viai,

γ

c3
vjajv

i +
γ

c
ai
)

(A.41)

It’s possible to demonstrate that wµuµ = 0, i.e. that 4-velocity and 4-acceleration are always mutually
orthogonal. In fact

d

dτ
uµwµ =

duµ

dτ
uµ +

duµ
dτ

uµ = 2uµwµ = 0

§ A.6 Exercises

Exercise A.6.1 (Uniformly Accelerated Motion). Solve the motion of an uniformly accelerated particle in
the context of Special Relativity.
Consider that the 4-acceleration is constant only in the frame comoving with the particle.
S O L U T I O N
We have that in the comoving frame γ = 1 and v = 0, therefore

wµ =

(
0,
v̇i

c2

)
Since a is constant we rotate the 3D system in order to get a ‖ x, therefore getting

wµ =
(
0,
a

c2
, 0, 0

)
Note that we can also define a 4-scalar

wµwµ = −a
2

c2

Changing to the fixed frame of reference, we have

wµ
′
=
γ

c

(
γ3

c2
viv̇i,

γ3

c2
vj v̇jv

i +
γ

c
v̇i
)

=
γ4

c2

(
viv̇i
c
,
v2

c2
v̇i +

v̇i

γ2

)
Using that (

v2

c2
+

1

γ2

)
v̇i = v̇i

We end up with the following simplified result

wµ
′
=
γ4

c2

(
1

c
v̇ivi

)
Which gives us the following differential equation

wµwµ =
γ8

c4

(
1

c2
(viv̇i)

2

)
− γ8

c4
v̇2 = −a

2

c4
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Simplifying the LHS we get

γ8

c4

(
v2

c2
v̇2 − v̇2

)
=
γ8

c4

(
v2

c2
− 1

)
= −γ

6

c4
v̇2

Therefore, putting it back into the first equation, we get

−γ6v̇2 = −a2 =⇒ γ3
dv

dt
= a

Note that using the derivative of γ with respect to time we can rewrite the LHS as the derivative of a
product, in fact

d(γv)

dt
=
γ3

c2
v2v̇ + γv̇ = v̇

(
γ3

c2
v2 + γ

)
= γ3v̇

(
v2

c2
+

1

γ2

)
= γ3v̇

Therefore, finally
d(γt)

dt
= a =⇒ γv(t) = at+ c

Imposing that v(0) = 0 we get c = 0 and therefore, solving for v(t), we have

v(t)√
1− v2

c2

= at =⇒ v2 = a2t2 − a2t2

c2
v2 =⇒ v2 = a2t2

(
1 +

a2t2

c2

)−1

Therefore

v(t) =
at√

1 + a2t2

c2

Then, by direct integration we can find x(t)

x(t) =

ˆ
at√

1 + a2t2

c2

dt =
c2

2a

ˆ
1√

1 + w2
dw =

c2

2a

(
2
√
1 + w + k

)
Where we used the substitution w = a2t2

c2 . Imposing the initial condition that x(0) = 0 we get k = −1,
and therefore

x(t) =
c2

a

(
2

√
1 +

a2t2

c2
− 1

)
The proper time of the particle is

τ =
1

c

ˆ s

s0

ds =

ˆ t

t0

1

γ
dt =

ˆ t

0

√
1− v2

c2
dt

From the definition of v(t) we have that

γ =
1

1− a2t2

c2
(
1+ a2t2

c2

)



APPENDIX A. SPECIAL RELATIVITY 260

Therefore our integral becomes

τ =

ˆ t

0

√
1− a2t2

c2
(
1 + a2t2

c2

)dt = a

c

ˆ a
c t

0

√
1− z2

1 + z2
dz =

a

c

ˆ a
c t

0

1√
1 + z2

dz =
a

c
arcsin

(
at

c

)
Where we used the substitution at

c = z



B Waves

§ B.1 Plane Harmonic Waves

The wave equation in 4d is the following second order partial differential equation

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
=

1

u2
∂2f

∂t2
(B.1)

Taken the simpler case of a wave equation moving through a single spatial dimension, i.e.

∂2f

∂x2
=

1

u2
∂2f

∂t2

We already know that it has a simple solution in terms of cosines (or sines)

f(x, t) = f0 cos(kx− ωt) (B.2)

Given that
ω

k
= u

The solution (B.2) is of particular importance in treating electromagnetic waves (or waves in general). It
tells us that the wave f(x, t) varies sinusoidally with the distance x and it’s harmonic in t for any given
point in space.
Fixing the position and moving only through time, going to a new time t+∆t, we have that due to
the previous constraint the point x will have moved by ∆x = u∆t.
It’s exactly like adding a phase to the wave (hence the name phase velocity of u). Note that if we used
another solution, say

fr(x, t) = f0 cos(kx+ ωt)

We would describe a wave going back, with displacement ∆x = −u∆t for some given time.
In terms of electrodynamics, all these constants have names:

• u is the phase velocity

• λ is the wavelength

• ω is the angular frequency

• k is the angular wavenumber

261
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There are also other derived values that have given name, which are

• T the period, for which λ = uT = 2π
k

• ν the frequency, for which ν = u
λ = ω

2π = T−1

• σ the spectroscopic wavenumber, for which σ = 1
λ

Going back to waves in 3 spatial dimensions, the general solution of the wave equation (B.1) is known
as a plane harmonic wave, and has the following mathematical shape

f(x, y, z, t) = f0 cos
(
kixi − ωt

)
(B.3)

Here the angular wavenumber (or wavenumber for simplicity), is a vector, and is known as the
propagation vector ki. The magnitude of this vector is the actual wavenumber, i.e.

k =
√
kiki

The physical meaning of this solution resides mostly inside the cosine argument, kixi − ωt.
Setting it as constant we get the equation of a plane in space, which are called the surfaces of constant
phase. The normals of these surfaces (planes) are proportional and perpendicular to the wavevector,
and these planes “move” in that direction at a rate equal to the phase velocity u

§§ B.1.1 Alternative Representations of the Wavefunction

We can think immediately about alternative representations of the wavefunction (B.3). One of these is
by using the definition of the constant phase surfaces we gave before, in fact, as we said ki = kn̂i,
and therefore

f(xi, t) = f0 cos
[
(xin̂i − ut)k

]
Remember that ku = ω.
Another one, is by using complex functions. Using the Euler identity for the complex exponential we
can write

f(xi, t) = F0e
i
(
kixi−ωt

)
Note that since generally F0 ∈ C, the actual physical quantity is the real part of f .
One use of the complex wavefunction is immediate when dealing with spherical waves, where xi = r
and

f(r, t) =
1

r
cos(kr − ωt) = Re

{
1

r
ei(kr−ωt)

}
(B.4)

Ignoring the real part on the right it’s clear that the second will be extremely easier to manipulate.

§ B.2 Group Velocity

Suppose now that we have two harmonic waves φ, ψ with different angular frequencies ω1 = ω +∆ω
and ω2 = ω −∆ω.
In general also the wavenumbers will differ, and we’ll call them for simplicity k1 = k+∆k, k2 = k−∆k.
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Supposing that the waves have the same amplitude A and are traveling in the same direction (say z),
the superposition of the two will be

Ψ = ψ + φ = A
(
ei((k+∆k)z−(ω+∆ω)t) + ei((k−∆k)z−(ω−∆ω)t)

)
Collecting terms

Ψ = Aei(kz−ωt)
(
ei(z∆k−t∆ω) + e−i(z∆k−t∆ω)

)
Recognizing a 2 cos(· · ·) on the right we have that

Ψ = 2Aei(kz−ωt) cos (z∆k − t∆ω)

The result of this superposition is a new wave η, with amplitude B = 2A multiplied by a “modulation
envelope” given by the cosine.
From the previous results it’s clear that this envelope doesn’t travel at the phase velocity, in fact, we
have a new propagation velocity, known as the group velocity

ug =
∆ω

∆k
(B.5)

At the limit, we have that ω′(k) = ug, and since ω = ku or ω = kc/n we have

ug =
d

dk

(
kc

n

)
=
c

n
− ck

n2
dn

dk
= u

(
1− k

n

dn

dk

)
Note that we wrote n = n(k)! The refraction index is in general dependent on the angular frequency
ω, and therefore on k! As an example, you can see how different wavelengths of light behave passing
through glass. They go through when λ is in the range of visible light, but are completely opaque in
infrared, i.e. n must vary with frequency (or wavelength, or wavenumber, or …)
From the previous monologue and from the definitions we can then say that

ug = u

(
1− k

n

dn

dk

)
ug = u− λ

du

dλ
1

ug
=

1

u
− λ0

c

dn

dλ0

(B.6)

Where λ0 is the vacuum wavelength.
Phase velocity and group velocity can only be equal in vacuum (n = 0), where ug = u = c.
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