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Introduction

The idea of writing this came from a mix of pure laziness and despair in preparing two exams, Analisi
Vettoriale (Vector Analysis) and Metodi e Modelli Matematici per la Fisica (Mathematical Models and
Methods for Physics, basically just pure Complex Analysis and Functional Analysis), that I have to sustain
in my BSc course in Physics here at Sapienza University of Rome.
These two courses are deeply intertwined and it’s really difficult to study them apart due to the sheer
volume of things that either are done for half in one course and half in the other one, or they simply
get generalized in the second, breaking up the logical flow one might get from studying these two
seemingly completely different subjects.
There will surely be errors in grammar, typing and probably some mathematical inaccuracies so for
any question, inquiry or you just want to say hi to me, don’t wait in sending me an email here
cheri.1686219@studenti.uniroma1.it.
A huge thanks to anyone of you that’ll read this, I hope it will be useful for you as it is to me.
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Notation

• F Ordered scalar field, R or C when not specified

• an, (a)n Sequence

• ((a)k)n Sequence of sequences

• x, xµ Vector

• x ∧ y, εµνγx
νyγ Cross product of x, y

• ∇f , ∂µf , ∂f
∂xµ Gradient of f

• 〈∇, f〉, div(f), ∂µfµ, ∂f
µ

∂xµ Divergence of f

• ∇∧ f, rot(f), εµνγ∂
νfγ Rotor of f

• Jf(x), ∂µf
ν , ∂f

µ

∂xν Jacobian matrix of f

• Hf (x), ∂µ∂νf , ∂
2
µνf ,

∂2f
∂xµ∂xν Hessian matrix of the function f

• ∀† For almost all

• C∞
c (R) = K Space of test functions, (smooth with compact support)

• Zmf , Sf , P
m
f Sets of zeros of order m, singularities or poles of order m of a function f

• an → a Simple convergence

• an ⇒ a Uniform convergence

• an
A−→ a Absolute convergence

• an
T−→ a Total convergence

• an⇀w aWeak convergence

• an⇀K a K−convergence

• an⇀? a K?−convergence
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1 Complex Numbers and Functions

§ 1.1 Complex Numbers

Definition 1.1.1 (Complex Numbers). Define with C the set of complex numbers, i.e. the set of
numbers z ∈ C : z = (x, y) and x, y ∈ R.
We define the real and imaginary parts of z as follows

Re(z) = x

Im(z) = y
(1.1)

Definition 1.1.2 (Operations in C). Take z1, z2 ∈ C, then we define

z1 = z2 ⇐⇒ Re(z1) = Re(z2), Im(z1) = Im(z2)

z1 + z2 = (Re(z1) +Re(z2), Im(z1) + Im(z2))

z1z2 = (Re(z1)Re(z2)− Im(z1)Im(z2),Re(z1)Im(z2) + Im(z1)Re(z2))

Theorem 1.1. With the previous definitions the set C forms a field.

Definition 1.1.3 (Imaginary Unit). We define the imaginary unit i = (0, 1) ∈ C. From this definition
and the definition of product of two complex numbers, we have that i2 = −1
With this definition, we have

∀z ∈ C z = Re(z) + iIm(z) (1.2)

Definition 1.1.4 (Complex Conjugate). Taken z ∈ C, we call the complex conjugate of z the number
w such that

w = Re(z)− iIm(z) (1.3)

This number is denoted as z

Definition 1.1.5 (Complex Module). We define the module or norm of a complex number, the
following operator.

‖z‖ =
√
zz =

√
Re2(z) + Im2(z) (1.4)

9
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Definition 1.1.6 (Complex Inverse). The inverse of a complex number z ∈ C is defined as z−1 and it’s
calculated as follows

z−1 =
z

‖z‖2
(1.5)

Definition 1.1.7 (Polar Form). Taken a complex number z ∈ C one can define it in polar form with its
modulus r and its argument θ. We have that, if z = x+ iy

r =
√
x2 + y2 = ‖z‖2

tan(θ) =
y

x

(1.6)

Definition 1.1.8 (Principal Argument). Taken arg(z) = θ we can define two different arguments, due
to the periodicity of the tan function.

1. Arg(z) ∈ (−π, π] called the principal argument

2. arg(z) = Arg(z) + 2kπ, k ∈ Z called the argument

As a rule of thumb, using the previous definition of argument of a complex number z = x+ iy, we
have

Arg(z) =


arctan(y/x)− π x < 0, y < 0

arctan(y/x) x ≥ 0, z 6= 0

arctan(y/x) + π x < 0, y ≥ 0

(1.7)

Definition 1.1.9 (arg+). Given z ∈ C we define the arg+(z) as the only value of arg(z) such that
0 ≤ θ < 2π.
In case we have a polydromic function, in order to specify we’re using this argument, there will be a +
as index.
I.e. log+(z), [z

a]+,
√
z
+
, · · · and so on.

Theorem 1.2 (De Moivre Formula). A complex number z ∈ C in polar form can be written with
complex exponential and sine and cosine function as follows.

z = ‖z‖2ei arg z = ‖z‖2 (cos(arg z) + i sin(arg z)) (1.8)

This formula easily generalizes the calculus of exponentials of complex numbers. With this
definition, it’s obvious that the n−th root of a complex number n

√
z has actually n− 1 results,

given the 2π−periodicity of the arg(z) function.

§ 1.2 Regions in C

Definition 1.2.1 (Line). A line λ in C, from z1, z2 can be written as follows

λ(t) = z1 + t(z2 − z1) t ∈ [0, 1] (1.9)
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If t ∈ R this defines the line lying between z1, z2. Its non-parametric representation is the following

{λ} :=

{
z ∈ C| Im

(
z − z1
z2 − z1

)
= 0

}
(1.10)

Where z = λ(t).

Definition 1.2.2 (Circumference). A circumference γ centered in a point z0 ∈ C with radius R is defined
as follows

γ(θ) = z0 +Reiθ θ ∈ [0, 2π] (1.11)

Non parametrically, it can be defined as follows

{γ} := {z ∈ C| ‖z − z0‖ = R} (1.12)

§§ 1.2.1 Extended Complex Plane Ĉ

Definition 1.2.3 (Extended Complex Plane). We define the extended complex plane Ĉ as follows

Ĉ = C ∪ {∞} (1.13)

This can be imagined by projecting C into the Riemann sphere centered in the origin.

Definition 1.2.4 (Points in Ĉ). Given a point z ∈ C, z = x+ iy we can find its coordinates with the
following transformation

ẑ = (xt, yt, 1− t) ∈ Ĉ (1.14)

Where the condition ‖ẑ‖ = 1must hold, defining the value of t ∈ R Inversely, given ẑ = (x1, x2, x3) ∈ Ĉ
one finds

z =
x1 + ix2
1− x3

(1.15)

§ 1.3 Elementary Functions

Definition 1.3.1 (Exponential). The exponential function z 7→ ez with z ∈ C is defined as follows

ez = eRe(z)+iIm(z) = eRez (cos(Im(z)) + i sin(Im(z))) (1.16)

This gives

‖ez‖ =
∣∣∣eRe(z)

∣∣∣
arg(ez) = Im(z) + 2πk k ∈ Z

(1.17)

We have therefore, for z, w ∈ C
ezew = ez+w

ez

ew
= ez−w

(1.18)
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Definition 1.3.2 (Logarithm). We define the logarithm function z 7→ log z as follows

log(z) = log ‖z‖+ i arg(z) (1.19)

It’s evident how this function has multiple values for the same z value, and therefore is known as a
polydromic function, like the square root. We also define the principal branch of the logarithm as
Log(z)

Log(z) = log ‖z‖+ iArg(z) (1.20)

Lastly we define the log+(z) as follows

log+(z) = log(‖z‖) + i arg+(z) (1.21)

Definition 1.3.3 (Branch of the Logarithm). A general branch of the log function is defined as the
function f(z) : D ⊂ C −→ C such that

ef(z) = z (1.22)

§§ 1.3.1 Complex Exponentiation

Definition 1.3.4 (Complex Exponential). Taken s, z ∈ C, we define the complex exponential a follows,
taken z a variable

zs = es log(z) z 6= 0 (1.23)

Its derivative has the following value

d

dz
zs = se(s−1) log(z) = szs−1 (1.24)

Alternatively, we define

sz = ez log(s) (1.25)

§§ 1.3.2 Properties of Trigonometric Functions

Definition 1.3.5 (Trigonometric Functions). Using De Moivre’s formula, we define

sin(z) =
1

2i

(
eiz − e−iz

)
cos(z) =

1

2

(
eiz + e−iz

) (1.26)

Definition 1.3.6 (Hyperbolic Functions). We define the hyperbolic functions as follows, given z = iy

sinh(y) = −i sin(iy)
cosh(y) = cos(iy)

(1.27)
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For a general value of z, we define

sinh(z) =
1

2

(
ez − e−z

)
cosh(z) =

1

2

(
ez + e−z

) (1.28)

Theorem 1.3 (Trigonometric Identities). Given z, z1, z2 ∈ C we have

sin2(z) + cos2(z) = 1

sin(z1 ± z2) = sin(z1) cos(z2)± cos(z1) sin(z2)

cos(z1 ± z2) = cos(z1) cos(z2)∓ sin(z1) sin(z2)

sin(z) = sin (Re(z)) cosh (Im(z)) + i cos (Re(z)) sinh (Im(y))

cos(z) = cos (Re(z)) cosh (Im(z))− i sin (Re(z)) sinh (Im(y))

‖sin(z)‖2 = sin2 (Re(x)) + sinh
2
(Im(y))

‖cos(z)‖2 = cos2 (Re(x)) + sinh
2
(Im(y))

cosh
2
(z)− sinh

2
(z) = 1

sinh(z1 ± z2) = sinh(z1) cosh(z2)± cosh(z1) sinh(z2)

cos(z1 ± z2) = cosh(z1) cosh(z2)± sinh(z1) sinh(z2)

sinh(z) = sinh (Re(z)) cos (Im(z)) + i cosh (Re(z)) sin (Im(y))

cos(z) = cosh (Re(z)) cos (Im(z)) + i sinh (Re(z)) sin (Im(y))

‖sin(z)‖2 = sinh
2
(Re(x)) + sin2 (Im(y))

‖cos(z)‖2 = cosh
2
(Re(x)) + sin2 (Im(y))

(1.29)

Definition 1.3.7 (Inverse Trigonometric Functions). Given z ∈ C we define

arcsin(z) = −i log
(
iz +

√
1− z2

)
arccos(z) = −i log

(
z + i

√
1− z2

)
arctan(z) = − i

2
log

(
i− z

i+ z

) (1.30)

Definition 1.3.8 (Inverse Hyperbolic Functions). Given z ∈ C we define

asinh(z) = log
(
z +

√
z2 + 1

)
arccos(z) = log

(
z +

√
z2 − 1

)
atanh(z) =

1

2
log

(
1 + z

1− z

) (1.31)
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2 Abstract Spaces

§ 2.1 Metric Spaces

§§ 2.1.1 Topology

Definition 2.1.1 (Metric Space). Let X be a non-empty set equipped with an application d, defined as
follows

d :X ×X −→ F
(x, y) → d(x, y)

(2.1)

Where F is an ordered field.
The couple (X, d) is said to be a metric space, if and only if ∀x, y, z ∈ X the application d satisfies the
following properties

1. d(x, y) ≥ 0

2. d(x, x) = 0

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y)

Definition 2.1.2 (Ball). Let (X, d) be a metric space. We then define the open ball of radius r,
centered in x in X (BXr ), and the closed ball of radius r centered in x (BXr ) as follows

BXr (x) : = {u ∈ X| d(u, x) < r}

BXr (x) : = {u ∈ X| d(u, x) ≤ r}
(2.2)

When there won’t be doubts on on where the ball is defined, the superscript indicating the set of
reference will be omitted.

We’re now ready to define the topology on a metric space

Definition 2.1.3 (Open Set). Let (X, d) be a metric space, and A ⊆ X a subset. A is said to be an
open set if and only if

∀x ∈ X ∃BXr (x) ⊂ A (2.3)

15
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Definition 2.1.4 (Complementary Set). Let A be a generic set, then the set Ac is defined as follows

Ac := {a /∈ A} (2.4)

This set is said to be the complementary set of A.
It’s also obvious that A ∩Ac = {}

Definition 2.1.5 (Closed Set). Alternatively to the notion of open set, we can say that E ⊆ X is a
closed set, if and only if

∀x ∈ Ec ∩X ∃BXr (x) ⊂ Ec ∩X (2.5)

Remark. A set isn’t necessarily open nor closed!

Proposition 1. 1. The set BXr (x) is open

2. The set BXr (x) is closed

Proof. Let A = BXr (x). If A is open, we have therefore, applying the definition of open set, that

∀x ∈ A ∃ε > 0 : BXε (x) ⊂ A

So
x0 ∈ A =⇒ d(x, x0) < r

∴ ε = r − d(x, x0) > 0

Then, by definition of open ball we have

y ∈ BXε (x) =⇒ d(x, y) < ε

Then, we can say that
d(y, x0) ≤ d(y, x) + d(x, x0) < ε+ d(x, x0) = r

∴ y ∈ BXε (x) =⇒ y ∈ BXr (x0) ⊂ A

The demonstration of the second point is exactly the same, whereby we take E as our closed ball and
A = Ec

Proposition 2. Let (X, d)

1. The sets {}, X are open

2. The sets {}, X are closed

3. If {Ai}ni=1 is a collection of open sets, then A =
⋂n
i=1Ai is open

4. If {Ci}ni=1 is a collection of closed sets, then C =
⋃n
i=1 Ci is closed

5. Let I ⊂ N be an index set, then

(a) If {Aα}α∈I is a collection of open sets, then B =
⋃
α∈I Aα is open

(b) If {Cα}α∈I is a collection of closed sets, then D =
⋂
α∈I Cα is closed
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Proof. The first two statements are of easy proof. Let BXε ⊂ {}. This means that BXε is empty and
therefore BXε = {}, which makes it open by definition. Therefore we have that {}c = X, and X must
be closed, but if we reason a bit, we can say that ∀x ∈ X BXε (x) ⊂ X, which means that X is open,
thus Xc = {} must be closed.
Since we gave a proof for {} and X being open, we have that these two sets are both open and closed.
These two sets are said to be clopen.
For the other statements we use the De Morgan laws on set calculus, therefore we have

x ∈
n⋂
i=1

Ai =⇒ x ∈ Ai

∴ ∃εi : BXεi (x) ⊂ Ai

Taking ε = mini∈I εi we have

BXε (x) ⊂ BXε (x) =⇒ BXε (x) ⊂
n⋂
i=1

Ai = A

And A is open
If we let C = Ac we have that

C = Ac =

(
n⋂
i=1

Ai

)c

=

n⋃
i=1

Ac
i

∴ C is closed

For the last two we proceed as follows

x ∈ Aα =⇒ ∃α0 ∈ I : x ∈ Aα0

∴ ∃ε > 0 : BXε (x) ⊂ Aα0
⊂
⋃
α∈I

= B

For the last one, we use the De Morgan laws and the proposition is demonstrated

Definition 2.1.6 (Internal Points, Closure, Border). Let (X, d) be a metric space and A ⊂ X a subset.
We define the following sets from A

1. A◦ =
⋃
α∈I Gα is the set of internal points of A, where I is an index set and Gα ⊂ A are open

2. A =
⋂
β∈J Fβ is the closure of A, where J is another index set and Fβ ⊂ A are closed

3. ∂A = A \A◦ = A ∪ (A◦)
c
is the border of A

Proposition 3. 1. A is an open set iff A = A◦

2. A is closed iff A = A

3. A◦ = (A◦)
c

4. A =
[
(Ac)

◦]c
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5. (A ∩B)
◦
= A◦ ∩B◦

6. A ∩B = A ∪B

Proof. Let O(A) be a collection of open sets, such that ∀G ∈ O(A) =⇒ G ⊂ A, then

A = A◦ =⇒ A =
⋃

G∈O(A)

G

Therefore, being a union of a finite number of open sets, A is open.
For the same reason as before and the previous proposition, we have that A is closed
For the third proposition, we have

(
Ac
)c

=

( ⋂
Ac⊂F

F

)c

=
⋃
Ac⊂F

F c =
⋃

G∈O(A)

G = A◦

The others are easily demonstrated throw this process, iteratively

Proposition 4. Let (X, d) be a metric space, and A ⊂ X, x ∈ X

1. x ∈ A ⇐⇒ ∃ε > 0 : Bε(x) ⊂ A

2. x ∈ A ⇐⇒ ∀ε > 0 Bε(x) ∩A 6= {}

3. x ∈ ∂A ⇐⇒ ∀ε > 0 Bε(x) ∩A 6= {} ∧Bε(x) ∩A 6= {}

Proof. 1 Let I(A) := {x ∈ X| ∃ε > 0 : Bε(x) ⊂ A}

x ∈ I(A) =⇒ ∃ε > 0 : Bε(x) ⊂ A, ∴ x ∈
⋃
G⊂A

G

But
x ∈ A◦ =⇒ ∃G ⊂ X open : x ∈ G =⇒ ∃ε > 0 : Bε(x) ⊂ G ⊂ A

∴ A◦ ⊂ I(A) 3 x, I(A) ⊂ A by definition, ∴ I(A) = A◦

2 For the second proposition, we have

A =
[
(Ac)

◦]c
=⇒ x ∈ A ⇐⇒ x ∈ (Ac)

◦
=⇒ ∀ε > 0 Bε(x) 6⊂ Ac

∴ ∀ε > 0 Bε(x) ∩A 6= {}

3 For the last one, we have, taking into account the first two proofs

x ∈ ∂A ⇐⇒ x ∈ A \A◦ =⇒ x ∈ A ∧ x /∈ A◦

1 ∧ 2 =⇒ x ∈ A ⇐⇒ ∀ε > 0 Bε(x) ∩A 6= {}
∴ x /∈ A◦ ⇐⇒ ∀ε > 0 Bε(x) ∩Ac 6= {}
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Definition 2.1.7 (Isometry). Let (X, d), (Y, ρ) be two metric spaces and f an application, defined as
follows

f : (X, d) → (Y, d)

f is said to be an isometry iff

∀x1, x2 ∈ X, ρ(f(x1), f(x2)) = d(x1, x2)

Remark. If f is an isometry, then f is injective, but it’s not necessarily surjective

Example 2.1.1. Let X = [0, 1] and Y = [0, 2], therefore

f :[0, 1] → [0, 2]

x→ f(x) = x

f is obviously an isometry, since, for x, y ∈ [0, 1]

d(f(x), f(y)) = d(x, y)

But it’s obviously not surjective.

Definition 2.1.8 (Diameter of a Set). Let A be a set and the couple (A, d) be a metric space. We define
the diameter of A as follows

diam (A) = sup
x,y∈A

(d(x, y))

§ 2.2 Convergence and Compactness

Definition 2.2.1 (Convergence). Let (X, d) be a metric space and x ∈ X. A sequence (xk)k≥0 in X is
said to converge in X and it’s indicated as xk → x ∈ X, iff

∀ε > 0 ∃N > 0 : ∀k ≥ N, d(xk, x) < ε ∴ lim
k→∞

xk = x

Theorem 2.1 (Unicity of the Limit). Let (X, d) be a metric space and (xk)k≥0 a sequence in X. If
xk → x ∧ xk → y, then x = y

Definition 2.2.2 (Adherent point). Let (X, d) be a metric space and A ⊂ X. x ∈ X is said to be an
adherent point of A if ∃(xk)k≥0 ∈ A : xk → x ∈ X. The set of all adherent points of A is called
ad(A)

Definition 2.2.3 (Accumulation point). Let (X, d) be a metric space and A ⊂ X. x ∈ X is an
accumulation point of A, or also limit point of A if ∃(xk)k≥0 : xk 6= x ∧ xk → x ∈ ad(A)

Proposition 5. Let (X, d) be a metric space and A ⊂ X, then A = ad(A)
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Proof. Let Y = ad(A), then

x ∈ A =⇒ ∀ε > 0 Bε(x) ∩A 6= {}
∴ ∀n ∈ N B 1

n
(x) ∩A 6= {} =⇒ ∀n ∈ N ∃xn ∈ B 1

n
(x)

But d(x, xn) < n−1, therefore x ∈ Y =⇒ x ∈ ad(A), and by definition

∃(xn)n≥0 : ∀ε > 0 ∃N ∈ N : ∀k ≥ N d(xk, x) < ε =⇒ xN ∈ Bε(x) ∴ xN ∈ A

∴ ∀ε > 0 xN ∈ Bε(x) ∩A 6= {} =⇒ x ∈ A =⇒ Y ⊂ A, ∴ Y = ad(A) = A

Proposition 6. Let (X, d) be a metric space and A ⊂ X. Then A is closed iff ∃(xk)k≥0 ∈ A : xk →
x ∈ A =⇒ ad(A) ⊂ A

Definition 2.2.4 (Dense Set). Let (X, d) be a metric space and A,B ⊂ X. A is said to be dense in
B iff B ⊂ A, therefore ∀ε > 0 ∃y ∈ A : d(x, y) < ε. One example for this is Q ⊂ R, with the usual
euclidean distance defined through the modulus.

Definition 2.2.5. Let (X, d) be a metric space and (xk)k≥0 ∈ X. The sequence xk is said to be a
Cauchy sequence iff

∀ε > 0 ∃N > 0 : ∀k, n ≥ N d(xk, xn) < ε

Proposition 7. Let (X, d) be a metric space and (xk)k≥0 ∈ X a sequence. Then, if xk → x, xk is a
Cauchy sequence

Definition 2.2.6 (Complete Space). Let (X, d) be a metric space. (X, d) is said to be complete iff
∀(xk)k≥0 ∈ X Cauchy sequences, we have xk → x ∈ X

Theorem 2.2 (Completeness). Let (X, d) be a metric space and Y ⊂ X. (Y, d) is complete iff
Y = Y in X

Proof. Let (Y, d) be a complete space, then

(xk) ∈ Y Cauchy sequence =⇒ ∃y ∈ Y : xk → y

Let z ∈ ad(A) and ηk a subsequence of xk, then

∃(ηk) ∈ Y : ηk → z =⇒ ∃y ∈ Y : ηk → y ∴ z = y =⇒ ad(Y ) ⊂ Y

Going the opposite way we have that ad(Y ) = Y and therefore Y = Y

Definition 2.2.7 (Compact Space). A metric space (X, d) is said to be compact or sequentially
compact if

∀(xk) ∈ X xk → x ∈ X, ∃{(xkn)} : xkn → x ∈ X

Theorem 2.3 (Heine-Borel). Let K ⊂ Rn, then K is compact if and only if K is closed and
bounded
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<++>

Theorem 2.4. Let (X, d) be a compact space. Then (X, d) is also complete

Proof. (X, d) is compact, therefore

∀(xk) ∈ X Cauchy sequence =⇒ xk → x ∈ X

Taken (xnk
)k ∈ X a subsequence, we have

xk → x =⇒ xnk
→ x ∈ X

Definition 2.2.8 (Completely Bounded). Let (X, d) be a metric space. X is totally bounded iff

∃Y ⊂ X : ∀ε > 0,∀x ∈ Y X =
n⋃
i=1

Bε(x)

Definition 2.2.9 (Poligonal Chain). Let z, w ∈ C. We define a polygonal [z, w] as follows

[z, w] := {z, w ∈ C| z + t(w − z), t ∈ [0, 1] ⊂ R}

A polygonal chain will be indicated as follows Pz,w and it’s defined as follows

Pz,w =

n−1⋃
k=1

[zk, zk+1] = [z, z1, · · · , zn−1, w]

It can also be defined analoguously for every metric space (X, d) 6= (C, ‖·‖), where ‖·‖ : C → R is the
usual complex norm ‖z‖ =

√
zz =

√
Re(z)2 + Im(z)2

Definition 2.2.10 (Connected Space). Let (G, d) be a metric space, G is connected if

∀z, w ∈ G ∃Pz,w ⊂ G

Definition 2.2.11 (Contraction Mapping). Let (X, d) be a complete metric space. Let T : X −→ X. T
is said to be a contraction mapping or contractor if

∀x, y ∈ X ∃q ∈ [0, 1) : d(T (x), T (y)) ≤ qd(x, y) (2.6)

Note that a contractor is necessarily continuous.

Theorem 2.5 (Banach Fixed Point). Let (X, d) be a complete metric space, with X 6= {} and
equipped with a contractor T : X −→ X. Then

∃!x? ∈ X : T (x?) = x? (2.7)
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Proof. Take x0 ∈ X and a sequence xn : N −→ X, where

xn = T (xn−1), ∀n ∈ N

It’s obvious that

d(xn+1, xn) = d(T (xn), T (xn−1)) ≤ qd(xn, xn−1) ≤ qnd(x1, x0)

We need to prove that xn is a Cauchy sequence. Let m,n ∈ N : m > n, then

d(xm, xn) ≤ d(xm, xm−1) + · · ·+ d(xn+1, xn) ≤ qm−1d(x1, x0) + · · ·+ qnd(x1, x0)

Regrouping, we have

d(xm, xn) ≤ qnd(x1, x0)

m−n−1∑
k=0

qk ≤ qnd(x1, x0)

∞∑
k=0

qk = qnd(x1, x0)

(
1

1− q

)
By definition of convergence, we have then

∀ε > 0, ∃N ∈ N : ∀n > N d(sn, s) < ε

Then
qnd(x1, x0)

1− q
< ε =⇒ qn <

ε(1− q)

d(x1, x0)
, ∀n > N

Therefore, after taking m > n > N , we have

d(xm, xn) < ε

Therefore xn is a Cauchy sequence. Since (X, d) is a complete metric space, this sequence must have a
limit xn → x? ∈ X, but, by definition of convergence and limit, we have that by continuity

x? = lim
n→∞

xn = lim
n→∞

T (xn−1) = T
(
lim
n→∞

xn−1

)
= T (x?)

This point is unique. Take y? ∈ X such that T (y?) = y? 6= x?, then

0 < d(T (x?), T (y?)) = d(x?, y?) > qd(x?, y?)  

Therefore
∃!x? ∈ X : T (x?) = x?

And x? is the fixed point of the contractor T

§ 2.3 Vector Spaces

Definition 2.3.1 (Vector Space). A vector space V over a field F is a set, where V 6= {} and it satisfies
the following properties, ∀u, v, w ∈ V and a, b ∈ F

1. u+ v ∈ V sum closure
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2. av ∈ V scalar closure

3. u+ v = v + u

4. (u+ v) + w = u+ (v + w)

5. ∃!0 ∈ V : u+ 0 = 0 + u = u

6. ∃!v ∈ V : u+ v = 0 =⇒ v = −u

7. ∃!1 ∈ V : 1 · u = u

8. (ab)u = a(bu) = b(au) = abu

9. (a+ b)u = au+ bu

10. a(u+ v) = au+ av

Definition 2.3.2 (Norm). Let V be a vector space over a field F, then the norm is an application defined
as follows

‖·‖ : V −→ F

Where it satisfies the following properties

1. ‖u‖ ≥ 0 ∀u ∈ V

2. ‖u‖ = 0 ⇐⇒ u = 0

3. ‖cu‖ = |c|‖u‖ ∀u ∈ V c ∈ F

4. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ ∀u, v ∈ V

Definition 2.3.3 (Normed Vector Space). A normed vector space is defined as a couple (V, ‖·‖),
where V is a vector space over a field F.

Proposition 8. A normed vector space (NVS), is also a metric vector space (MVS) if we define our
distance as follows

d(u, v) = ‖u− v‖ ∀u, v ∈ V

Definition 2.3.4 (Vector Subspace). Let V be a vector space and U ⊂ V . U is a vector subspace of V
iff

1. u, v ∈ U =⇒ u+ v ∈ U

2. u ∈ U , a ∈ F =⇒ au ∈ U

Proposition 9. If (V, ‖·‖) is an normed vector space and W ⊂ V is a subspace of V , then (W, ‖·‖) is a
normed vector space
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Definition 2.3.5 (p-norm). Let (V, ‖·‖p) be a normed vector space. The norm ‖·‖p is said to be a
p-norm if it’s defined as follows

‖v‖p :=

dim(V)∑
i=1

(vi)
p

 1
p

, ∀v ∈ V, ∀p ∈ N? := N ∪ {±∞} (2.8)

Setting p = ∞ we have that
‖v‖∞ = max

i≤dim(V)
|vi| (2.9)

Definition 2.3.6 (Dual Space). Let V be a vector space over the field F, we define a linear functional
as an application ϕ : V −→ F such that ∀u, v ∈ V and c ∈ F

ϕ(u+ v) = γ(u) + ϕ(v)

ϕ(λu) = λϕ(u)
(2.10)

Defining the sum of two linear functionals as (ϕ1 + ϕ2)(v) = ϕ1(v) + ϕ2(v) we immediately see that
the set of all linear functionals forms a vector space over V, which will be called the dual space V?.

§§ 2.3.1 Hölder and Minkowski Inequalities

Having defined p-norms, we can prove two inequalities that work with these norms, the Minkowski
inequality and the Hölder Inequality

Theorem 2.6 (Hölder Inequality). Let pq ∈ N?, where

1

p
+

1

q
= 1

Then

∀x, y ∈ Rn ‖x‖p‖y‖q ≥
n∑
k=1

|xkyk| (2.11)

Proof. Taking p = 1, we have q = ∞, and the demonstration is obvious

‖x‖p‖y‖q = ‖x‖1‖p‖∞ = max
k≤n

|yk|
n∑
k=1

|xk| ≥
n∑
k=1

|xkyk|

Else, if p > 1, we ave that

ab ≤ ap

p
+
bq

q
∀a, b ≥ 0

Let
s =

x

‖x‖p
, t =

y

‖y‖q
We have

n∑
k=1

‖s‖p = 1

‖x‖pp

n∑
k=1

|xk|p = 1 =

n∑
k=1

|t|q = 1

‖y‖qq

n∑
k=1

|y|p
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Therefore
n∑
k=1

|sktk| ≤
1

p

n∑
k=1

|sk|p +
1

q

n∑
k=1

|tk|q

Substituting again the definitions of s, t we have

n∑
i=1

|ykxk| = ‖x‖p‖y‖q
n∑
k=1

|sktk| ≤ ‖x‖p‖y‖q

Theorem 2.7 (Minkowski Inequality). Let p ≥ 1, therefore ∀x, y ∈ Rn we have

‖x+ y‖p ≤ ‖x‖p + ‖y‖p (2.12)

Proof. We begin by writing explicitly the p-norm

‖x+ y‖pp =
n∑
k=1

(|xk|+ |yk|)p =
n∑
k=1

(|xk|+ |y|k) (|xk|+ |yk|)p−1

Letting uk = (|xk|+ |yk|)p−1
we have, after imposing the condition on q of the p-norm as q(p+1) = p

and using that the sum is Abelian, we have

n∑
k=1

|xk|uk ≤ ‖x‖p‖u‖q = ‖x‖p

(
n∑
k=1

(|xk|+ |yk|)p
) 1

q

n∑
k=1

|yk|uk ≤ ‖y‖p‖u‖q = ‖y‖p

(
n∑
k=1

(|xk|+ |yk|)p
) 1

q

Therefore, summing and imposing that 1− q−1 = p we have that

‖x+ y‖p ≤ ‖x‖p + ‖y‖q
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3 Differential Analysis

§ 3.1 Digression on the Notation Used

In this chapter (and from now on, mostly), we will use a notation which is called abstract index
notation with the Einstein summation convention. This is usually abbreviated in common literature
as the Einstein index notation. We will give here a brief explanation of how this notation actually
works, and why it’s so useful in shortening mathematical expressions. Let V be a vector space and V?
be the dual space associated with V. Then we can write the elements v ∈ V, ϕ ∈ V? with respect to
some basis as follows

v = (v1, v2, · · · , vn) =

v1...
vn


ϕ = (ϕ1, ϕ2, · · · , ϕn) =

(
ϕ1 ϕ2 · · · ϕn

) (3.1)

The first notation is the ordered tuple notation, meanwhile the second notation is the usual column/row
notation for vectors utilized in linear algebra. In Einstein notation we will have that

v −→ vi

ϕ −→ ϕi
(3.2)

Where the vector in the space will be indicated with a raised index (index, not power!) and the
covector with a lower index, where the index will span all the values i = 1, · · · ,dim(V).
Let’s represent the scalar product in Einstein notation. Let’s say that we want to write the scalar product
〈v, v〉

〈v, v〉 =
dim(V)∑
i=1

vivi −→ viv
i (3.3)

Note how we have omitted the sum over the repeated index. Now one might ask why it’s not written
as vivi (or v

ivi, since v ∈ V ), and this is easily explained introducing the matrix gij , which is the matrix
of the scalar product.
Applying this matrix to vi we have gijv

i. Note how the low index j is free and i is being summed over,
hence is a dummy index, this means that the result must have a lower index j for consistency. So we
can write vj = gijv

i, and due to the lower index we already know that this is a covector, i.e. a linear

27
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functional V −→ F, hence it will “eat” a vector and “spew” a scalar (with no indices!). Feeding to this
covector the vector vj we have finally

〈v, v〉 = vjv
j = gijv

ivj (3.4)

Where, algebraically we have “omitted” the definition of ι(·) = 〈v, ·〉, which is the canonical isomor-
phism between V and V?.
With this definition we have defined what mathematically are called musical isomorphisms, appli-
cations which raise and lower indexes. Ironically, this operation is called index gymnastics, since
we’re raising and lowering indices. Thanks to these conventions operations with matrices (and ten-
sors) become much much easier. Let aij and b

i
j be two n× n matrices over the ordered field F. The

multiplication of these two matrices will simply be

cij = aikb
k
j (3.5)

Note how the k index gets “eaten”. This mathematical cannibalism is called contraction of the index
k. So, the trace for a matrix aij will be

tr(a) = aii (3.6)

And now comes the tricky part. In order to write determinants we need to define a symbol, the so
called Levi-Civita symbol, εi1...in . In three dimensions it’s εijk, and follows the following rules

εijk =


1 even permutation of the indices

−1 uneven permutation of the indices

0 i = j ∨ j = k ∨ k = i

(3.7)

In n dimensions, it becomes

εi1...ik =


1 even permutation of indices

−1 uneven permutation of indices

0 ii = ij for some i, j

(3.8)

It’s obvious by definition that this weird entity is completely antysimmetrical and unitary, and there-
fore it’s perfect for representing permutations (it’s also known as permutation symbol for a reason).
Therefore, remembering the definition of the determinant we can write, for an n× n matrix aij

det(a) = εi1...ina
1i1a2i2 · · · anin = εi1...ing

ji1a1jg
ki2a2k · · · glinanin (3.9)

If dim(V) = 3, we can therefore immediately define the cross product of two vectors as follows

c = v×w −→ ci = gijεjklv
kwl (3.10)

(Note how we had to raise the index i).
From now on, we will start to use Greek letters for indices and Latin letters for labels, in order to avoid
confusions, simply look again at the formula for the determinant, it’s much clearer this way. In fact,
letting µ, ν, · · · be our indices and i, j, k, · · · our labels, we can write, for a matrix Aµν

det(A) = A = εµ1...µng
νµ1gσµ2 · · · gζµnA1

νA
2
σ · · ·Anζ (3.11)
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See? Much clearer, at least in my opinion.
Now we might want to understand how to write norms with this notation. For the usual Euclidean
norm it’s quite easy. So we can easily write

‖v‖ =
√

〈v, v〉 −→
√
vµvµ (3.12)

In case we have a vector function fµ(xν), the following notation will be used

‖f(x)‖ −→
√
fµfµ(xν) (3.13)

Or, for the sum of two functions gµ(xν)± fµ(yν)

‖g(x)± f(y)‖ −→
√
gµgµ(xν) + fµfµ(yν)± 2gµ(xν)fµ(yν) (3.14)

Or

‖g(x)± f(y)‖ −→=
√
gµν(gµ(xγ)± fµ(yγ))(gν(xγ)± fν(yγ))

A shorthand notation can be created by directly using the norm symbol, but with the contracted index
in the upper or lower position as follows

‖g(x)± f(y)‖ −→ ‖gµ(xν)± fµ(yν)‖µ (3.15)

For p-norms we have to watch out for a little detail. We have to add a square root in order to “fix” the
squaring of every element. So we get

‖v‖p −→
p

√
(vµ)

p
2 (vµ)

p
2 =

(
(vµ)

p
2 (vµ)

p
2

) 1
p

(3.16)

Theorem 3.1.
(
(vµv

µ)p/2
)1/p

is wrong

Proof. It’s easy to see why it doesn’t work by expanding the sum on µ

(vµv
µ)p =

(
v1v

1 + v2v
2 + · · ·+ vnv

n
)p

(vµ)
p
2 (vµ)

p
2 =

(
(v1v

1)p + (v2v
2)p + · · ·+ (vnv

n)p
) (3.17)

Moreover, it’s time to bring down some formal rules for the usage of this notation

Theorem 3.2 (Rules for Index Calculus in Einstein Notation). 1. Free indices must be consistent
in both sides of the equation. I.e. aµν bµγδ = cνγδ. aµν bµγδ 6= cγνδ, a

µ
ν bµγδ 6= cνγσ

2. An index can be repeated only two times per factor and must be contracted diagonally. I.e.
aµbµf

δ
γ = cδγ is defined correctly, aµbµ, aµbµ or aµbµfµγ are ill defined

3. Dummy indices can be replaced at will, since they don’t contribute to the “index
equation”
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§§ 3.1.1 Differential Operators

Differential operators will be defined formally in the next sections, but for now we will simply explain
how they actually work with this notation (and what are the advantages of such), alongside the usual
boldface notation.
We will begin by defining the derivative along the coordinate vectors (usually indicated with xµ). We
will use the differential operator del (∂).
This operator will be used as follows

1. If there is no ambiguity for the coordinate system, the derivative alongside the coordinates xµ

will be indicated as ∂µ

2. In case of ambiguity, something will be added in order to distinguish the operators. I.e. let
(xµ, yν) be our coordinate system, then we will have ∂xµ or ∂yν

3. In every single case, even the differential operator must follow the index calculus rules

Now let f(xµ) be some (scalar, there are no free indices) function of the coordinates. The derivative
(or gradient, it will soon be defined properly) can be written in various ways. In boldface notation it’s
usual to indicate this as ∇f , which can be translated as follows

∇f −→ ∂µf =
∂f

∂xµ
= f,µ (3.18)

Note how in the RHS it’s obvious that this quantity must be a vector due to the free index. The last one
is the comma notation for derivation, used for compacting (even more) the notation (Also check how
in the second notation, even if the index is raised, it behaves as a lower index, we will check deeply this
part in the section on differential forms).
Now comes the fun part. Higher order derivatives.
For the same function, we can define the Hessian matrix (the matrix of second derivatives) Hf, simply
applying two times the ∂ operator

Hf −→ ∂ν∂µf = ∂2µνf = ∂µνf =
∂2f

∂xµ∂xν
= f,µν (3.19)

Derivatives of order > 2 can then be defined recursively.
Now we might ask, what if we have a vector field Fµ? Nothing changes. We simply have to remember
to not repeat indices in order not to represent scalar products.
We have JF as the Jacobian matrix of Fµ, basically the derivative matrix which in Einstein notation, as
before, has a quite obvious nature

JF −→ ∂νF
µ =

∂Fµ

∂xν
= Fµ,ν (3.20)

And so on, and so on…1

Let’s now define the divergence and curl operators. Take now a vector field gµ. We then have

∇ · g −→ gµνg
µδ∂δg

ν = ∂µg
µ =

∂gµ

∂xµ
= gµ,µ

∇× g −→ εµνσg
νδ∂δg

σ = εµνσ∂
νgσ = εµνσ

∂gσ

∂xµ
= εµνσg

σ,ν
(3.21)

1It’s quite fun to dive into the dumpster of Einstein notation, isn’t it?
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And therefore, defining the Laplacian as ∇2 = ∇ · ∇, we will simply have, for whatever function h

∇2h −→ gµν∂ν∂µh = ∂µ∂µh =
∂2h

∂xµ∂xµ
= h,µ,µ (3.22)

Note how the operator ∂µ appears. This can be seen as a derivation along the covector basis (xµ =
gµνx

ν ).
Now, we can go back to our mathematical rigor.
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§ 3.2 Curves in Rn

Definition 3.2.1 (Scalar Field). A scalar field is a function f : A ⊆ Rn −→ R where A is an open set

Definition 3.2.2 (Vector Field). A vector field is a function fµ : A ⊂ Rn −→ Rm where A is an open
set

Definition 3.2.3 (Continuity). A scalar field f : A −→ R is said to be continuous in a point pµ ∈ A if

∀ε > 0 ∃δp : ‖xµ − pµ‖ < δ =⇒ |f(xµ)− f(pµ)| < ε (3.23)

A vector field fµ : A→ Rm is said to be continuous instead if

∀ε > 0 ∃δp : ‖xν − pν‖ν < δ =⇒ ‖fµ(xν)− fµ(pν)‖µ < ε (3.24)

If this function is continuous ∀pµ ∈ A, then the vector field is said to be part of the space C(A), with
A ⊆ Rn

Definition 3.2.4 (Canonical Scalar Product). Let xµ, yµ ∈ Rn, the canonical scalar product is a
bilinear application 〈·, ·〉 : Rn × Rn −→ R where, if the components of the two vectors are defined as
xµ, yµ, is defined as

〈x, y〉 =
n∑
i=1

xiyi −→ xµy
µ (3.25)

It’s easy to see that the canonical scalar product induces the euclidean norm as follows

‖v‖ = ‖v‖2 =
√
〈v, v〉 =

√
vµvµ (3.26)

Definition 3.2.5 (Curves in Rn). A curve is an application ϕ : [a, b] ⊂ R → Rn.
The function ϕµ(t) = pµ, with t ∈ [a, b] is called the parametric representation of the curve.
Remembering how indexes work in this notation, we already know that this application can be
represented with an ordered n−tuple or a vector in Rn

Definition 3.2.6 (Regular Curves). A curve ϕµ(t) is said to be continuous if all its components are
continuous. A curve is said to be regular iff

ϕµ(t) ∈ C1([a, b])√
ϕµ(t)ϕµ(t) 6= 0 t ∈ (a, b)

(3.27)

A curve is said to be piecewise regular if it’s not regular in [a, b] but it’s regular in a finite number of
subsets [an, bn] ⊂ [a, b]

Definition 3.2.7 (Homotopy of Curves). Let γµ, ηµ be two curves from a set [a, b], [c, d] respectively.
These two curves are said to be homotopic to one another, and it’s indicated as γµ ∼ ηµ iff

∃h : [c, d]
∼−→ [a, b], h ∈ C([c, d]), h−1 ∈ C([a, b]), h(s) > h(t) for s > t : ηµ = γµ ◦ h (3.28)
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Definition 3.2.8 (Tangent Vector). The tangent vector of a regular curve is defined as the following
vector.

Tµ(t) =
γ̇µ√
(γ̇µγ̇µ)

(3.29)

Where with γ̇µ(t) we indicate the derivative of γµ with respect to the only variable t.

Definition 3.2.9 (Tangent Line). A curve γµ : [a, b] −→ Rn is said to have tangent line at a point
t0 ∈ [a, b] if it’s regular, therefore the line will have parametric equations

pµ(t) = γµ(t0) + γ̇µ(t0)(t− t0) (3.30)

Definition 3.2.10 (Length of a Curve). The length of a curve γ : [a, b] −→ Rn is defined as follows

Lγ :=

ˆ b

a

√
γ̇µ(t)γ̇µ(t)dt (3.31)

Remark. In R2, if a curve is defined in polar coordinates, it will appear as follows

ρ = ρ(θ), θ ∈ [θ0, θ1] (3.32)

Its length will be given from the following integral

Lρ :=

ˆ θ1

θ0

√
(ρ′(θ))2 + (ρ(θ))2 dθ (3.33)

The graph of a function f : [a, b] −→ R, f ∈ C1(a, b) can also be parametrized from a curve ϕµ(t),
where

ϕµ(t) → (t, f(t)) (3.34)

Its length will be then calculated with the following integral

Lϕ :=

ˆ b

a

√
1 + (ḟ(x))2 dx (3.35)

Theorem 3.3 (Length Invariance under Homotopy of Curves). Let {γ1}, {γ2} ⊂ Rn be two curves,
such that γ1 ∼ γ2, then

Lγ1 = Lγ2

Proof. By definition we have that since the two curves are homotopic, the two domains of definition
of both are diffeomorphic to each other, and therefore

γµ1 (t) = γµ2 (ϕ(t)) (3.36)
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Where ϕ : I
∼−→ J is our C1 diffeomorphism. Therefore

Lγ1 =

ˆ
I

‖γ̇µ1 ‖µdt =
ˆ
I

∥∥∥ ˙γµ2 (ϕ(t))
∥∥∥
µ
dt =

ˆ
I

‖(γµ2 )′‖µ|ϕ̇(t)|dt

Then, changing variables t→ ϕ(t) = s we get

Lγ1 =

ˆ
ϕ(I)

‖(γµ2 )′‖µ
∣∣ϕ̇ (ϕ−1(s)

)∣∣(ϕ−1(s))′ds =

ˆ
J

‖(γµ2 )′‖µds = Lγ2

Definition 3.2.11 (Curviline Coordinate). Let ϕ : [a, b] −→ Rn, we can define a function s(t) as follows

s(t) =

ˆ t

a

√
ϕ̇µ(τ)ϕ̇µ(τ)dτ (3.37)

Then

ds =
√
ϕ̇µ(t)ϕ̇µ(t)dt (3.38)

And the length of a curve can also be indicated as follows

Lϕ =

ˆ
ϕ

ds (3.39)

Definition 3.2.12 (Curvature, Normal Vector). The curvature of a curve is defined as follows

κ(s) =
√
Tµ(s)Tµ(s) =

√
ϕ̈µ(s)ϕ̈µ(s) (3.40)

(Note that ‖ϕ′(s)‖ = 1) The normal vector is similarly defined as

Nµ(s) =
Ṫµ(s)

κ(s)
(3.41)

Definition 3.2.13 (Simple Curve, Closed Curve). A simple curve is an injective application γ : [a, b] −→
Rn. A curve is said to be closed iff γµ(a) = γµ(b)

Theorem 3.4 (Jordan Curve). Let γµ be a simple and closed curve in R2 or C (note that C ' R2),
then the set {γ}c is defined as follows

{γ}c = {γ}◦ ∪ extr ({γ}) (3.42)

Note that {γ} ⊂ R2 is the image of the application γ and extr ({γ}) is the set of points that
lay outside of the closed curve.

In C everything that was said about curves holds, however one must watch out for the definition of
modulus, for a curve γµ ∈ C we will have

|γ̇(t)| =
√

(Re′(γ))2 + (Im′(γ))2 =
√
γ(t)γ(t) (3.43)
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§ 3.3 Differentiability in Rn

Definition 3.3.1 (Directional Derivative). Let A ⊆ Rn be an open set, and f : A −→ R. The function is
said to be derivable with respect to the direction vµ ∈ A at a point pµ ∈ A, if the following limit is
finite

∂vµf(p
ν) = lim

h→0

f(pµ + hvµ)− f(pµ)

h
(3.44)

If vµ = xµ then this is called a partial derivative, and it will be indicated in the following ways

∂f

∂xµ
= ∂µf = ∂xµf (3.45)

Definition 3.3.2 (Differentiability). A scalar field f : A ⊆ Rn −→ R, with A open, is said to be
differentiable in a point pµ ∈ A if and only if there exists a linear application aµ(p

ν) = aµ, such that
the following limit is finite

lim√
hµhµ→0

R(pµ + hµ)√
hµhµ

= 0 (3.46)

Where we define the function R as follows

R(pµ + hµ) = f(pµ + hµ)− (f(pµ) + aµh
µ) (3.47)

This means that

f(pµ + hµ) = f(pµ) + aµh
µ +O

(√
hµhµ

)
(3.48)

Theorem 3.5 (Consequences of Differentiability). Let f : A ⊆ Rn −→ R be a differentiable scalar
field in every point of A, then

1. f ∈ C(A)

2. f is differentiable inA, and aµ = ∂µ, where is the vector differential operator, composed
by the partial derivatives

3. f has directional derivatives in A and the following equation holds

∂vµf(p
ν) = ∂µf(p

ν)vµ

4. ∂µf indicates the maximum and minimum growth of the function f

5. There exist a tangent hyperplane to the graphic of the function at the point (pµ, f(pµ)) ∈
Rn+1 and has the following equation

xn+1 = f(pµ) + ∂µf(p
ν)(xµ − pµ)
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Proof. 1. f differentiable in A implies f ∈ C(A)

lim√
hµhµ→0

f(pµ + hµ) = lim√
hµhµ→0

(f(pµ) + aµh
µ +O

(√
hµhµ

)
) = f(pµ)

2. f differentiable in A implies f derivable in A

∂if(p
µ) = lim

h→0

f(pµ + hei)− f(pµ)

h
= lim
h→0

aih+O(h)

h
= ai ∈ R

Then

R(pµ + hµ) = f(pµ + hµ)− f(pµ) + ∂µf(p
ν)hµ = O

(√
hµhµ

)

3. ∂vµf = ∂µfv
µ

∂vµf(p
ν) = lim

h→0

f(pµ + hwµ)− f(pµ)

h
= lim
h→0

h∂µf(p
ν)vµ +O(h)

h
= ∂µf(p

ν)vµ

4. ∂µf indicates the direction of maximum growth.
For Cauchy-Schwartz, we have√

∂vµf∂vµf =
√
∂µfvµ∂νfvν ≤

√
∂µf∂µf

√
vνvν

Theorem 3.6 (Total Differential). Let f : A ⊂ Rn −→ R, with A open. If f ∈ C1(A) (i.e. the
derivatives of f are continuous), then f is differentiable in A, the vice versa is also true

Proof. We can write the following equation

f(pµ + hµ) = f(p1 + h1, · · · , pn)− f(p1, · · · , pn) + · · ·+ f(p1, · · · , pn + hn)− f(p1, · · · , pn) (3.49)

For Lagrange, we will have

f(pi + hi) = hi∂if(p
1, · · · , qi, · · · , pn) = hi∂if(ci) (3.50)

Therefore

lim√
hµhµ→0

|f(pµ + hµ)− f(aµ)− ∂µfh
µ|√

hµhµ
≤ lim
h→0

n∑
i=1

|∂if(ci)− ∂if(p
µ)|

∣∣hi∣∣√
hµhµ

= 0 (3.51)

Therefore ∂if(p
µ) is continuous and the function is differentiable.

Theorem 3.7. Given f : A → R with f ∈ C1(A). Then ∂µf = 0 ∀xµ ∈ A implies that f is
constant in A
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Proof. Define A as A1 ∪A2 where

A1 = {xµ ∈ A : f(xµ) = f(xµ0 )} . A2 = {xµ ∈ A : f(xµ) 6= f(xµ0 )}

Since A is open, both A1, A2 must be open. Define a path γ from xµ to xµ0 and define the composite
function

ϕ(t) = f (xµ0 + t(xµ − xµ0 )) , t ∈ [0, 1]

Since f is differentiable and ∂µf = 0 by definition ϕ is constant and therefore continuous, which
confirms that A1 is open.
Since A1 ∩A2

Theorem 3.8 (Differentiability of Vector Fields, Jacobian Matrix). Let fµ : A ⊆ Rn −→ Rm be a vector
field and A an open set, then the function fµ is differentiable iff exists a matrix Jµν ∈Mnm(R)
such that

lim√
hµhµ→0

‖fµ(pν + hν)− fµ(pν)− Jµν h
ν‖µ√

hµhµ
(3.52)

Or, equivalently

fµ(p
ν + hν) = fµ(pν) + Jµν h

ν +O
(√

hµhµ
)

(3.53)

The then Jµν is the matrix of partial derivatives of the vector field, called the Jacobian matrix
of the vector field fµ, and can be calculated as follows

Jµν (p
σ) = ∂νf

µ(pσ) (3.54)

Theorem 3.9 (Composite Derivation). Let fµ : A ⊆ Rn −→ Rk and gν : B ⊆ Rk −→ Rp be
two differentiable functions in pσ ∈ A, fµ(pσ) ∈ B and A,B open sets, then hν = gν ◦ fµ is
differentiable, and

∂σh
ν = ∂µg

ν(f µ̃)∂σf
µ (3.55)

Since µ = 1, · · · , k, ν = 1, · · · , p, σ = 1, · · · , n it’s obvious that ∂σhν ∈ Mp,n(R), ∂µgν ∈
Mp,k(R), ∂σfµ ∈Mk,n(R).

Proof. We have that (gν ◦ fµ) = gν(fµ(pσ)). Then gν is differentiable at fµ(pσ) if

gν(fµ(pσ+sσ)) = gν(fµ(pσ))+∂σ
(
gν ◦ f µ̃

)
(fµ(pσ + sσ)− fµ(pσ))+O

(
‖fµ(pσ + sσ)− fµ(pσ)‖µ

)
Since fµ is differentiable, we have

gν(fµ(pσ + sσ)) = gν(fµ(pσ)) + ∂σ
(
gν ◦ f µ̃

)
∂σf

µ+

+ ∂σ (g
ν ◦ fµ)O

(√
sµsµ

)
+O

(
‖fµ(pσ + sσ)− fµ(pσ)‖µ

)
Then, we must prove that

lim√
sµsµ→0

∂σ (g
ν ◦ fµ)O

(
‖fµ(pσ + sσ)− fµ(pσ)‖µ

)
√
sµsµ

= 0
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But
∂σ (g

ν ◦ fµ)O(
√
sµsµ)√

sµsµ
→ 0

And

‖fµ(pσ + sσ)− fµ(pσ)‖µ ≤
√
∂σfµ∂σfµ

√
sµsµ +O

(√
sµsµ

)
≤ C

√
sµsµ

Therefore

O
(
‖fµ(pσ + sσ)− fµ(pσ)‖µ

)
√
sµsµ

=
O
(
‖fµ(pσ + sσ)− fµ(pσ)‖µ

)
‖fµ(pσ + sσ)− fµ(pσ)‖µ

‖fµ(pσ + sσ)− fµ(pσ)‖µ√
sµsµ

→ 0

§ 3.4 Differentiability in C

Definition 3.4.1 (Differentiability). A function f : G ⊂ C −→ C with G open, is said to be differen-
tiable or derivable at a point a ∈ G if exists finite the following limit

df

dz

∣∣∣∣
a

= f ′(a) = lim
z→a

f(z)− f(a)

z − a
(3.56)

As usual, if this holds ∀a ∈ G, the function is derivable in G

Theorem 3.10. If f : G ⊂ C −→ C is derivable in a ∈ G, then f is continuous in a

Proof.

lim
z→a

(f(z)− f(a)) = lim
z→a

(z − a) lim
z→a

f(z)− f(a)

z − a
= 0

Theorem 3.11 (Some Simple Rules). Let f, g : G ⊂ C −→ C

1. (f ± g)′(z) = f ′(z)± g′(z)

2. (fg)′(z) = f ′(z)g(z) + f(z)g′(z)

3. (f/g)′(z) = f ′(z)/g(z)− f(z)g′(z)/g2(z) ∀z ∈ G : g(z) 6= 0

4. f(z) = c =⇒ f ′(z) = 0

5. f(z) = zn =⇒ f ′(z) = nzn−1

Theorem 3.12 (Composite Function Derivation). Let f : G ⊂ C −→ C and g : F ⊂ C −→ C, where
f(G) ⊂ F . If f is derivable in a ∈ G and g is derivable in f(a) ∈ F , then g ◦ f is derivable, and
its derivative is calculated as follows

d

dz
(g ◦ f)

∣∣∣∣
a

=
dg

dz

∣∣∣∣
f(a)

df

dz

∣∣∣∣
a

= g′(f(a))f ′(a) (3.57)
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Proof. Since G is open, ∃Br(a) ⊂ G. Therefore, taking a sequence (z)n ∈ Br(a) : limn→∞(z)n = a.
Letting f(zn) 6= a, we can directly write in the definition of derivative

lim
n→∞

(g ◦ f)(zn)− (g ◦ f)(a)
zn − a

= (g ◦ f)′(a) = g′(f(a))f ′(a)

Thus, rewriting the function inside the limit

(g ◦ f)(zn)− (g ◦ f)(a)
zn − a

=
(g ◦ f)(zn)− (g ◦ f)(a)

f(zn)− f(a)

f(zn)− f(a)

zn − a
→ 0

Since f is continuous in a ∈ G

Theorem 3.13 (Inverse Function Derivation). Let f : G ⊂ C ∼−→ C be a bijective continuous map,
with f−1(w) = z. If f(a) 6= 0 and it’s derivable at that same point, we have

df−1

dw

∣∣∣∣
f(a)

=
1

f ′(a)
(3.58)

Proof. Since f is bijective and continuous we can write

df−1

dw

∣∣∣∣
f(a)

= lim
w→f(a)

f−1(w)− f−1(f(a))

w − f(a)
= lim
z→a

z − a

f(z)− f(a)
=

1

f ′(a)

§§ 3.4.1 Holomorphic Functions

Definition 3.4.2 (Holomorphic Function). A function f : G ⊂ C −→ C is said to be holomorphic in its
domain G if G is open, and

∀z ∈ G ∃df
dz

= f ′(z) (3.59)

It is indicated as f ∈ H(G). It’s easy to demonstrate that this set is a vector space.

Theorem 3.14 (Cauchy-Riemann Equation). Let f : G ⊂ C −→ C, where G is open and f ∈ H(G).
Then, if we write z = x+ iy {

Re(f(z)) = u(x, y)

Im(f(z)) = v(x, y)
(3.60)

We have that the function is holomorphic if and only if
∂u

∂x
− ∂v

∂y
= 0

∂v

∂x
+
∂u

∂y
= 0

(3.61)

Alternatively, it can be written as follows

∂f

∂x
+ i

∂f

∂y
= 0 (3.62)
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Definition 3.4.3 (Wirtinger Derivatives). Before demonstrating the previous theorem, we define the
Wirtinger derivatives as follows.
Let z ∈ C, z = x+ iy and f : G ⊂ C −→ C.

∂f

∂z
= ∂f(z) =

1

2

(
∂

∂x
− i

∂

∂y

)
f(z)

∂f

∂z
= ∂f(z) =

1

2

(
∂

∂x
+ i

∂

∂y

)
f(z)

(3.63)

Then, the Cauchy-Riemann equations will be equivalent to the following equation

∂f

∂z
= ∂f(z) = 0 (3.64)

Proof. Let f(z) = u(x, y) + iv(x, y) : G ⊂ C −→ C be a differentiable function in a point z0, then as
we defined, we have that f ∈ H(Bε(z0)), and therefore

df

dz

∣∣∣∣
z0

= lim
h→0

f(z0 + h)− f(z0)

h

And, therefore, along the imaginary axis and the real axis, we have

lim
Re(h)→0

f (z0 +Re(h))− f(z0)

Re(h)
=
∂f

∂x

∣∣∣∣
z0

lim
Im(h)→0

f (z0 + iIm(h))− f(z0)

iIm(h)
=

1

i

∂f

∂y

∣∣∣∣
z0

= −i ∂f
∂y

∣∣∣∣
z0

Due to the continuity of the derivative (f ∈ H(Bε(z0))) we must have an equality between these limits

∂f

∂x
+ i

∂f

∂y
= 2

∂f

∂z
= 0, ∴ f ∈ H(Bε(z0)) =⇒ ∂f

∂z
= 0

But, since f(z) = u(x, y) + iv(x, y), we will have that

∂f

∂z
=

∂

∂z
(u(x, y) + iv(x, y)) =

1

2

(
∂

∂x
+ i

∂

∂y

)
(u(x, y) + iv(x, y))

=
1

2

(
∂u

∂x
+ i

∂u

∂y
+ i

∂v

∂x
− ∂v

∂y

)
= 0

∴
∂u

∂x
− ∂v

∂y
= i

∂v

∂x
+ i

∂u

∂y

Rewriting the previous equation in a system, we immediately get back the Cauchy-Riemann equations

∂u

∂x
− ∂v

∂x
= 0

∂v

∂x
+
∂u

∂y
= 0
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Definition 3.4.4 (Whole Function). A function f : C −→ C is said to be whole iff f ∈ H(C)

Definition 3.4.5 (Singular Point). Let f : G ⊂ C −→ C be function such that if D = Bε(z0) \ {z0} and
f ∈ H(D), then z0 is said to be a singular point of f

For functions f : [a, b] ⊂ R −→ C every theorem already stated for curves in Rn with n = 2 holds,
since C ' R2. The only thing that should be checked thoroughly is that

f(t) =

(
Re(f(t))
Im(f(t))

)
∈ C|R

Is written as
f(t) = Re(f(t)) + iIm(f(t)) ∈ C

§ 3.5 Surfaces

Definition 3.5.1 (Regular Surface). Let K ⊂ R2, K = E where E is an open and connected subset. A
regular surface in R3 is an application

rµ : K −→ R3

Such that

1. rµ ∈ C1(K), i.e. ∃∂νrµ ∈ C(K)

2. rµ is injective in K

3. rank (∂νr
µ) = 2

The image Im(rµ) = Σ ⊂ R2 is then defined by the following parametric equations

rµ(u, v) =


x(u, v) = r1(u, v)

y(u, v) = r2(u, v)

z(u, v) = r3(u, v)

(3.65)

The third condition can be rewritten as follows

εµνσ∂1r
ν∂2r

σ = εµνσ∂1r
ν∂2r

σ 6= 0 ∀(u, v) ∈ K◦ (3.66)

Remark. A function f ∈ C1(K) defines automatically a surface with parametric equations rµ(u, v) =
(u, v, f(u, v)). This surface is always regular since εµνσ∂1r

ν∂2r
σ = (−2u,−2v, 1) 6= 0 ∀(u, v) ∈ K

Definition 3.5.2 (Coordinate Lines). The curves obtained fixing one of the two variables are called
coordinate lines in the surface Σ. We have therefore, for a parametric surface rµ(u, v) and two fixed
values ũ, ṽ ∈ I ⊂ R

xµ1 (t) = rµ(t, ṽ)

xµ2 (t) = rµ(ũ, t)
(3.67)
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Example 3.5.1. The sphere centered in a point pµ0 ∈ R3, pµ0 = (x0, y0, z0) with radius R ≥ 0 has the
following parametric equations

x = x0 +R sin(u) cos(v)

y = y0 +R sin(u) sin(v)

z = z0 +R cos(v)

(3.68)

With (u, v) ∈ [0, π]× [0, 2π]. It’s a regular surface, since

‖εµνσ∂1rν∂2rσ‖µ = R2 sin(u) > 0 ∀(u, v) ∈ [0, π]× [0, 2π]

Definition 3.5.3 (Curve on a Surface). Let γ : [a, b] ⊂ R −→ K ⊂ R3 be a regular curve, and
r : K −→ Σ, with the following parametric equations

γµ(t) =

{
u = u(t)

v = v(t)
(3.69)

The regular curve pµ(t) = rµ(u(t), v(t)) has Im pµ ⊂ Σ. If it passes for a point pµ0 = (u0, v0) it has
tangent line

pµ(t) = pµ0 + ṙµ(t)(t− t0) = pµ0 + ∂ur
µ(u(t), v(t))u̇(t) + ∂vr

µ(u(t), v(t))v̇(t) (3.70)

The line is contained inside the following plane

det

(x− x0) (y − y0) (z − z0)
∂1r

1 ∂1r
2 ∂3r

1

∂2r
1 ∂2r

2 ∂3r
3

 (3.71)

For a cartesian surface, i.e. the surface generated from the graph of a function f(x, y), the tangent
plane will be

z = f(xµ0 ) + ∂µf(x
ν
0)(x

µ − xµ0 ) (3.72)

Definition 3.5.4 (Normal Vector). The normal vector to a surface Σ, nµ(u, v) is the vector

nµ(u, v) =
1√

εµνσε
δγ
µ ∂1rν∂2rσ∂1rδ∂vrγ

εµνσ∂ur
ν∂vr

σ (3.73)

For a cartesian surface we have

nµ(x, y) =
1√

1 + ∂µf∂µf

−∂1f
−∂2f
1

µ

(3.74)

Definition 3.5.5 (Implicit Surface). Let F : A ⊂ R3 −→ R be a function such that F ∈ C1(A), letting
Σ := {xµ ∈ R3

∣∣ F (xµ) = 0}. If xν0 ∈ Σ and ∂µF (x
ν
0) 6= 0, Σ coincides locally to a cartesian surface,

and the equation of the tangent plane at the point xν0 is the following

∂µF (x
ν
0)(x

µ − xµ0 ) = 0 (3.75)
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Definition 3.5.6 (Metric Tensor). Let ds be the curviline coordinate of some curve γµ inside a regular
surface Σ. Then we have that

sµ(t) = rµ(u(t), v(t)) (3.76)

And therefore

ds2 = drµ dr
µ = ∂1r

µ∂1rµ
(
dx1
)2

+ 2∂1r
µ∂2rµ dx

1 dx2 + ∂2r
µ∂2rµ

(
dx2
)2

(3.77)

In compact form, we can write

ds2 = gµν dx
µ dxν (3.78)

And, the metric tensor gµν can defined as follows

gµν = ∂µr
σ∂νrσ (3.79)

Or, in matrix notation

gµν =

(
∂1r

µ∂1rµ ∂1r
µ∂2rµ

∂2r
µ∂1rµ ∂2r

µ∂2rµ

)
µν

(3.80)

In usual mathematical notation we have

gµν =

(
E F
F G

)
µν

(3.81)

And it’s called the first fundamental quadratic form in the language of differential geometry. Then,
we can write

ds2 = E
(
dx1
)2

+ 2F dx1 dx2 +G
(
dx2
)2

(3.82)

§ 3.6 Optimization

§§ 3.6.1 Critical Points

Theorem 3.15 (Fermat). Let pν ∈ A be a point of local minimal or maximal for the function
f : A ⊆ Rn −→ R with f ∈ C1(A). If f is differentiable in pν we have

∂µf(p
ν) = 0 (3.83)

The point pν satisfying this condition is then called a stationary point or a critical point for
the function f

Proof. Let vµ ∈ A be a direction. The function g(t) = f(pµ + tvµ) has a point of local maximal or
minimal for t = 0. Then

F ′(0) = ∂vµf(p
ν) = ∂µf(p

ν)vµ = 0 =⇒ ∂µf(p
ν) = 0 (3.84)
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Definition 3.6.1 (Hessian Matrix). Let f : A ⊆ Rn −→ R, and let f ∈ C1(A), then we define the
Hessian matrix as the matrix of the second partial derivatives of the function f

∂µ∂νf(x
γ) = ∂µνf(x

γ)

∂11f · · · ∂1nf
...

. . .
...

∂n1f · · · ∂nnf


µν

(xγ) (3.85)

Theorem 3.16 (Schwarz). Let f : A ⊆ Rn −→ R, f ∈ C2(A), then

∂µνf = ∂νµf (3.86)

Definition 3.6.2 (Nature of Critical Points). Let pγ be a critical point for a function f ∈ C1(A).
Then

1. ∂µνf(p
γ) is definite positive, then pγ is a local minimum

2. ∂µνf(p
γ) is definite negative, then pγ is a local maximum

3. ∂µνf(p
γ) is indefinite, then pγ is a saddle point

Theorem 3.17. Here is a list of some rules in order to determine the definition of the matrix
∂µνf .
Let vµ ∈ A be a direction, and pγ ∈ A a critial point of the function f : A ⊂ Rn −→ R then

1. If ∂µνf(pγ)vµvν > 0 ∀vµ ∈ A =⇒ ∂µνf(p
γ) positive definite

2. If ∂µνf(pγ)vµvν < 0 ∀vµ ∈ A =⇒ ∂µνf(p
γ) negative definite

3. If ∂µνf(pγ)vµvν ≥ 0 ∀vµ ∈ A =⇒ ∂µνf(p
γ) semi-positive definite

4. If ∂µνf(pγ)vµvν ≤ 0 ∀vµ ∈ A =⇒ ∂µνf(p
γ) semi-negative definite

5. If vµ 6= wµ are two directions, and ∂µνf(p
γ)vµvν > 0 ∧ ∂µνf(pγ)wµwν < 0 =⇒ ∂µνf(p

γ)
indefinite

Theorem 3.18 (Sylvester’s Criteria). Let Aµν ∈ Mnn(R), and (Ak)
µ
ν be the reduced matrix with

order k ≤ n, then

1. detµν ((Ak)
µ
ν ) > 0 =⇒ Aµν positive definite

2. (−1)k detµν ((Ak)
µ
ν ) > 0 =⇒ Aµν negative definite

3. If detµν ((A2k)
µ
ν ) < 0 or if detµν ((A2k+1)

µ
ν ) < 0 ∧ detµν ((A2n+1)

µ
ν ) > 0 for k 6= n, then Aµν is

indefinite

Theorem 3.19 (Compact Weierstrass). Let f : K ⊆ Rn −→ R, f ∈ C(K), with K a compact set,
then

∃pµ, qµ ∈ K : min
K

(f) = f(pµ) ≤ f(xµ) ≤ max
K

(f) = f(qµ) ∀xµ ∈ K (3.87)
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Proof. Being K a compact set, we have that every sequence (pµ)n converges inside the set, therefore,
letting (pµ)n being a minimizing sequence for f . Then there exist a converging subsequence (pµ)nk

such that
f(pµnk

) → f(pµ)

But, since (pµ)n is a minimizing sequence, we have

f(pµ) = min
K

(f)

By definition of minimizing sequence. Analogously, one can define a maximizing sequence and obtain
the same result for the maximum of the function in K

Theorem 3.20 (Heine-Cantor). Given f : K → R with K a compact set, then if f ∈ C(K), f is
uniformly continuous

<++>

Theorem 3.21 (Existence of Intermediate Values). Let f : A ⊂ Rn −→ R, f ∈ C(A), then, given
u ∈ R such that

min
A

(F ) ≤ u ≤ max
A

(F )

Then
∃cµ ∈ A : f(cµ) = u

Theorem 3.22 (Squeeze). Let g(xµ), f(xµ), h(xµ) be three functions such that g ≤ f ≤ h for
xµ ∈ Bδ(x

µ
0 ), then

lim
xµ→xµ

0

g(xµ) = lim
xµ→xµ

0

h(xµ) = L =⇒ lim
xµ→xµ

0

f(xµ) = L

Proof. By definition of limit we can say, supposing that the affirmation is true, that

∀ε > 0,∃δ > 0 : |f(xµ)− L| < ε, ‖xµ − xµ0‖ < δ

∀ε > 0,∃δ > 0 : |g(xµ)− L| < ε, ‖xµ − xµ0‖ < δ1

∀ε > 0,∃δ > 0 : |h(xµ)− L| < ε, ‖xµ − xµ0‖ < δ2

Since we’re working in Rn with the standard topology, the last condition on the right tells us that
we’re working in Bδ(x

µ
0 ), for which g ≤ f ≤ h for some δ3 > 0.

Taken δ = min {δ1, δ2, δ3} then

∀ε > 0 L− ε ≤ g(xµ) ≤ f(xµ) ≤ h(xµ) ≤ L+ ε, xµ ∈ Bδ(x
µ
0 )

Therefore
|f(xµ)− L| ≤ ε

Which proves the theorem

<++>
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Theorem 3.23 (Closed Weierstrass). Let f : L ⊆ Rn −→ R. If L = L and f ∈ C(L) is a coercitive
function, i.e.

lim
‖x‖→∞

f(xµ) = +∞ (3.88)

Then
∃xµ ∈ L : min

L
(f) = f(xµ) (3.89)

Proof. Let (pµ)n be a minimizing sequence for f in L. If this sequence wasn’t limited, we would have
that

√
(pµ)n(pµ)n → ∞, and therefore

inf
L
(f) = lim

n→∞
f(pµn) = +∞  

Therefore (pµ)n must be limited, and the proof is the same as in the case of a compact set.

Theorem 3.24 (Topology and Functions). Let f : Rn −→ R, f ∈ C(Rn). Then

{xµ ∈ Rn| f(xµ) < a ∈ R}
{xµ ∈ Rn| f(xµ) > b ∈ R}

(3.90)

Are open sets in Rn with the standard topology, and

{xµ ∈ Rn| f(xµ) ≤ a ∈ R}
{xµ ∈ Rn| f(xµ) ≥ b ∈ R}

(3.91)

Are closed sets

§§ 3.6.2 Convexity and Implicit Functions

Definition 3.6.3 (Convex Set). A set A ⊂ Rn is said to be convex if

λxµ + (1− λ)yµ ∈ A ∀xµ, yµ ∈ A, ∀λ ∈ [0, 1] (3.92)

Analogously, a function f : A ⊂ Rn −→ R is said to be convex, if

f (λxµ + (1− λ)yµ) ≤ λf(xµ) + (1− λ)f(yµ) ∀xµ, yµ ∈ A, ∀λ ∈ [0, 1] (3.93)

The function f is also known as a sublinear function
Also, the set

Ef = { (xµ, λ) ∈ A× R| f(xµ) ≤ y} (3.94)

Is convex

Theorem 3.25 (Convexity). Let f : A ⊂ Rn −→ R.

1. f convex in A =⇒ f ∈ C(A)

2. f differentiable in A =⇒ f convex ⇐⇒ f(xµ) ≥ f(pµ) + 〈∇f(pµ), xµ − pµ〉

3. f ∈ C2(A) =⇒ f convex ⇐⇒ ∂µνf(x
γ) is positive semidefinite
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Definition 3.6.4 (Matrix Infinite Norm). Let Aµν (x
γ) ∈ V −→ Mmn(F), where dim(V) = n. We can

define a norm for this space as follows

‖Aµν‖∞ =
√
m

√
max
µ

sup
xγ∈V

A
(µ)
ν Aν(µ)(x

γ) (3.95)

Theorem 3.26 (Average Value). Let fµ : A ⊆ Rn −→ Rm, with f ∈ C1(A), A an open set and
K ⊂ A a compact convex subset, then

‖fµ(xν)− fµ(yν)‖µ ≤ ‖∂νfµ‖∞‖xν − yν‖ν (3.96)

Proof. Let rν(t) = (1 − t)yν + txν be a smooth parametrization of a segment connecting the two
points xν , yν , then

‖fµ(rν(1)− fµ(rν(0)‖2µ ≤ ∂νfµ∂νf
µ(rν(t)) ≤ sup

rγ
(∂νfµ∂νf

µ(rγ))‖xν − yν‖2ν

≤ mmax
µ

sup
γ

(
∂νf(µ)∂νf

(µ)(xγ)
)
‖xν − yν‖2ν

Therefore

‖fµ(xν)− fµ(yν)‖µ ≤
√
m
√
max
µ

sup
γ

(
∂νf(µ)∂νf (µ)

)
‖xν − yν‖ν =

= ‖∂νfµ‖∞‖xν − yν‖ν ∀xν , yν ∈ K

Theorem 3.27 (Implicit Functions, Dini). Let fµ : A ⊆ Rm × Rn −→ Rn, where fµ ∈ C1(A). Also
let (xν0 , y

γ
0 ) ∈ A such that

fµ(xν0 , y
γ
0 ) = 0

det
µν

(
∂fµ

∂yγ

)
6= 0

Then
∃Bε(xν0) = I ⊂ Rm, Bε(yγ0 ) = J ⊂ Rn : fµ(xν , yγ) = 0 ∀(xν , yγ) ∈ I × J

Has a unique solution yγ = gγ(xν) ∈ J , with gγ ∈ C1(I), and

∂gγ

∂xν
= −

(
∂fµ

∂yγ

)−1
∂fµ

∂xν
(3.97)

Proof. Let Bγµ =
(
∂yγ0 f

µ
)−1

, then we know that

fµ(xν , yγ) = 0 ⇐⇒ Bγµf
µ(xν , yσ) = 0 ⇐⇒ Gγ(xν , yσ) = yγ −Bγµf

µ(xν , yσ) = 0
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We have therefore

Gγ(xν , gσ(xν)) = gγ(xν)−Bγµf
µ(xν , gσ(xν)) = gγ(xν) ∀xν ∈ Br(x

ν
0) = I

∂Gγ

∂yσ
= δγσ −Bγµ

∂fµ

∂yσ

∂Gγ

∂yσ0
= δγσ −Bγµ

∂fµ

∂yσ
= δγσ − δγσ = 0

Now take (X, d) = (C(I, J), ‖·‖∞), with J = Bε(y
γ
0 ), and define an application H : X −→ X such

that
Hγ(wσ(xν)) = Gγ(xν , wσ(xν))

We need to demonstrate that this application is a contraction, i.e. that ∃!gγ(xν) : fµ(xν , gγ(xν)) =
0 ∀(xν , yγ) ∈ I × J

‖Hγ(wσ(xν))− yγ0 ‖γ = ‖Gγ(xν , wσ(xν))− yγ0 ‖γ ≤
≤ ‖Gγ(xν , wσ(xν))−Gγ(xν , yσ0 )‖γ + ‖Gγ(xν , yσ0 )−Gγ(xν0 , y

ν
0 )‖γ ≤

≤
∥∥∥∥∂Gγ∂yσ

∥∥∥∥
∞
‖wσ(xν) + yσ0 ‖σ + ‖Gγ(xν , yσ0 )−Gγ(xν0 , y

σ
0 )‖γ ≤ ε

Since ‖Gγ(xν , yγ0 )−Gγ(xν0 , y
γ
0 )‖γ ≤ ε/2 and ‖wσ(xν)− yσ0 ‖σ ≤ ε, ∀(xν , yγ) ∈ I × J , we have∥∥∥∥∂Gγ∂yσ

∥∥∥∥
∞

≤ 1

2

Therefore

‖Hγ(wγ(xν))−Hγ(vσ(xν))‖γ ≤ 1

2
‖wγ(xν)− vγ(xν)‖γ

I.e. H is a contraction in C(I, J).
Due to the differentiability of fµ we can write

∀ε > 0 ∃ηε : ‖hν‖ν , ‖k
γ‖γ ≤ ηε =⇒ ‖fµ(xν , gγ(xν) + kγ)− fµ(xν , gγ(xν))− ∂xνfµhν − ∂yγf

µkγ‖µ ≤

≤ ε(‖hν‖ν + ‖kγ‖γ)

Letting kγ = gγ(xν + hν)− gγ(xν) we have by definition

fµ(xν + hν , gγ(xν) + kγ)− fµ(xν , gγ(xν)) = 0

And therefore, putting ∂yγf
µ = δµγ

‖gγ(xν + hν) + ∂xνfµhν‖µ ≤ ε
(
‖hν‖ν + ‖gγ(xν + hν)− gγ(xν)‖γ

)
Letting ε = 1/2 we have ‖gγ(xν + hν)− gγ(xν)‖ ≤ η1/2, and we have

‖gγ(xν + hν)− gγ(xν)‖γ ≤ ‖gγ(xν + hν)− gγ(xν)− ∂xνfγhν‖γ‖∂xνfµhν‖γ

≤ 1

2

(
‖hν‖ν + ‖gγ(xν + hν)− gγ(xν)‖γ

)
+ ‖∂xνfµ‖∞‖hν‖

Which implies
‖gγ(xν + hν)− gγ(xν)‖γ ≤ ‖hν‖ν (1 + 2‖∂xνfµ‖∞)

Which implies that gγ(xν) is continuously differentiable in I. Whenever ∂yγf
µ 6= δµγ we can find a

transformed function f̃µ such that ∂yγ f̃µ = δµγ
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§§ 3.6.3 Lagrange Multipliers

Definition 3.6.5 (Vinculated Critical Points). Let f : K ⊂ A ⊆ R2 −→ R with A open and f ∈ C1(A).
Let ∂K =

⋃
k≤n γk with γk : [ak, bk] −→ R2. The critical points of f |∂K are found in Pik = γk(ti) ∈ ∂K,

for which
d

dt
f(Pik) = 0

Definition 3.6.6 (Argmax, Argmin). Let fµ : A −→ Rn a function which reach its maximum in
xνi ∈ A i = 1, · · · ,m and its minimum at yνj ∈ A j = 1, · · · , k Then we can define

Arg max
A

(f) : = {xν1 , · · · , xνm}

Arg min
A

(f) : = {yν1 , · · · , yνk}
(3.98)

Theorem 3.28 (Lagrange Multipliers). Let f, g : A −→ R, f, g ∈ C1(A), A ⊆ Rn open, and
M = {xµ ∈ A| g(xµ) = 0} and let xµ0 ∈ M : ∂mug(x

µ
0 ) 6= 0, then xµ0 ∈ Arg maxM f ∨ Arg minM f

if it’s a free critical point of the Lagrangian

L(xµ, λ) = f(xµ)− λg(xµ) (xµ, λ) ∈ A× R (3.99)

I.e. ∃λ0 ∈ R : (xµ0 , λ0) solves {
∂µf(x

ν) = λ∂µg(x
ν)

g(xµ) = 0
(3.100)

Or, that

rank

(
∂µf(x

ν
0)

∂µg(x
ν
0)

)
= 1

Proof. Let ∂ng 6= 0, then we can see M as a graph of a regular implicit function of g, h : Rn−1 −→ R,
where

g(xµ, h(xµ)) = 0 ∀xµ ∈ Br(x̃µ0) ⊂ Rn−1

Letting ϕ : (−ε, ε) −→ Br(x
µ
0 ) a smooth curve, such that ϕµ(0) = xµ0 , we have that ψν(t) =

(ϕµ(t), h(t)) ∈ M is the parameterization of a smooth curve that passes through xµ0 ∈ M. We
have

d

dt
f(ψν(0)) = ∂µfφ̇

µ(0) + ∂nfḣ(φ
µ(0)) = ∂νf(x

µ
0 )s

ν

d

dt
g(ψν(0)) = ∂νg(x

µ
0 )s

ν

With sν = ψ̇ν(0), therefore ∂νf‖ψν(0)∂νg

Theorem 3.29 (Generalized Lagrange Multiplier Method). Let f, gi : A ⊆ Rn −→ R, 0 < i < n,
f, gi ∈ C1(A) with A an open set, let M := {xν ∈ A| g(xν) = 0}. Take xν0 ∈ M such that

rank ∂νg
µ(xγ0) = k
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Then xν0 is a critical point for f |M, and it’s a free critical point for the Lagrangian L

L(xγ , λµ) = f(xγ)− λνg
ν(xγ)

I.e. ∃(xγ0 , λν0) ∈ A× R solution of the system{
∂νf(x

γ) = ∂νg
µ(xγ)λν

gν(xγ) = 0

Alternatively, one can check that

rank(A) =

(
∂µf(x

γ
0)

∂νg
µ(xγ)

)
= k



4 Tensors and Differential Forms

§ 4.1 Tensors and k-forms

§§ 4.1.1 Basic Definitions, Tensor Product and Wedge Product

Definition 4.1.1 (Multilinear Functions, Tensors). Let V be a real vector space, and take Vk = V×· · ·×V
k−times. A function T : Vk −→ R is called multilinear if ∀i = 1, · · · , k, ∀a ∈ R, ∀v, w ∈ V

T (v1, · · · , avi + wi, · · · , vk) = aT (v1, · · · , vi, · · · , vk) + T (v1, · · · , wi, · · · , vk) (4.1)

A multilinear function of this kind is called k-tensor on V . The set of all k−tensors is denoted as T k(V)
and is a real vector space.
The tensor T is usually denoted as follows

Tµ1...µk
(4.2)

Where each index indicates a slot of the multilinear application T (−, · · · ,−)

Definition 4.1.2 (Tensor Product). Let S ∈ T k(V ), T ∈ T l(V), we define the tensor product S ⊗ T ∈
T k+l(V) as follows

(S ⊗ T )(v1, · · · , vk, vk+1, · · · , vk+l) = S(v1, · · · , vk)T (vk+1, · · · , vk+l) (4.3)

This product has the following properties

(S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T

S ⊗ (T1 + T2) = S ⊗ T1 + S ⊗ T2

(aS)⊗ T = S ⊗ (aT ) = a(S ⊗ T )

(S ⊗ T )⊗ U = S ⊗ (T ⊗ U) = S ⊗ T ⊗ U

(4.4)

If S = Sµ1...µk
and T = Tµk+1...µk+l

we have

(S ⊗ T )µ1...µkµk+1...µk+l
= Sµ1...µk

Tµk+1...νk+l
(4.5)

Definition 4.1.3 (Dual Space). We define the dual space of a real vector space V as the space of all
linear functionals from the space to the field over it’s defined, and it’s indicated with V?. I.e. let
ϕµ ∈ V?, then ϕµ : V −→ R.
It’s easy to see how V? = T 1(V).

51
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Theorem 4.1. Let B = {vµ1 , · · · , vµn} be a basis for the space V , and let B? := {ϕµ1 , · · · , ϕµn} be
the basis of the dual space, i.e. ϕµvν = δµν ∀ϕµ ∈ B?, vµ ∈ B, then the set of all k-fold tensor
products has basis BT , where

BT := {ϕµ1 ⊗ · · · ⊗ ϕµk , ∀i = 1, · · · , n} (4.6)

Theorem 4.2 (Linear Transformations on Tensor Spaces). If fµν : V −→ W is a linear transformation,
fνµ ∈ L(V,W), one can define a linear transformation f? : T k(W ) −→ T k(V ) as follows

f?T (vµ1
, · · · , vµk

) = T (fµν vµ1
, · · · , fµν vµk

)

Theorem 4.3. If g is an inner product on V (i.e. g : V ×V −→ R, with the properties of an inner
product), there is a basis vµ1

, · · · , vµn
of V such that g(vµ, vν) = gµν = gνµ = g(vν , vµ) = δµν .

This basis is called orthonormal with respect to T . Consequently there exists an isomorphism
fµν : Rn ∼−→ V such that

g(fµν x
ν , fµν y

ν) = xµy
µ = gµνx

µyν (4.7)

I.e.
f?g(·, ·) = gµν (4.8)

Definition 4.1.4 (Alternating Tensor). Let V be a real vector space, and ω ∈ T k(V). ω is said to be
alternating if

ω(vµ1
, · · · , vµi

, · · · , vµj
, · · · , vµk

) = −ω(vµ1
, · · · , vµj

, · · · , vµi
, · · · , vµk

)

ω(vµ1
, · · · , vµi

, · · · , vµi
, · · · , vµk

) = 0
(4.9)

Or, compactly
ωµ...ν...γ...σ = −ωµ...γ...ν...σ
ωµ...ν...ν...γ = 0

(4.10)

The space of all alternating k−tensors on V is indicated as Λk(V), and we obviously have that Λk(V) ⊂
T k(V).
We can define an application Alt : T k(V) −→ Λk(V) as follows

Alt(T )(vµ1 , · · · , v
µ
k ) =

1

k!

∑
σ∈Σk

sgn(σ)T (vµσ(1), · · · , v
µ
σ(k)) (4.11)

With σ = (i, j) a permutation andΣk the set of all permutations of natural numbers 1, · · · , k Compactly,
we define an operation on the indices, indicated in square brackets, called the antisymmetrization of
the indices inside the brackets.
This definition is much more general, since it lets us define a partially antisymmetric tensor, i.e. anti-
symmetric on only some indices.

Alt(Tµ1...µk
) =

1

k!
T[µ1...µk] (4.12)
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As an example, for a 2−tensor aµν we can write

a[µν] =
1

2
(aµν − aνµ) = ãµν ∈ Λ2(V) (4.13)

This is valid for general tensors. If we define a k−tensor over the product repeated k times for V and k
for its dual space V × · · · V × V? × · · · × V?, we can define the space T k(V × V?) = W. Let the basis
for this space be the following

BW := {vµ1
⊗ · · · ⊗ vµk

⊗ ϕν1 ⊗ · · · ⊗ ϕνk}

Then an element Y of the space W can be written as follows

Y(vµ1
, · · · , vµk

, ϕν1 , · · · , ϕνk) = Yν1...νkµ1...µk

We can define a new element Y ∈ Λk(V × V?) using the antisymmetrization brackets

Y ν1...νkµ1...µk
= Y [ν1...νk]

[µ1...µk]

We can define also partially antisymmetric parts as follows

Rν1...νkµ1...µk
= Yν1...[νiνi+1]...νk

µ1...[µlµl+1]...µk
=

1

4!

(
Yν1...νiνi+1...νk
µ1...µlµl+1...µk

− Yν1...νi+1νi...νk
µ1...µlµl+1...µk

+ Yν1...νiνi+1...νk
µ1...µlµl+1...µk

− Yν1...νiνi+1...νk
µ1...µl+1µl...µk

)
Note how the indexes in the expressions with the label i and l simply got switched, and in the new
definition, the tensor R is antisymmetric in both the covariant (lower) indexes µl, µl+1 and in the
contravariant (upper) indexes νi, νi+1, where obviously i, l ≤ k

Theorem 4.4. Let T ∈ T k(V) and ω ∈ Λk(V). Then

T[µ1...µk] ∈ Λk(V)
ω[µ1...µk] = ωµ1...µk

T[[µ1...µk]] = T[µ1...µk]

(4.14)

Definition 4.1.5 (Wedge Product). Let ω ∈ Λk(V), η ∈ Λl(V). In general ω ⊗ η /∈ Λk+l(V), hence we
define a new product, called the wedge product, such that ω ∧ η ∈ Λk+l(V)

ωµ1...µk
∧ ην1...νk =

(k + l)!

k!l!
ω[µ1...µk

ην1...νl] (4.15)

With the following properties
∀ω, ω1, ω2 ∈ Λk(V), ∀η, η1, η2 ∈ Λl(V), ∀a ∈ R,∀f? ∈ L : T k(V) −→ T l(V) ∀θ ∈ Λm(V)

(ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η
ω ∧ (η1 + η2) = ω ∧ η1 + ω ∧ η2
(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ)

aω ∧ η = ω ∧ aη = a(ω ∧ η)
ω ∧ η = (−1)klη ∧ ω

f?(ω ∧ η) = f?(ω) ∧ f?(η)

(4.16)
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Theorem 4.5. The set
{ϕµ1 ∧ · · · ∧ ϕµk , k < n} ⊂ Λk(V) (4.17)

Is a basis for the space Λk(V), and therefore

dim(Λk(V)) =
(
n
k

)
=

n!

k!(n− k)!

Where dim(V) = n.
Therefore, dim(Λn(V)) = 1

Theorem 4.6. Let vµ1 , · · · , vµn be a basis for V, and take ω ∈ Λn(V), then, if wµ = aνµvν

ω(wµ1
· · ·wµn

) = det
µν

(aµν )ω(vµ1
, . . . , vµn

) (4.18)

Or using the basis representation of a vector tµ = tµwµ = tµaνµvν we have

ωµ1...µnt
µ1 · · · tµn = det

µν
(aµν )ων1...νnt

ν1 · · · tνn (4.19)

Proof. Define ηµ1...µn
∈ T n(Rn) as

ηµ1...µn
aµ1
ν1 a

µ2
ν2 · · · aµn

vn = ωµ1...µn
aµ1
ν1 · · · aµn

νn

Hence η ∈ Λn(Rn) so η = λdet(·) for some λ, and

λ = ηµ1...µne
µ1 · · · eµn = ωµ1...µnv

µ1 · · · vµn

§§ 4.1.2 Volume Elements and Orientation

Definition 4.1.6 (Orientation). The previous theorem shows that a ω ∈ Λn(V), ω 6= 0 splits the bases
of V in two disjoint sets.
Bases for which ω(Bv) > 0 and for which ω(Bw) < 0. Defining wµ = aµνv

ν we have that the two bases
belong to the same group iff detµν(a

µ
ν ) > 0. We call this the orientation of the basis of the space.

The usual orientation of Rn is
[eµ]

Given another two basis of Rn we can define (taking the first two examples)

[vµ]

−[wµ]

Definition 4.1.7 (Volume Element). Take a vector space V such that dim(V) = n and it’s equipped
with an inner product g, such that there are two bases (vµ1 , · · · , vµn), (wµ1 , · · · , wµn) that satisfy the
orthonormality condition with respect to this scalar product

gµνv
µivνj = gσγw

σiwγj = δij (4.20)
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Then
ωµ1...µnv

µ1 · · · vµn = ωµ1...µnw
µ1 · · ·wµn = det

µν
(aµν ) = ±1

Where
wµ = aµνv

ν

Therefore
∃!ω ∈ Λn(V) : ∃![wµ1 , · · · , wµn ] = O

Where O is the orientation of the vector space.

Definition 4.1.8 (Cross Product). Let vµ1 , · · · , vµn ∈ Rn+1 and define ϕνw
ν as follows

ϕνw
ν = det


vµ1

...
vµn

wν


Then ϕ ∈ Λ1(Rn+1), and

∃!zµ ∈ Rn+1 : zµwµ = ϕνw
ν

zµ is called the cross product, and it’s indicated as

zµ = vν1 × · · · × vνn = εµν1...νnv
ν1 · · · vνn

§ 4.2 Tangent Space and Differential Forms

Definition 4.2.1 (Tangent Space). Let p ∈ Rn, then the set of all pairs { (p, vµ)| vµ ∈ Rn} is denoted
as TpRn and it’s called the tangent space of Rn (at the point. This is a vector space defining the
following operations

(p, avµ) + (p, awµ) = (p, a(vµ + wµ)) = a(p, vµ + wµ) ∀vµ, wµ ∈ Rn, a ∈ R

Remark. If a vector vµ ∈ Rn can be seen as an arrow from 0 to the point v, a vector (p, vµ) ∈ TpRn
can be seen as an arrow from the point p to the point p+ v. In concordance with the usual notation
for vectors in physics, we will write (p, vµ) = vµ directly, or vµp when necessary to specify that we’re
referring to the vector vµ ∈ TpRn. The point p+ v is called the end point of the vector vµp .

Definition 4.2.2 (Inner Product in TpRn). The usual inner product of two vectors vµp , w
µ
p ∈ TpRn is

defined as follows
〈·, ·〉p :TpRn × TpRn −→ R
vµpw

p
µ = vµwµ = k

(4.21)

Analogously, one can define the usual orientation of TpRn as follows

[(eµ1)p, · · · , (eµn)p]
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Definition 4.2.3 (Vector Fields, Again). Although we already stated a definition for a vector field, we’re
gonna now state the actual precise definition of vector field
Let p ∈ Rn be a point, then a function fµ(p) : Rn −→ TpRn is called a vector field, if ∀p ∈ A ⊆ Rn we
can define

fµ(p) = fµ(p)(eµ)p (4.22)

Where (eµ)p is the canonical basis of TpRn
All the previous (and already stated) considerations on vector fields hold with this definition.

Definition 4.2.4 (Differential Form). Analogously to vector fields, one can define k−forms on the
tangent space. These are called differential (k-)forms and “live” on the space Λk(TpRn).
Let ϕµ1

p , · · · , ϕµk
p ∈ (TpRn)? be a basis on such space, then the differential form ω ∈ Λk (TpRn) is

defined as follows

ωµ1...µk
(p) = ωµ1...µk

ϕ[µ1
p · · ·ϕµk]

p →
∑

i1<...<ik

ωi1...ik(p)ϕi1(p) ∧ · · · ∧ ϕik(p) (4.23)

A function f : TpRn −→ R is defined as f ∈ Λ0(TpRn), or a 0−form. In general, so, we can write
without incurring in errors

f(p)ω = f(p) ∧ ω = f(p)ωµ1...µk
(4.24)

§§ 4.2.1 External Differentiation, Closed and Exact Forms

Definition 4.2.5 (Differential). Now we will omit that we’re working on a point p ∈ Rn and we’ll use
the usual notation.
Let f : TpRn −→ R be a smooth (i.e. continuously differentiable) function, where f ∈ C∞, then,
using operatorial notation we have that ∂µf(v) ∈ Λ1(Rn), therefore, with a small modification, we
can define

df(vνp ) = ∂µf(v
ν) (4.25)

It’s obvious how dxµ(vνp ) = ∂νx
µ(vν) = vµ, therefore dxµ is a basis for Λ1(TpRn), which we will

indicate as dxµ, therefore ∀ω ∈ Λk(TpRn)

ωµ1...µk
= ωµ1...µk

dx[µ1 · · · dxµk] →
∑

i1<...<ik

ωi1...ik(p)dx
i1 ∧ · · · ∧ dxik (4.26)

Basically, the vectors dxµ are the dual basis with respect to the canonical basis (eµ)p

Theorem 4.7. Since df(vνp ) = ∂νf(v
ν) we have, expressing the differential of a function with

the basis vectors,

df =
∂f

∂xµ
dxµ = ∂µf dx

µ (4.27)

Definition 4.2.6. Having defined a smooth linear transformation fµν : Rn −→ Rm, it induces another
linear transformation ∂γf

µ
ν : Rn −→ Rm, which with some modifications becomes the application

(f?)
µ
ν : TpRn −→ Tf(p)Rm defined such that

(f?)
µ
ν (v

ν) =
(
df |f(p)

)µ
ν
(vν) (4.28)
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Which, in turn, also induces a linear transformation f? : Λk(Tf(p)Rm) −→ Λk(TpRn), defined as

follows. Let ωp ∈ Λk(Rm), then we can define f?ω ∈ Λk(Tf(p)Rn) as follows

(f?ωp)(vµ1
, . . . , vµk

) = ωf(p)
(
(f?)

µ1
ν1 vµ1

, · · · , (f?)µk
νk
vµk

)
(4.29)

(Just remember that in this way we are writing explicitly the chosen base, watch out for the indexes!)

Theorem 4.8. Let f : Rn −→ Rm be a smooth function, then

1. (f?)µν (dx
ν) = df = ∂νf

µ dxν

2. f?(ω1 + ω2) = f?ω1 + f?ω2

3. f?(gω) = (g ◦ f)f?ω

4. f?(ω ∧ η) = f?ω ∧ f?η

5. f?
(
hdx[µ1 · · · dxµn]

)
= h ◦ f detµν(∂νfµ)dx[µ1 · · · dxµn]

Definition 4.2.7 (Exterior Derivative). We define the operator das an operator Λk(TpV)
d−→ Λk+1(TpV)

for some vector space V. For a differential form ω it’s defined as follows

(dω)νµ1...µk
= ∂[νωµ1...µk] (4.30)

This, using the classical mathematical notation can be written as follows

dω =
∑

i1<...<ik

dωi1,...,ik ∧ dxi1 ∧ · · · ∧ dxik

dω =
∑

i1<...<ik

n∑
j=1

∂

∂xj
ωi1,...,ik dx

j ∧ dxi1 ∧ · · · ∧ dxik
(4.31)

Theorem 4.9 (Properties of d). 1. d(ω + η) = dω + dη

2. d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη for ω ∈ Λk(V), η ∈ Λl(V)

3. ddω = d
2
ω = 0

4. f?(dω) = d(f?ω)

Definition 4.2.8 (Closed and Exact Forms). A form ω is called closed iff

dω = 0 (4.32)

It’s called exact iff

ω = dη (4.33)

Theorem 4.10. Let ω be an exact differential form. Then it’s closed



CHAPTER 4. TENSORS AND DIFFERENTIAL FORMS 58

Proof. The proof is quite straightforward. Since ω is exact we can write ω = dρ for some differential
form ρ, therefore

dω = ddρ = d
2
ρ = 0

Hence dω = 0 and ω is closed.

Example 4.2.1. Take ω ∈ Λ1(R2), where it’s defined as follows

ωµ = pdx+ q dy (4.34)

The external derivative will be of easy calculus by remembering the mnemonic rule d→ ∂µ ∧ dxµ, or
also as ∂[ν then we have

dωµν = ∂[νωµ]

But

∂νωµ =

(
∂1ω1 ∂1ω2

∂2ω1 ∂2ω2

)
µν

And

∂[νωµ] =
1

2
(∂νωµ − ∂µων) =

1

2
(∂ω − ∂ωT)

Therefore

dωµν =
1

2

(
0 ∂xq − ∂yp

∂yp− ∂xq 0

)
µν

Which, expressed in terms of the basis vectors of Λ2(R2), dx ∧ dy, we get

dω =
1

2
(∂xq − ∂yp)dx ∧ dy +

1

2
(∂yp− ∂xq)dy ∧ dx = (∂xq − ∂yp)dx ∧ dy (4.35)

Therefore

dω = 0 ⇐⇒ ∂xq − ∂yp = 0 (4.36)

Definition 4.2.9 (Star Shaped Set). A set A is said to be star shaped with respect to a point a iff
∀x ∈ A the line segment [a, x] ⊂ A

Lemma 4.2.1 (Poincaré’s). Let A ⊂ Rn be an open star shaped set, with respect to 0. Then every closed
form on A is exact

§ 4.3 Chain Complexes and Manifolds

§§ 4.3.1 Singular n−cubes and Chains

Definition 4.3.1 (Singular n−cube). A singular n-cube is an application c : [0, 1]n −→ A ⊂ Rn. In
general. A singular 0-cube is a function f : {0} −→ A and a singular 1−cube is a curve.

Definition 4.3.2 (Standard n−cube). We define a standard n-cube as a function In : [0, 1]n −→ Rn
such that In(xµ) = xµ.
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Definition 4.3.3 (Face). Given a standard n−cube In we define the (i, α)−face of the cube as

In(i,α) = (x1, · · · , xi−1, α, xi, · · · , xn−1) α = 0, 1 (4.37)

Definition 4.3.4 (Chain). Given n k−cubes ci, we define a n-chain s as follows

s =

n∑
i=1

aici ai ∈ R (4.38)

Definition 4.3.5 (Boundary). Given an n−cube ci we define the boundary as ∂ci. For a standard
n−cube we have

∂In =

n∑
i=1

∑
α=0,1

(−1)i+αIn(i,α) (4.39)

For a k−chain s we define
∂s = ∂(

∑
i

aici) =
∑
i

ai∂ci (4.40)

Where ∂s is a (k − 1)-chain

Theorem 4.11. For a chain c, we have that ∂∂c = ∂2c = 0

§§ 4.3.2 Manifolds

Definition 4.3.6 (Manifold). Given a set M ⊂ Rn, it is said to be a k-dimensional manifold if
∀xµ ∈M we have that

1. ∃U ⊂ Rk open set xµ ∈ U and V ⊂ Rn and ϕ a diffeomorphism such that U ' V and
ϕ (U ∩M) = V ∩

(
Rk × {0}

)
, i.e. U ∩M ' Rk ∩ {0}

2. ∃U ⊂ Rk open andW ⊂ Rk open, xµ ∈ U and f :W −→ Rn a diffeomorphism

(a) f(W ) =M ∩ U
(b) rank (f) = k ∀xµ ∈W

(c) f−1 ∈ C(f(W ))

The function f is said to be a coordinate system in M

Definition 4.3.7 (Half Space). We define the k-dimensional half space Hk ⊂ Rk as

Hk :=
{
xµ ∈ Rk

∣∣ xi ≥ 0
}

(4.41)

Definition 4.3.8 (Manifold with Boundary). A manifold with boundary (MWB) is a manifoldM such
that, given a diffeomorphism h, an open set U ⊃M and an open set V ⊂ Rn

h (U ∩ V ) = V ∩
(
Hk ∩ {0}

)
(4.42)

The set of all points that satisfy this forms the set ∂M called the boundary of M
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Definition 4.3.9 (Tangent Space). Given a manifoldM and a coordinate set f around xµ ∈ M , we
define the tangent space of M at xµ ∈M as follows

f :W ⊂ Rk −→ Rn =⇒ f?
(
TxRk

)
= TxM (4.43)

Definition 4.3.10 (Vector Field on a Manifold). Given a vector field fµ we identify it as a vector field
on a manifoldM if fµ(xν) ∈ TxM . Analogously we define a k−differential form



5 Integral Analysis

§ 5.1 Measure Theory

Definition 5.1.1 (Lower and Upper Sums). We define the upper and lower Riemann sums as follows.
Let f(x) be a function, then 

U(f, x) : =
n∑
i=1

sup
t∈[xk,xk+1]

(f(t))

L(f, x) : =
n∑
i=1

inf
t∈[xk,xk+1]

(f(t))

(5.1)

A function is said to be Riemann integrable if limn→∞(L(f, x)− U(f, x)) = 0

Definition 5.1.2 (Set Function). Let A be a set. We define the following function 1A(x) as follows

1A(x) =

{
1 x ∈ A

0 x /∈ A
(5.2)

Theorem 5.1. The function 1Q is not integrable over the set [0, 1] with the usual definition of
the integral (Riemann sums)

Proof. Indicating the integral I as usual

I =

ˆ 1

0

1Q(x)dx

We see immediately that
U(1Q, x) = 1

L(1Q, x) = 0

Therefore 1Q(x) is not integrable in [0, 1] (with the Riemann integral)

Definition 5.1.3 (Measure). Let A ⊂ X be a subset of a metric space. We define the measure of the
set A, µ(A) as follows

µ(A) =

ˆ
X

1A(x)dx (5.3)

61
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Basically, what we did before, was demonstrating that the set Q ∩ [0, 1] is not measurable in the
Riemann integration theory. This is commonly indicated with saying that the setQ∩ [0, 1] is not Jordan
measurable.
For clarity, let K be some measure theory. We will say that a set is K-measurable if the following
calculation exists

µK(A) =

ˆ
X

1A(x)dx (5.4)

Definition 5.1.4 (Algebra). Let X 6= {} be a set. An algebra A over X is a collection of subsets of X
such that

1. {} ∈ A

2. X ∈ A

3. A ∈ A =⇒ Ac ∈ A

4. A1, · · · , An ∈ A =⇒
⋃n
i=1Ai,

⋂n
i1
Ai ∈ A

Example 5.1.1 (Simple Set Algebra). Let X = R2 and call R the set of all rectangles Ii ⊂ R? × R?,
where R? = R ∪ {±∞}. It’s easy to see that this is not an algebra, since, by taking [0, 1] ∈ R, we have
that [0, 1]c /∈ R, hence it cannot be an algebra.
But, taken S as follows

S :=

{
A ⊂ R2

∣∣A =

n⋃
i=1

Ii Ii ∈ R

}
We can see easily, using De Morgan law, that S is an algebra.

§§ 5.1.1 Jordan Measure

Definition 5.1.5 (Disjoint Union). Taken two sets A,B, we define their disjoint union the binary
operation A tB as follows

A tB := A ∪B \A ∩B (5.5)

Definition 5.1.6 (Simple Set). A set A is a simple set iff, for some Ri ∈ S, we have

A =

n⊔
i=1

Ri

Definition 5.1.7 (Measure of a Simple Set). Let A be a simple set, the Jordan measure of a simple set
is given by the sum of the measure of the rectangles, i.e. the “area” of A is given by the sum of the
area of each rectangle Ri

µJ(A) =

n∑
i=1

µJ(Ri) (5.6)
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Definition 5.1.8 (External and Internal Measure). We define the external measure µJ and the internal
measure µ

J
as follows.

Taken a limited set B and a simple set A we have

µJ(B) = inf{µJ(A)|B ⊂ A}
µ
J
(B) = sup{µJ(A)|A ⊂ B}

(5.7)

A set is said to be Jordan measurable iff

µJ(B) = µ
J
(B) = µJ(B)

Remark (A Non Measurable Set). A good example for showing that the Jordan measure is the set we
were trying to measure, the set Q ∩ [0, 1]. We can easily see that

µJ(Q ∩ [0, 1]) = 1

µ
J
(Q ∩ [0, 1]) = 0

Therefore it’s not Jordan measurable.
From this we can jump to a new definition of measure, which is the Lebesgue measure where instead
of covering Q ∩ [0, 1] with a finite number of simple sets, we use sets which are formed from the
union of countable infinite simple sets.
We can define

Q ∩ [0, 1] := {q1, q2, · · · }
We then take ε > 0 and define the following set

A =

∞⋃
n=1

[
qn − ε

2n
, qn +

ε

2n

]
We have that

µ(A) ≤
∞∑
n=1

ε

2n−1
= 2ε

But µ(Q ∩ [0, 1]) ≤ µ(A) ≤ 2ε→ 0, therefore Q ∩ [0, 1] is measurable with µ(Q ∩ [0, 1]) = 0

§§ 5.1.2 Lebesgue Measure

Definition 5.1.9 (σ−Algebras and Borel Spaces). Given a non empty set X a σ−algebra on X is a
collection of subsets F such that

1. ∀A ∈ F , A ⊂ X

2. Let Ai ∈ F , i ∈ I : |I| = ℵ0 then
⋃∞
i=1Ai ∈ F

The couple (X,F) is called a Borel space or also a measurable space

Definition 5.1.10 (Measure). Given a Borel space (X,F), we can define an application

µ : F −→ [0,∞] = R?+ (5.8)

Which satisfies the following properties
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1. σ-additivity, given Ai ∈ F with i ∈ I ⊂ N, |I| ≤ ℵ0, such that An ∩Ak = {} for n 6= k

µ

(⊔
i∈I

Ai

)
=
∑
i∈I

µ(Ai)

2. If Yj ⊂ X, with j ∈ J ⊆ N, µ(Yj) <∞ then X =
⋃∞
j=1 Yj

Definition 5.1.11 (Measure Space). A measure space is a triplet (X,F , µ) with F a σ−algebra and µ
a measure.

Remark. The empty set has null measure.

Proof. Due to σ−additivity we have that

µ({}) = µ({} ∪ {}) = µ({}) + µ({})

Therefore, µ({}) = 0 necessarily.

Definition 5.1.12 (Lebesgue Measure). Consider again X = R2 and S the algebra of simple sets.
The external Lebesgue measure of a set B ⊂ R2 is then defined as follows

µL(B) := inf

{ ∞∑
i=1

Area(Ri)

∣∣∣∣∣Ri ∈ S, B ⊂
∞⋃
i=1

Ri

}
(5.9)

The set B is said to be Lebesgue measurable iff, ∀C ⊂ R2

µL(C) = µL(C ∩B) + µL(C \B) (5.10)

If it’s measurable, then, µL(B) = µL(B) and it’s called the Lebesgue measure of the set.
In other words ∃ε > 0 : ∃A,C ⊂ R2, with A = A◦, C = C such that

C ⊂ B ⊂ A ∨ µL(A \ C) < ε (5.11)

Definition 5.1.13 (Borel Algebra). Let R be the set of all rectangles. The smallest σ−algebra containing
R is called the Borel algebra and it’s indicated as B

Definition 5.1.14 (Lebesgue Algebra). The set of (Lebesgue) measurable sets is a σ−algebra, which we
will indicate as L. In particular, we have that, if I is a rectangle, I ∈ L.
If we add the fact that in B there are null measure sets which have subsets which aren’t part of B, we
end up with the conclusion that B ⊂ L

Definition 5.1.15 (Null Measure Sets). A set with null measure is a set X ⊂ F such that

µ(X) = 0 (5.12)

Where µ is a measure function.
It’s obvious that sets formed by a single point have null measure.
I.e take a set A = {a}, then it can be seen as a rectangle with 0 area, and therefore

µ ({a}) = 0 (5.13)
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Theorem 5.2. Every set such that |A| = ℵ0 has null measure

Corollary 5.1.1. Every line in R2 has null measure

Proof. Take the set A = {a1, a2, a3, · · · }. Then, due to σ−additivity, we have

µ ({a1, a2, a3, · · · }) = µ

( ∞⊔
k=1

{ak}

)
=

∞∑
k=1

µ ({ak}) = 0 (5.14)

For the corollary, it’s obvious if the line is thought as a rectangle in R2 with null area

§ 5.2 Integration

Definition 5.2.1 (Measurable Function). Given a Borel space (X,F) a measurable function is a
function f : X −→ F such that, ∀k ∈ F the following set is measurable

If := {k ∈ F| f(x) < k} (5.15)

Or, in other words If ∈ F , with F the given σ−algebra of the Borel space.
The space of all measurable functions on X will be identified as M(X)

Theorem 5.3. Given a set A ∈ F with F a σ−algebra, the function 1A(x) is measurable

Proof. We have that

I1A
=

{
A k > 1

{} t ≤ 1

Therefore I1A
∈ F and 1A(x) is measurable

Definition 5.2.2 (Simple Measurable Function). Given a Borel space (X,F), a simple measurable
function is a function f : X −→ F which can be written as follows

f(x) =

n∑
k=1

ck1Ak
(x) (5.16)

Where Ak ∈ F , ck ∈ F 0 ≤ k ≤ n

Definition 5.2.3 (Integral). Given a measure space (X,F , µ) and a simple function f(x), we can define
the integral of the function f with respect to the measure µ over the set X as follows

ˆ
X

f(x)µ (dx) =

n∑
k=1

ckµ(Ak) (5.17)

For non negative functions we define the integral as follows

ˆ
X

f(x)µ (dx) = sup

{ˆ
X

g(x)µ (dx)

}
(5.18)
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Where g(x) is a simple measurable function such that 0 ≤ g ≤ f .
If f assumes both negative and positive values we can write

f = f+ − f− (5.19)

Where {
f+ = max {f, 0}
f− = max {−f, 0}

(5.20)

The integral, due to linearity, then will be

ˆ
X

f(x)µ (dx) =

ˆ
X

f+(x)µ (dx)−
ˆ
X

f−(x)µ (dx) (5.21)

With the only constraint that the function f(x) must be misurable in the σ-algebra F

§§ 5.2.1 Lebesgue Spaces

Definition 5.2.4 (Lp spaces). With the previous definitions, we can define an infinite dimensional
function space with the following properties
Given a measure space (X,F , µ) we have the following definition

Lp (X,F , µ) = Lp(µ) :=
{
f : X −→ F| If ∈ F ∧

ˆ
X

|f |pµ (dx) <∞
}

(5.22)

Defining the integral as an operator K̂µ[f ] we can see easily that this is a vector spaces due to the

properties of K̂µ.
It’s easy to note that if the chosen σ−algebra and measure are the Lebesgue ones, then this integral is
simply an extension of the usual Riemann integral.
It’s important to note that a norm in Lp(µ) can’t be defined as an usual integral p−norm, since there
are nonzero functions which have actually measure zero.

Definition 5.2.5 (Almost Everywhere Equality). Taken two functions f, g ∈ Lp(µ) we say that these two
function are almost everywhere equal if, given a set A := {x ∈ X| f(x) 6= g(x)} has null measure.
Therefore

f ∼ g ⇐⇒ µ(A) = 0 (5.23)

This equivalence relation creates equivalence classes of functions compatible with the vector space
properties of Lp(µ).

Definition 5.2.6 (Lp-Spaces). With the definition of the almost everywhere equality we can then define
a quotient space as follows

Lp(µ) = Lp(µ)\ ∼ (5.24)

This is a vector space, obviously, where the elements are the equivalence classes of functions f ∈ Lp(µ),
indicated as [f ].
If we define our σ−algebra and measure as the Lebesgue ones, this space is called the Lebesgue
space Lp(X), where an integral p−norm can be defined.
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§§ 5.2.2 Lebesgue Integration

Note:
In this section the differential dx will actually indicate the Lebesgue measure µ (dx) used previously,
unless stated otherwise.

Theorem 5.4. Let f : E −→ F be a measurable function over E.
Given

F+∞ = x ∈ E| f(x) = +∞ ∧ F−∞ = x ∈ E| f(x) = −∞

Assuming E ⊂ X, with (X,L, µ) a Lebesgue measure space, we have that

µ (F+∞) = µ (F−∞) = 0

Proof. We can immediately say that

F+∞ =
⋂
k≥0

Fk ∈ L

Letting r > 0 we will indicate with 1r(x) the set function of the set F+∞ ∩Br(0), therefore we have
that

f+(x) ≥ k1r(x) ∀k ∈ N

Therefore

µ (F+∞ ∩Br(0)) =
ˆ
1r(x)dx ≤ 1

k

ˆ
E

f+(x)dx −→ 0

The proof is analogous for F−∞

Theorem 5.5. Let (X,L, µ) be a measure space, where L is the Lebesgue σ−algebra and µ is
the Lebesgue measure. Given a function f ∈ L1(X) we have that

ˆ
X

f(x)dx = 0 ⇐⇒ f ∼ 0 (5.25)

Proof. Let F0 = x ∈ X| f(x) > 0 =
⋂
k≥0 F1/k.

Since f(x) > 1/k, ∀x ∈ F1/k, we have that, ∀k ∈ N

µ(F1/k) ≤
ˆ
X

f(x)dx = 0

Through induction, we obtain that µ(F0) = 0

Theorem 5.6 (Monotone Convergence (B. Levi)). Let (f)k be a sequence of measurable functions
over a Borel space E, such that

0 ≤ f1(x) ≤ · · · ≤ fk(x) ≤ · · · ∀x ∈ F ⊂ E, µ(F ) = 0
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If fk(x) → f(x), we have that
ˆ
E

f(x)dx = lim
k→∞

ˆ
E

fk(x)dx (5.26)

Or, in another notation ˆ
E

fk(x)dx→
ˆ
E

f(x)dx (5.27)

Proof. Let F0k = 0 < y < fk(x) and F0 = 0 < y < f(x) be two sets defined as seen. They are all
measurable since fk(x), f(x) are measurable, and due to the monotony of fk(x) we have that

F01 ⊂ F02 ⊂ · · · ⊂ F0k ⊂ · · · ∧ F0 =

∞⊔
k=1

F0k

Due to σ−additivity of the measure function, we have that F0 is measurable, and that

µ (F0) =

∞∑
k=1

µ (F0k) ∴ µ (F0) = lim
k−→∞

µ (F0k)

Notation (For Almost All). We now introduce a new (unconventional) symbol in order to avoid writing
too much, which would complicate the already difficult to understand theorems.
In order to indicate that we’re picking almost all elements of a set we will use a new quantifier, which
means that we’re picking all elements of a null measure subset of the set in question. The quantifier in
question will be the following

∀† (5.28)

Corollary 5.2.1. Let fk(x) be a sequence of non-negative measurable functions over a measurable set
E, then ∀† x ∈ E ˆ

E

∑
k≥0

fk(x)dx =
∑
k≥0

ˆ
E

fk(x)dx (5.29)

Theorem 5.7 (Fatou). Let fk(x) be a sequence of measurable functions over a measurable set
E, such that ∀† x ∈ E ∃Φ(x) measurable : fk(x) > Φ(x), then

ˆ
E

lim inf
k→∞

fk(x)dx ≤ lim inf
k→∞

ˆ
E

fk(x)dx

Analogously happens with the lim sup of the sequence

Proof. Let hk(x) = fk(x)− Φ(x) ≥ 0 ∀† x ∈ E and gj(x) = infk≥k hk(x), then ∀k ≥ j we have

ˆ
E

gj(x)dx ≤
ˆ
E

hk(x)dx
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It’s also (obviously) true taking the lim sup of the RHS, and for the theorem on the monotone conver-
gence, we have that

ˆ
E

lim
j→∞

gj(x)dx = lim
j→∞

ˆ
E

gj(x)dx ≤
ˆ
E

hk(x)dx

∴ lim
j→∞

gj(x) = sup
j
gj(x) = sup

j
inf
k≥j

hk(x) = lim inf
k→∞

hk(x)

Theorem 5.8 (Dominated Convergence (Lebesgue)). Let h(x) ≥ 0 be a measurable function on
the measurable set E such that for a sequence of measurable functions fk(x) we have that

|fk(x)| ≤ h(x) ∀† x ∈ E

And
f(x) = lim

k→∞
fk(x) ∀† x ∈ E

Then ˆ
E

f(x)dx = lim
k→∞

ˆ
E

fk(x)dx

Proof. By definition we have that −h(x) ≤ fk(x) ≤ h(x) ∀† x ∈ E, and we can apply Fatou’s theorem

ˆ
E

f(x)dx ≤ lim inf
k→∞

ˆ
E

fk(x)dx ≤ lim sup
k→∞

ˆ
E

fk(x)dx ≤
ˆ
E

f(x)dx

Corollary 5.2.2. Let E be a measurable set such that µ (E) < ∞ and let fk(x) be a sequence of
functions in E such that |fk(x)| ≤M ∀† x ∈ E and fk(x) → f(x), ∀† x ∈ E. Then the theorem (5.8)
is valid.

Example 5.2.1. Take the sequence of functions fk(x) = kxe−kx over E = [0, 1]. We already know
that fk(x) −→ f(x) = 0 for x ∈ E, but fk(x) 6⇒ f(x) in E.
We have that

sup
E
fk(x) = e−1 = h(x) 6= f(x)

We have that h(x) is measurable in E and we can apply the theorem (5.8)

Definition 5.2.7 (Carathéodory Function). Let (X,L, µ) be a measure space andA ⊂ Rn. f : X×A −→
R is a Carathéodory function iff f(xµ, aν) ∈ C(A) ∀aν ∈ A and f(xµ, aν) ∈ M(X) ∀† xµ ∈ X

Definition 5.2.8 (Locally Uniformly Integrably Bounded). Let f : X × A −→ R be a Carathéodory
function. It’s said to be locally uniformly integrably bounded if ∀aν ∈ A ∃haν : X −→ R
measurable, and ∃Bε(aν) ⊂ A, such that

∀yν ∈ Bε(x
µ) |f(xµ, yν)| ≤ haν (x

µ)

Note that if µ is a finite measure, then f bounded =⇒ f locally uniformly integrably bounded or LUIB.
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Theorem 5.9 (Leibniz’s Derivation Rule). Let (X,F , µ) be a measure space and A ⊂ Rn an open
set. If f : X ×A −→ R is a LUIB Carathéodory function we can define

g(aµ) =

ˆ
X

f(xν , aµ)dµ (xσ) ∈ C(A)

Then
∂xµf(xν , aσ) ∈ C(A)

Is LUIB, and therefore
g(aµ) ∈ C1(A)

And

∂µg =

ˆ
X

∂aµf(a
ν , xσ)dµ (xγ)

In other terms

∂aµ

ˆ
X

f(aν , xσ)dµ(xγ) =

ˆ
X

∂aµf(a
ν , xσ)dµ(xγ) (5.30)

Proof. Since f is a LUIB Carathéodory function we have that ∃haµ(xν) : X −→ R and Bε(a
µ) ⊂ A :

∀yµ ∈ Bε(a
ν)

|f(yµ, xν)| ≤ haµ(x
ν)

Therefore

|g(aµ)| ≤
ˆ
X

haµ(x
ν)dµ(xσ) <∞

Now take a sequence (aµ)n : (aµ)n → aµ, then f ∈ C(A) =⇒ f(aµn, x
ν) → f(aµ, xν) ∀† xµ ∈

X, ∀aµn ∈ Bε(a
µ)

∴ ∃N ∈ N : ∀n ≥ N |f(aµn, xν)| ≤ haµ(x
ν)

Then

g(aµn) =

ˆ
X

f(aµn, x
ν)dµ(xσ) →

ˆ
X

f(aµ, xν)dµ(xσ) = g(aµ)

Since f is differentiable and its derivative is measurable, we have for the mean value theorem

f(aµ + teµ, xν)− f(aµ, xν) = t∂µf(ξ
ν(t, xσ), xγ)

If ξµ(t, xν) ∈ Bε(a
µ) we have that

|t∂µf(ξν(t, xσ), xγ)| ≤ haµ(x
ν)

And therefore
g(aµ + teµ)− g(aµ)

t
=

1

t

ˆ
X

t∂µf(ξ
ν(t, xσ), xγ)dµ(xδ)

For t→ 0 ∂µf(ξ
ν , xσ) → ∂µf(a

ν , xσ), and the LHS is simply the gradient of g. Therefore for theorem
(5.8)

∂µg(a
ν) =

∂

∂aµ

ˆ
X

f(aν , xσ)dµ(xγ) =

ˆ
X

∂µf(a
ν , xσ)dµ(xγ)
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§ 5.3 Calculus of Integrals in R2 and R3

§§ 5.3.1 Double Integration

Theorem 5.10. Let E ⊂ R2 and F ⊂ R3. Define Ex := {y ∈ R| (x, y) ∈ E} the sections of E
parallel to the y axis, then

µ(E) =

ˆ
R
µ1(Ex)dy (5.31)

Where with µi we indicate the i−dimensional measure on Rn.
Analogously, we define Fz :=

{
(x, y) ∈ R2

∣∣ (x, y, z) ∈ F
}

then

µ(F ) =

ˆ
R
µ2(Fz)dz (5.32)

If we define Fxy := {z ∈ R| (x, y, z) ∈ F} we have

µ(F ) =

¨
R2

µ1(Fxy)dxdy (5.33)

Proof. Let A ⊂ R2 open, and let Yk ⊂ R2 be rectangles such that

Y1 ⊂ Y2 ⊂ Y3 ⊂ · · ·

A =

∞⊔
k=1

Yk

Then, due to σ−additivity, we have

µ2(A) = lim
k→∞

µ2(Yk) = lim
k→∞

ˆ
R
µ1(Ykx)dx

But
Y1x ⊂ Y2x ⊂ · · ·

Ax =

∞⊔
k=1

Ykx

Due to σ−additivity and the Beppo-Levi theorem we have that
ˆ
R
µ1(Ax)dx = lim

k→∞

ˆ
R
µ1(Ykx)dx

Let E ⊂ R2 be a measurable set. Define a sequence of compact sets Ki and a sequence of open sets
Aj such that

K1 ⊂ · · · ⊂ Kj ⊂ E ⊂ Aj ⊂ · · · ⊂ A1

We have that limj→∞ µ2(Aj) = limj→∞ µ2(Kj) = µ2(E) and that Kjx ⊂ E ⊂ Ajx.
From the previous derivation we can write that

lim
j→∞

ˆ
R
(µ1(Ajx)− µ1(Kjx))dx = 0
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Building a sequence of non-negative functions fj(x) = µ1(Ajx)−µ1(Kjx)we have that fj(x) ≤ fj−1(x)
and due to Beppo-Levi we have that

lim
j→∞

ˆ
R
fj(x)dx =

ˆ
R

lim
j→∞

fj(x)dx

And therefore µ1(Kjx) = µ1(Ajx), and

∀† x ∈ R µ2(Kj) =

ˆ
R
µ1(Kjx)dx ≤

ˆ
R
µ1(Ex)dx ≤

ˆ
R
µ1(Ajx) = µ2(Aj)

Theorem 5.11 (Fubini). Let f(x, y) be a measurable function in R2, then

1. ∀† x ∈ R y 7→ f(x, y) is measurable in R

2. g(x) =
´
R f(x, y)dy is measurable in R

3.
˜

R2 f(x, y)dxdy =
´
R
´
R f(x, y)dxdy

Proof. Let f(x, y) ≥ 0. Defining F0 := { (x, y) ∈ E × R| 0 < z < f(x, y)} ⊂ R3, we have that F0 is
measurable, and

µ3(F0) =

¨
R2

f(x, y)dxdy

But F0x is also measurable ∀† x ∈ R and therefore

µ3(F0) =

ˆ
R
µ2(F0x)dx =

ˆ
R

ˆ
R
f(x, y)dxdy

Theorem 5.12 (Tonelli). Let f(x, y) be a measurable function and E ⊂ R2 be a measurable set.
If one of these integrals exists, the others also exist and have the same value

¨
R2

f(x, y)dxdy

ˆ
R

(ˆ
R
f(x, y)dx

)
dy

ˆ
R

(ˆ
R
f(x, y)dy

)
dx

Theorem 5.13 (Integration Over Rectangles). Let R = [a, b]× [c, d] ⊂ R2 be a rectangle, and f(x, y)
a measurable function over R. Then

1. If ∀† x ∈ [a, b] ∃G(x) =
´ d
c
f(x, y)dy, the function G(x) is measurable in [a, b] and

¨
R

f(x, y)dxdy =

ˆ b

a

G(x)dx =

ˆ b

a

ˆ d

c

f(x, y)dy dx



5.3. CALCULUS OF INTEGRALS IN R2 AND R3 73

2. If ∀† y ∈ [c, d] ∃F (y) =
´ b
a
f(x, y)dx, the function F (y) is measurable in [c, d] and

ˆ
R2

f(x, y)dxdy =

ˆ d

c

F (y)dy =

ˆ d

c

ˆ b

a

f(x, y)dxdy

If both are true, then
ˆ
R

f(x, y)dxdy =

ˆ b

a

dx

ˆ d

c

f(x, y)dy =

ˆ d

c

dy

ˆ b

a

f(x, y)dx (5.34)

Definition 5.3.1 (Normal Set). A set E ⊂ R2 is said to be normal with respect to the x axis if

E =
{
(x, y) ∈ R2

∣∣ a ≤ x ≤ b α(x) ≤ y ≤ β(x)
}

The definition is analogous for the other axes.

Theorem 5.14 (Integration over Normal Sets). Let E ⊂ R2 be a normal set with respect to the x
axis, and f(x, y) is a measurable function over E. Then

ˆ
E

f(x, y)dxdy =

ˆ b

a

dx

ˆ β(x)

α(x)

f(x, y)dy (5.35)

Theorem 5.15 (Dirichlet Inversion Formula). Take the triangle T :=
{
(x, y) ∈ R2

∣∣ a ≤ y ≤ x ≤ b
}

.
It can be considered normal with respect to both axes, and we can use the inversion formula

¨
T

f(x, y)dxdy =

ˆ b

a

dx

ˆ x

a

f(x, y)dy =

ˆ b

a

dy

ˆ b

y

f(x, y)dx (5.36)

§§ 5.3.2 Triple Integration

Theorem 5.16 (Wire Integration). Let E ⊂ R3 be a normal set with respect to the z axis. If
f(x, y, z) is measurable in E we have

˚
E

f(x, y, z)dxdy dz =

¨
D

dxdy

ˆ g(x,y)

h(x,y)

f(x, y, z)dz (5.37)

This is called the wire integration formula

Theorem 5.17 (Section Integration). Let F ⊂ R3 be a measurable set bounded by the planes
z = a and z = b with a < b. Taken z ∈ [a, b] we can define Fz and we have

˚
F

f(x, y, z)dxdy dz =

ˆ b

a

dz

¨
Fz

f(x, y, z)dxdy (5.38)

This is called the section integration formula
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Theorem 5.18 (Center of Mass). Take a plane E ⊆ R2 with surface density ρ(x, y) > 0. We define
the total mass M as follows

M =

¨
E

ρ(x, y)dxdy (5.39)

The coordinates of the center of mass will be the following

xG =
1

M

¨
E

ρ(x, y)xdxdy

yG =
1

M

¨
E

ρ(x, y)y dxdy

(5.40)

Theorem 5.19 (Moment of Inertia). Taken the same plane E, we define the moment of inertia
with respect to a line r as the following integral

Ir =

¨
E

ρ(x, y) (d(pµ, r))
2
dxdy (5.41)

Where d(pµ, r) is the distance function between the point (x, y) and the rotation axis r.
Both formulas are easily generalizable in R3

§§ 5.3.3 Change of Variables

Definition 5.3.2 (Diffeomorphism). LetM,N ⊂ X be two subsets of a metric spaceX. The two sets are
said to be diffeomorphic if ∃f :M

∼−→ N an isomorphism such that f ∈ C1(M) and f−1 ∈ C1(N).
The application f is called a diffeomorphism.
Two diffeomorphic sets are indicated as follows

M ' N

Theorem 5.20. Let A,B ⊂ Rn be two open sets and ϕµ : A
∼−→ B a diffeomorphism, such that

ϕµ(E) = F

If f : E ⊂ B −→ R is measurable, we have that
ˆ
E

f(yµ)dyµ =

ˆ
ϕ−1(E)

f(ϕµ(xν))

∣∣∣∣detµν
∂µϕ

ν

∣∣∣∣dxµ =

ˆ
F

f(ϕµ)

∣∣∣∣detµν
∂µϕ

ν

∣∣∣∣dxµ
Theorem 5.21 (Change of Variables). Let ϕµ : Rn ∼−→ Rn be a diffeomorphism such that

ϕµ(xν) = xµ ∀‖xµ‖µ > 1

And f : Rn −→ R a function such that supp f = K ⊂ Rn is a compact set. If f is measurable,
we have that ˆ

Rn

f(yµ)dyµ =

ˆ
Rn

f(ϕµ(xν))

∣∣∣∣detµν
∂µϕ

ν

∣∣∣∣dxµ (5.42)
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Proof. Take n = 2 without loss of generality. We can immediately write that

g(y1, y2) =

ˆ y1

−∞
f(η, y2)dη

Then, for the fundamental theorem of integral calculus

∂1g(y
1, y2) = f(y1, y2)

Taken c ∈ R, c > 1 : K ⊂ Q = [−c, c]× [−c, c], we have that ϕµ(xν) = δµν ∀‖xµ‖µ > 1 ∧ f(xµ) =
0 ∀xµ /∈ Q.
Therefore f(ϕµ) = 0 also and we have

ˆ
Rn

f(ϕµ)det
µν

∂µϕ
ν dxγ =

ˆ
Q

f(ϕµ)det
µν

∂µϕ
ν dxγ =

ˆ
Q

∂1g(ϕ
µ)det

µν
∂µϕ

ν dxγ

But we have that
g(yµ) = 0 ∀

∣∣y1∣∣ ≥ c ∨
∣∣y1∣∣ < −c

Define the following matrix Hµν

Hµν =

(
∂µg(φ

γ)
∂µϕ

2

)
Then we have that

det
µν

Hµν = ∂1g(ϕ
µ)det

µν
∂µϕ

ν

Writing g(ϕµ) = G(xµ) we have

det
µν

Hµν = ∂1G∂2ϕ
2 − ∂2G∂1ϕ

2

Thanks to the integration formula (5.34) we can then write

ˆ
Q

det
µν

Hµν dx
γ =

ˆ c

−c
dx2
ˆ c

−c
∂1G∂2ϕ

2 dxν

Integrating by parts we get

ˆ
Q

det
µν

Hµν dx
γ = G∂2ϕ

2
∣∣c
−c −

ˆ c

−c
G∂221ϕ

2 dx1 − G∂1ϕ
2
∣∣c
−c −

ˆ c

−c
G∂212ϕ

2 dx2

But ∀xµ ∈ ∂Q ϕµ(xν) = xµ =⇒ G(−c, x2) = g(−c, x2) = 0 ∧ G(c, x2) = g(c, x2)

∴
ˆ
Q

det
µν

Hµν dx
γ =

ˆ
Q

f(xµ)dxγ

Theorem 5.22 (Common Coordinate Transformation in R2 and R3). 1. Polar Coordinates

ϕµ(xν) =

{
x(ρ, θ) = ρ cos θ ρ ∈ R+

y(ρ, θ) = ρ sin θ θ ∈ [0, 2π)
(5.43a)
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∂µϕ
ν =

(
cos θ −ρ sin θ
sin θ ρ cos θ

)
det
µν

∂µϕ
ν = ρ

(5.43b)

2. Spherical Coordinates

ϕµ(xν) =


x(ρ, θ, φ) = ρ sinφ cos θ ρ ∈ R+

y(ρ, θ, φ) = ρ sinφ sin θ θ ∈ [0, 2π)

z(ρ, θ, φ) = ρ cosφ φ ∈ [0, π]

(5.44a)

∂µϕ
ν =

sinφ cos θ −ρ sinφ sin θ ρ cosφ cos θ
sinφ sin θ ρ sinφ cos θ ρ cosφ sin θ
cosφ 0 −ρ sinφ


det
µν

∂µϕ
ν = ρ2 sinφ

(5.44b)

3. Cylindrical Coordinates

ϕµ(xν) =


x(ρ, θ, z) = ρ cos θ ρ ∈ R+

y(ρ, θ, z) = ρ sin θ θ ∈ [0, 2π)

z(ρ, θ, z) = z z ∈ R
(5.45a)

det
µν

∂µϕ
ν = ρ (5.45b)

Definition 5.3.3 (Rotation Solids). LetD ⊂ R2 be a bounded measurable set contained in the half-plane
y = 0, x > 0. Suppose we let D “pop up” into R3 through a rotation by an angle θ0 around the z axis.
What has been obtained is a rotation solid E ⊂ R3. We have that

µ(E) =

˚
E

dxdy dz =

¨
D

ˆ θ0

0

ρdρdθ dz = θ0

¨
D

ρdρdz = θ0

¨
D

xdxdy (5.46)

Or

µ(E) = θ0xGµ2(D)

Theorem 5.23 (Guldino). The measure of a rotation solid is given by the measure of the rotated
figure times the circumference described by the center of mass of the solid.
This is exactly the previous formula.
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§§ 5.3.4 Line Integrals

Definition 5.3.4 (Line Integral of the First Kind). Given a scalar field f : A ⊂ R3 −→ R and a smooth
curve {γ} ⊂ R3, we define the line integral of the first kind as follows

ˆ
γ

f ds =

ˆ b

a

f(γµ)

∥∥∥∥dγµdt
∥∥∥∥
µ

dt (5.47)

Theorem 5.24 (Center of Mass of a Curve). Given a curve γµ : [a, b] −→ R3 with linear mass
density m : {γ} −→ R, we define the total mass of γ as follows

M =

ˆ
γ

mds =

ˆ b

a

m(γµ)

∥∥∥∥dγµdt
∥∥∥∥
µ

dt (5.48)

The center of mass is then defined as follows

xµG =
1

M

ˆ
γ

xµm(xν)ds (5.49)

Definition 5.3.5 (Line Integral of the Second Kind). Given a vector field fµ : A −→ R3 and a smooth
curve γµ : [a, b] −→ A ⊂ R3 we define the line integral of the second kind as follows

ˆ
γ

fµTµ ds =

ˆ b

a

fµ(γν)
dγµ
dt

dt (5.50)

Defining a differential form ω = fµ dxµ we can also see this integral as follows

ˆ
γ

ω =

ˆ
γ

fµTµ ds (5.51)

Where Tµ is the tangent vector of the curve

Definition 5.3.6 (Conservative Field). Let fµ : A −→ R3 be a vector field such that fµ ∈ C1(A) and A
is open and connected. This field is said to be conservative, if ∀xµ ∈ A

∃U(xµ) ∈ C2(A) : fµ = −∂µU (5.52)

The function U(xµ) is called the potential of the field.

Theorem 5.25 (Line Integral of a Conservative Field). Given a conservative field fµ : A −→ R3 and
a smooth curve {γ} ⊂ A, γµ : [a, b] −→ R3 with A open and connected, we have that

ˆ
γ

fµTµ ds = U(γ(a))− U(γ(b)) (5.53)

Where U(xµ) is the potential of the vector field.
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Definition 5.3.7 (Rotor). Given a vector field fµ : A −→ R3 with fµ ∈ C1(A), we define the rotor of
the vector field as follows

rot(fµ) = εµνγ∂
νfγ (5.54)

Theorem 5.26. Given fµ a conservative vector field on an open connected set A, we have that

εµνγ∂
νfγ = 0 (5.55)

Alternatively, if γµ : [a, b] −→ R3 is the parameterization of a smooth closed curve, we have
that ˛

γ

fµTµ ds = 0 (5.56)

§§ 5.3.5 Surface Integrals

Definition 5.3.8 (Area of a Surface). Given rµ : K ⊂ R2 −→ Σ ⊂ R3 a smooth surface, we have that
given its metric tensor gµν(u, v) we have that

µ (Σ) =

ˆ
Σ

dσ =

¨
K

√
det
µν

gµν dudv =

¨
K

√
EG− F 2 dudv (5.57)

For a cartesian surface S we have that

µ (S) =

ˆ
S

ds =

¨
K

√
1 +

(
‖∂µf‖µ

)2
dxdy (5.58)

Definition 5.3.9 (Rotation Surface). Given a smooth curve γµ : [a, b] −→ R3, the rotation of this curve
around the z−axis generates a smooth surface Σ with the following parameterization

rµ(t, θ) =


γ1(t) cos θ

γ2(t) sin θ

γ3(t)

(t, θ) ∈ [a, b]× [0, θ0] (5.59)

The area of a rotation surface is calculated as follows

µ (Σ) = θ0

ˆ b

a

γ1(t)

√(
dγ1

dt

)2

+

(
dγ2

dt

)2

dt (5.60)

Theorem 5.27 (Guldino II). Given Σ a smooth rotation surface defined as before, we have that
its area will be

µ (Σ) = θ0

ˆ
γ

x1 ds = θ0x
1
GLγ (5.61)

Where x1G is the first coordinate of the center of mass of the curve, calculated as follows

x1G =
1

Lγ

ˆ
γ

x1 ds
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Definition 5.3.10 (Surface Integral). Given a smooth surface Σ ⊂ R3 with parameterization rµ : K −→
Σ and a scalar field h : R3 −→ R, we define the surface integral of h as followsˆ

Σ

h(xµ)dσ =

¨
K

h(rµ)
√
det
µν

gµν dudv (5.62)

If Σ is a cartesian surface, we haveˆ
Σ

h(xµ)dσ =

¨
K

h(x1, x2, f)

√
1 + (‖∂µf‖µ)

2
dxdy (5.63)

Definition 5.3.11 (Center of Mass of a Surface). Given a smooth surface Σ with parameterization
rµ(u, v) and mass density δ, we define its total mass as follows

M =

ˆ
Σ

δ dσ (5.64)

Its center of mass xµG will be calculated as follows

xµG =
1

M

ˆ
Σ

xµδ(xν)dσ (5.65)

Definition 5.3.12 (Moment of Inertia of a Surface). Given a smooth surface Σ with parameterization
rµ(u, v) and mass density δ we define its moment of inertia around an axis r, I, as the following
integral

I =

ˆ
Σ

δ(xµ) (d(pµ, r))
2
dσ pµ ∈ Σ (5.66)

Definition 5.3.13 (Orientable Surface). A smooth surface with parameterization rµ : K ⊂ R2 −→ Σ ⊂
R3 is said to be orientable if ∀γ : [a, b] −→ Σ smooth closed curve, we have, given nµ the normal
vector of the surface

nµ(γν(a)) = nµ(γν(b)) (5.67)

Another way of formulating it is
nµ(xν) ∈ C(K) (5.68)

Definition 5.3.14 (Boundary of a Surface). Given a smooth surface as before, we define the boundary
∂Σ as follows

∂Σ = Σ \ Σ (5.69)

Note how, given the parameterization rµ, we have rµ(∂K) = ∂Σ

Definition 5.3.15 (Closed Surface). A surface Σ ⊂ R3 is said to be closed iff ∂Σ = {}

Definition 5.3.16 (Flux). Given a vector field fµ : A ⊂ R3 −→ R3 and a smooth orientable surface
Σ ⊂ A, we define the flux of the vector field fµ on the surface as follows

ΦΣ(f
µ) =

ˆ
Σ

fµnµ dσ =

¨
K

fµ(rν)εµγσ∂1r
γ∂2r

σ dudv (5.70)
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§ 5.4 Integration in C

Definition 5.4.1 (Piecewise Continuous Function). Let γ : [a, b] −→ C be a piecewise continuous curve
such that {γ} ⊂ D ⊂ C, and f : D −→ C, f ∈ C(D). Then the function (f ◦ γ) γ′(t) : [a, b] −→ C
is a piecewise continuous function

Definition 5.4.2 (Line Integral in C). Let γ : [a, b] −→ D ⊂ C be a piecewise continuous curve and
f : D −→ C a measurable function f ∈ C(D).
We define the line integral over γ the result of the application of the integral operator K̂γ [f ], where

K̂γ [f ] =

ˆ
γ

f(z)dz =

ˆ b

a

(f ◦ γ) γ′(t)dt (5.71)

Where ∀† z ∈ {γ} f(z) is defined

Theorem 5.28 (Properties of the Line Integral). Let z, w, t ∈ C, f, g ∈ M(C) and {γ}, {η}, {κ} three
smooth curves, then

1. K̂γ [zf + wg] = zK̂γ [f ] + wK̂γ [g]

2. γ ∼ η =⇒ K̂γ [f ] = K̂η[f ]

3. γ = η + κ =⇒ K̂γ [f ] = K̂η+κ[f ] = K̂η[f ] + K̂κ[f ]

4. K̂γ+w[f(z)] = K̂γ [f(z + w)]

Notation. If a measurable function f(z) has the same value of the integral for different curves between
two points z1, z2 ∈ C, we will write directly

ˆ
γ

f(z)dz =

ˆ z2

z1

f(z)dz

Theorem 5.29 (Darboux Inequality). Let f : D −→ C be a measurable function and γ : [a, b] −→
{γ} ⊂ D ⊆ C piecewise smooth. Then∥∥∥∥ˆ

γ

f(z)dz

∥∥∥∥ ≤ Lγ sup
z∈{γ}

‖f(z)‖

Proof. The proof is quite straightforward using the definition given for the line integral∥∥∥∥ˆ
γ

f(z)dz

∥∥∥∥ =

∥∥∥∥∥
ˆ b

a

(f ◦ γ) γ′(t)dt

∥∥∥∥∥ ≤
ˆ b

a

‖(f ◦ γ) γ′(t)‖dt ≤

≤ sup
z∈{γ}

‖f(z)‖
ˆ b

a

‖γ′(t)‖dt = Lγ sup
z∈{γ}

‖f(z)‖
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§§ 5.4.1 Integration of Holomorphic Functions

Definition 5.4.3 (Primitive). Let f : D −→ C and F : D −→ C be two functions and D ⊂ C an open
and connected set. F (z) is said to be the primitive function or antiderivative of f in D if

dF

dz
= f(z) ∀z ∈ D (5.72)

Notation. Given a closed curve γ and a measurable function f(z) we define the following notation

ˆ
γ

f(z)dz =

˛
γ

f(z)dz

Theorem 5.30 (Existence of the Primitive Function). Let f : D −→ C f ∈ C(D) with D ⊂ C open
and connected. Then these statements are equivalent

1. ∃F : D −→ C : F ′(z) = f(z)

2. ∀z1, z2 ∈ D, ∀{γ} ⊂ D piecewise smooth
´
γ
f(z)dz =

´ z2
z1
f(z)dz

3. ∀γ : [a, b] −→ {γ} ⊂ D closed piecewise smooth
¸
γ
f(z)dz = 0

Proof. 1 =⇒ 2. As with the hypothesis we have that ∃F : D −→ C : F ′(z) = f(z) ∀z ∈ D. Given
two points z1, z2 ∈ D and taken a smooth curve γ : [a, b] −→ D : γ(a) = z1 ∧ γ(b) = z2. Therefore

ˆ
γ

f(z)dz =

ˆ b

a

(f ◦ γ) γ′(t)dt =
ˆ b

a

(F ′ ◦ γ) γ′(t)dt

The result of the integral is obviously F (z2)− F (z1), therefore we can immediately write that, if

∃F : D −→ C : F ′(z) = f(z) =⇒
ˆ
γ

f(z)dz =

ˆ z2

z1

f(z)dz

2 =⇒ 1 Taken a point z0 ∈ D, any point z ∈ D can be connected with a polygonal to z0 since D is
connected. The integral of f over this polygonal is obviously path-independent, hence we can define
the following function

F (z) =

ˆ z

z0

f(w)dw

Since D is open we can define δz ∈ R, δz > 0 ∧ ∃Bδ1(z) ⊂ D. Taken ∆z ∈ C : ‖∆z‖ < δ1 we have
that

F (z +∆z)− F (z) =

ˆ z+∆z

z

f(w)dw

Dividing by ∆z and taking the limit as ∆z → 0 we have that using the Darboux inequality we get that∥∥∥∥F (z +∆z)− F (z)

∆z
− f(z)

∥∥∥∥ =
1

‖∆z‖

∥∥∥∥∥
ˆ z+∆z

z

f(w)dw

∥∥∥∥∥ ≤ ε
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2 =⇒ 3. Taken an arbitrary piecewise smooth curve γ and z1 6= z2 ∈ {γ}. We can now find two
curves such that γ(t) = γ1(t)− γ2(t). Since the integral of f is path independent, we get

ˆ
γ

f(z)dz =

ˆ
γ1

f(z)dz −
ˆ
γ2

f(z)dz = 0

3 =⇒ 2 is exactly as before but with the opposite reasoning.

Example 5.4.1. Let’s calculate the integral of functions fn(x) = z−n n ∈ N for a closed simple
piecewise smooth curve γ such that 0 /∈ {γ}.
For n > 1 we have that f ∈ C(D) where D = C \ {0}, and we have that

ˆ
1

zn
dz = −z

−(n−1)

n− 1
+ w w ∈ C

Therefore, for every closed simple piecewise smooth curve γ : 0 /∈ {γ} we have

˛
γ

1

zn
dz = 0

For n = 1 we still have that f ∈ C(D) but @F (z) : D −→ C primitive of f1(z), but there exists one in
the domain G of holomorphy of the logarithm.
Although we have that G ⊂ D, and we can take a curve γ : 0 ∈ extr γ, and therefore {γ} ⊂ G and
we have that ˛

γ

1

z
dz = 0

If we otherwise have 0 ∈ γ◦ the integral is non-zero.
Take a branch of the logarithm σ and a curve η has only one point of intersection with such branch
at zi = u0e

iα. Taken η(a) = η(b) = u0e
iα, we define ηε : [a + ε, b + ε] −→ C with ε > 0 : ηε(t) =

η(t) ∀t ∈ [a+ ε, b+ ε], then ˛
η

1

z
dz = lim

ε→0

˛
ηε

1

z
dz

Therefore, ∀z ∈ C \ {σ} we have that
d log z

dz
=

1

z

And therefore ˛
ηε

1

z
dz = log (η(b− ε))− log (η (a+ ε))

For ε→ 0 we have ˆ
η

1

z
dz = (log(u0) + i(α+ 2π))− (log(u0) + iα) = 2πi

Example 5.4.2. Let’s calculate the integral of f(z) =
√
z along a closed simple piecewise smooth

curve γ : [a, b] −→ C : 0 ∈ γ◦ and it intersects the line σα = u0e
iα, where

√
z =

√
rei

θ
2 r ∈ R+, θ ∈ (α, α+ 2π], α ∈ R
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Taken a parametrization γ(t) : γ(a) = γ(b) = u0e
iα we have that f(z) ∈ H(D) where D = C \ {σα}.

Proceding as before, we have ˛
γ

√
z dz = lim

ε→0

˛
γε

√
z dz

Since it has a primitive in D we can write

lim
ε→0

˛
γε

√
z dz =

2

3
lim
ε→0

z
√
z
∣∣∣γε(b−ε)
γε(a+ε)

=
2

3
u0

√
u0e

3
2 i(α+2π) − 2

3
u0

√
u0e

3
2 iα = −4

3
u0

√
u0e

3
2 iα

Lemma 5.4.1. Taken a closed simple pointwise smooth curve γ : [a, b] −→ C and takenD = {γ}◦∪γ =
{γ}◦ and a function f ∈ H(D), for a finite cover ofD, Q composed by squaresQj ∈ Q ∀j ∈ [1, N ] ⊂ N,
we have that

∃zj ∈ Qj ∩ {γ}◦ :

∥∥∥∥∥f(z)− f(zj)

z − zj
− df

dz

∣∣∣∣
zj

∥∥∥∥∥ < ε ∀z ∈ Qj ∩ {γ}◦ \ {zj}

Proof. Going by contradiction, let’s say that

∃ε > 0 : @zj ∈ Qj ∩ {γ}◦

Taken a finite subcover Qn where diam(Qnj ) =
d
2n ∀Qj ∈ Q we can define for some k ∈ K ⊂ N

An =
⋃
k∈K

Qnk ∩ {γ}◦ ∀n ∈ N

We have that An+1 ⊂ An, and taking a sequence (w)n ∈ {γ}◦ we have due to the compactness of
{γ}◦ that ∃(w)nj

→ w ∈ {γ}◦. Since f ∈ H({γ}◦) we have that f is holomorphic in w, therefore

∀ε > 0 ∃δε > 0 :

∥∥∥∥f(z)− f(w)

z − w
− df

dz

∣∣∣∣
w

∥∥∥∥ < ε ∀z ∈ Bδε(w) \ {w}

Taken an ñ such that diam(Qñj ) =
√
2

2ñ d < δ we have that still w ∈ An ∀n ∈ N, and due to its closedness
we can also say

∃Nj ∈ N : ∀nj > Nj (w)nj ∈ An

Therefore
∃k0 ∈ N : w ∈ Qñk0 ∩ {γ}◦ ⊂ Añ  

Theorem 5.31 (Cauchy-Goursat). Taken γ : [a, b] −→ C a closed simple piecewise smooth curve
and D = {γ} ∪ {γ}◦ and a function f ∈ H(D), we have

˛
γ

f(z)dz = 0 (5.73)
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Proof. Using the previous lemma we can say that for a finite cover {γ}, Qj ∈ Q ∃zj ∈ Qj ∩ {γ}◦ and
a function

δj(z) =


f(z)− f(zj)

z − zj
− f ′(zj) z 6= zj

0 z = zj

Which is countinuous and δj(z) < ε ∀z ∈ Qj ∩ {γ}◦.
Taken a curve {ηj} = ∂

(
Qj ∩ {γ}◦

)
, and the expansion of f(z) in the region, we have that

f(z) = f(zj) + f ′(zj)(z − zj) + δj(z)(z − zj)˛
ηj

f(z)dz = (f(zj)− zjf
′(zj))

˛
ηj

dz + f ′(zj)

˛
ηj

z dz +

˛
ηj

δj(z)(z − zj)dz

The first two integrals on the second line are null, and we have therefore

˛
ηj

f(z)dz =

˛
ηj

δj(z)(z − zj)dz

By definition {γ} =
⋃N
j=1{ηj} and therefore

˛
γ

f(z)dz =

N∑
j=1

˛
ηj

δj(z)(z − zj)dz

Using the Darboux inequality we have immediately that∥∥∥∥˛
γ

f(z)dz

∥∥∥∥ ≤
N∑
j=1

∥∥∥∥∥
˛
ηj

δj(z)(z − zj)dz

∥∥∥∥∥ ≤
N∑
j=1

ε
√
2d(4d+ Lj)

Using the theorem on the Jordan curve, we have that ∃Qn ∈ Q such that {γ} ⊂ Qn. Taken diam(Qn) =
D ∥∥∥∥˛

γ

f(z)dz

∥∥∥∥ ≤
N∑
j=1

ε
√
2D(4D + L) → 0

Definition 5.4.4 (Simple Connected Set). An open set G ⊂ X with X some metric space, is said to be
simply connected iff ∀{γj} ⊂ G simple curves we have that γj ∼ 0.
γ ∼ 0 implies that the curve is homotopic to a point

Theorem 5.32 (Cauchy-Goursat II). LetG ⊂ C open and simply connected. Then, ∀f ∈ H(G), {γ} ⊂
G with γ simple closed and smooth

˛
γ

f(z)dz = 0
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Proof. 1. The curve γ doesn’t intersect itself.

˛
γ

f(z)dz =

˛
0

f(z)dz = 0

2. The curve γ intersects itself n− 1 times.
Then {γ} =

⋃n
k=1{γk} with γk simple smooth non intersecting curves. Since {γk} ⊂ G ∀k =

1, · · · , n, {γk} ∼ 0, we have

˛
γ

f(z)dz =

n∑
k=1

˛
γk

f(z)dz = 0

Theorem 5.33. Let G ⊂ C be a simply connected open set. If f ∈ H(G), then there exists a
primitive for f(z)

§§ 5.4.2 Integral Representation of Holomorphic Functions

Definition 5.4.5 (Positively Oriented Curve). The parametrization of a curve in C is said to be positively
oriented if its parametrization is taken such the path taken results counterclockwise.

Notation. The integral over a closed positively oriented parametrization of a curve γ is indicated as
follows ffi

γ

Theorem 5.34 (Cauchy Integral Representation). Taken a positively oriented closed simple piece-
wise smooth curve γ : [a, b] −→ C and a function f : G ⊂ C −→ C such that if D = {γ}∪ {γ}◦ ⊂
G, f ∈ H(D), we have that

f(z) =
1

2πi

ffi
γ

f(w)

w − z
dw ∀w ∈ {γ}◦ (5.74)

Proof. Taken γρ(θ) = z + ρeiθ such that γρ ∼ γ, {γρ} ⊂ {γ}◦ is a simple curve, we have

ffi
γ

f(w)

w − z
dw =

ffi
γρ

f(w)

w − z
dw

Then, using that ffi
γ

1

w − z
dw = 2πi

We get ffi
γ

f(z)

w − z
dw − 2πif(z) =

ffi
γρ

f(w)− f(z)

w − z
dw
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Since f ∈ H({γ}◦) we have that

∀ε > 0 ∃δε > 0 : ‖z − w‖ < δε =⇒ ‖f(z)− f(w)‖ < ε

Taken ρ < δε we get, using the Darboux inequality∥∥∥∥∥
ffi
γρ

f(w)− f(z)

w − z
dw

∥∥∥∥∥ ≤ 2πε =⇒
ffi
γ

f(w)− f(z)

w − z
dw = 0

Theorem 5.35 (Derivatives of a Holomorphic Function). Let D ⊂ C be an open set and f : D −→ C
a function f ∈ H(D), then f ∈ C∞(D) and

dnf

dzn
=

n!

2πi

ffi
γ

f(w)

(w − z)n+1
dw (5.75)

Where γ is a closed simple piecewise smooth curve such that z ∈ {γ}◦ and {γ} ⊂ D

Corollary 5.4.1. Let f ∈ H(D), then

∀n ∈ N
dnf

dzn
∈ H(D)

Theorem 5.36 (Morera). Let D ⊂ C be an open and connected set. Take f : D −→ C : f ∈ C(D).
Then, if ∀{γ} ⊂ D closed piecewise smooth

˛
γ

f(z)dz = 0 =⇒ f ∈ H(D) (5.76)

Proof. Since f ∈ C(D) ∃F (z) ∈ C1(D) : f(z) = F ′(z). Since C1(C) ' H(C) we have that, due to
the previous corollary

dF

dz
= f(z) ∈ H(D)

Theorem 5.37 (Cauchy Inequality). Let f ∈ H(BR(z0)) with z0 ∈ C. If ‖f(z)‖ ≤M ∀z ∈ BR(z0)∥∥∥∥∥ dfdz
∣∣∣∣
z0

∥∥∥∥∥ ≤ n!M

Rn
(5.77)

Proof. Take γr(θ) = z0 + reiθ with θ ∈ [0, 2π], r > R, then the derivative dnf
dzn

∣∣∣
z0

can be written using

the Cauchy integral representation, since f ∈ H(Br(z0))

dnf

dzn

∣∣∣∣
z0

=
n!

2πi

ffi
γr

f(w)

(w − z0)n+1
dw
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Using the Darboux inequality we have then∥∥∥∥∥ dnfdzn

∣∣∣∣
z0

∥∥∥∥∥ ≤ n!

rn
sup

z∈{γr}
‖f(z)‖ ≤ n!M

rn

Since r < R we therefore have ∥∥∥∥∥ dnfdzn

∣∣∣∣
z0

∥∥∥∥∥ ≤ n!M

Rn

Theorem 5.38 (Liouville). Let f : C −→ C a function such that f ∈ H(C), i.e. whole. If
∃M > 0 : ‖f(z)‖ ≤M ∀z ∈ C the function f(z) is constant

Proof. f ∈ H(C), ‖f(z)‖ ≤M and we can write, taken γR(θ) = z +Reiθ with θ ∈ [0, 2π]

f ′(z) =
1

2πi

ffi
γR

f(w)

(w − z)2
dz

For Darboux

‖f ′(z)‖ ≤ 1

2π

∥∥∥∥ffi
γR

f(w)

(w − z)2

∥∥∥∥dz ≤ supz∈{γR} ‖f(z)‖
R

≤ M

R

Since R > 0 is arbitrary, we can say directly that ‖f ′(z)‖ = 0 and therefore f(z) is constant ∀z ∈ C.

Theorem 5.39 (Fundamental Theorem of Algebra). Take a polynomial Pn(z) ∈ Cn[z], where Cn[z]
is the space of complex polynomials with variable z and degree n. If we have

Pn(z) =

n∑
k=0

akz
k, z, ak ∈ C, an 6= 0

We can say that ∃z0 ∈ C : Pn(z0) = 0

Proof. As an absurd, say that ∀z ∈ C, Pn(z) 6= 0. Then f(z) = 1/Pn(z) ∈ H(C).
Since limz→∞ Pn(z) = ∞, we have that ‖f(z)‖ ≤M ∀z ∈ C, and limz→∞ f(z) = 0.
Therefore ∃R > 0 : ∀‖z‖ > R, ‖f(z)‖ < 1. Since f ∈ H(C), we have that f ∈ C(BR(z)). Due to the
Liouville theorem we have that f(z) is constant  

§ 5.5 Integral Theorems in R2 and R3

Theorem 5.40 (Gauss-Green). Given D ⊂ R2 a set with a piecewise smooth parameterization of
∂D and two functions α, β : A ⊆ R2 −→ R and D ⊂ A

¨
D

∂xβ dxdy =

ˆ
∂+D

β(x, y)dy,

¨
D

∂yα dxdy = −
ˆ
∂D

α(x, y)dxdy (5.78)
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Theorem 5.41 (Stokes). Given D ⊂ R2 an open set with ∂D piecewise smooth and a vector
field fµ : A −→ R2 with D ⊂ A

ˆ
D

ε3µν∂
µfν dxdy =

ˆ
∂+D

fµtµ ds (5.79)

Where tµ is the vector tangent to ∂+D

Theorem 5.42 (Gauss 1). Given D ⊂ Rn open set with ∂D piecewise smooth and a vector field
fµ : A −→ Rn with D ⊂ A ¨

D

∂µf
µ dxdy =

ˆ
∂+D

fµnµ ds (5.80)

Where nµ is the normal vector to ∂+D

Theorem 5.43 (Stokes for Surfaces). Given a smooth surface Σ ⊂ R3 with parameterization rµ

and a vector field fµ : A −→ R3 with Σ ⊆ A
ˆ
Σ

nµεµνγ∂
νfγ dσ =

ˆ
∂+Σ

fµtµ ds (5.81)

Where tµ is the tangent vector to the border of the surface

Theorem 5.44 (Useful Identities). Given u, v ∈ C2(Ω) and a vector field fµ ∈ C2(Ω,R3)
ˆ
Ω

∂µ∂
µv dxdy dz =

ˆ
∂Ω

nµ∂µv dσ

ˆ
Ω

u∂µf
µ dxdy dz = −

ˆ
Ω

fµ∂µw dxdy dz +

ˆ
∂Ω

ufµnµ dσ

ˆ
Ω

u∂µ∂
µv dxdy dz = −

ˆ
Ω

∂µu∂
µv dxdy dz +

ˆ
∂Ω

unµ∂µv dσ

ˆ
Ω

(u∂µ∂
µv − w∂µ∂

µu)dxdy dz =

ˆ
∂Ω

(unµ∂µv − wnµ∂µu)dσ

(5.82)

We can analogously write these theorems in the language of differential forms and manifolds, after
giving a couple of definitions

Definition 5.5.1 (Volume Element). Given a k−dimensional compact oriented manifoldM with bound-
ary and ω ∈ Λk(M) a k−differential form onM , we define the volume ofM as follows

V (M) =

ˆ
M

dV =

ˆ
M

ω (5.83)

Where dV is the volume element of the manifold, given by the unique ω ∈ Λk(M), defined as follows

ω = f dxµ1 ∧ · · · ∧ dxµk (5.84)

With f an unique function.
ForM ⊂ R3 with nµ as outer normal and ω ∈ Λ2(M) we can write immediately, by definition

ωµνv
µwν = nµεµνγv

νwγ = dA
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Therefore

dA = ‖εµνγvνwγ‖µ (5.85)

Which is the already known formula.
For a 2−manifold we can write immediately the following formulas

dA = n1 dy ∧ dz + n2 dz ∧ dx+ n3 dx ∧ dy (5.86)

And, onM 
n1 dA = dy ∧ dz

n2 dA = dz ∧ dx

n3 dA = dx ∧ dy

(5.87)

Theorem 5.45 (Gauss-Green-Stokes-Ostogradskij). Given M a smooth manifold with boundary, c
a p−cube in M and ω ∈ Λ(M) we have

ˆ
c

dω =

ˆ
[0,1]p

c? dω =

ˆ
∂c

ω (5.88)

In general, we can write ˆ
M

dω =

ˆ
∂M

ω (5.89)

Definition 5.5.2 (Gauss-Green, Differential Forms). Given M ⊂ R2 a compact 2−manifold with
boundary and two functions α, β :M −→ R with α, β ∈ C1(M) defining

ω = α dx+ β dy (5.90)

We have ˆ
∂M

α dx+ β dy =

ˆ
∂M

ω =

ˆ
M

dω =

¨
M

(
∂β

∂x
− ∂α

∂y

)
dx ∧ dy (5.91)

Proof. Take ω = α dx+ β dy, then

dω = d(α dx+ β dy) =

(
∂β

∂x
− ∂α

∂y

)
dx ∧ dy

Theorem 5.46 (Gauss, Differential Forms). Given M a 3−manifold smooth with boundary and
compact with outer normal nµ and a vector field fµ ∈ C1(M), we have

ˆ
M

∂µf
µ dV =

ˆ
∂M

fµnµ dA (5.92)
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Proof. Taken the following differential form

ω = f1 dy ∧ dz + f2 dz ∧ dx+ f3 dx ∧ dy

We have, using the formulas (5.87)
ω = fµnµ dA

And
dω = ∂µf

µ dV

Therefore ˆ
M

∂µf
µ dV =

ˆ
M

dω =

ˆ
∂M

ω =

ˆ
∂M

fµnµ dA

Theorem 5.47 (Stokes, Differential Forms). GivenM ⊂ R3 a compact oriented smooth 2−manifold
with boundary with nµ as outer normal and tµ as tangent vector in ∂M , given a vector field
fµ ∈ C1(A) where M ⊂ A, we have

ˆ
M

nµεµνγ∂
νfγ dA =

ˆ
∂M

fµtµ ds (5.93)

Proof. Taking the following differential form

ω = fµ dxµ

We have that

dω = (∂2f
3 − ∂3f

2)dy ∧ dz + (∂3f
1 − ∂1f

3)dz ∧ dx+ (∂1f
2 − ∂2f

1)dx ∧ dy

Using the formulas (5.87) we have
dω = nµεµνγ∂

νfγ dA

Since in R2 we have tµ ds = dxµ we therefore have

fµtµ ds = fµ dxµ = ω

And therefore ˆ
M

nµεµνγ∂
νfγ dA =

ˆ
M

dω =

ˆ
∂M

ω =

ˆ
∂M

fµtµ ds

These last formulas are a good example on how they can be generalized through the use of
differential forms, bringing an easy way of calculus in Rn of the various integral theorems, all condensed
in one formula, the Gauss-Green-Stokes-Ostogradskij theorem



6 Sequences, Series and Residues

§ 6.1 Sequences of Functions

Definition 6.1.1 (Sequence of Functions). Let S be a set and (X, d) a metric space, a sequence of
functions is defined as follows

fn :S −→ (X, d)

s→ fn(s)
(6.1)

Where, ∀n ∈ N a function f(n) : S −→ (X, d) is defined

Definition 6.1.2 (Pointwise Convergence). A sequence of functions (fn)n≥0 is said to converge point-
wise to a function f : S −→ (X, d), and it’s indicated as fn → f , if

∀ε > 0, ∀x ∈ S ∃Nε(x) ∈ N : d(fn(x), f(x)) < ε ∀n ≥ Nε(x) (6.2)

It can be indicated also as follows
lim
n→∞

(fn(x)) = f(x) (6.3)

Definition 6.1.3 (Uniform Convergence). Defining an ‖·‖∞ = supi≤n |·| we have that the convergence
of a sequence of functions is uniform, and it’s indicated as fn ⇒ f , iff

∀ε > 0 ∃Nε ∈ N : d(fn(x), f(x)) < ε ∀n ≥ Nε ∀x ∈ S (6.4)

Or, using the norm ‖·‖∞
∀ε > 0 ∃Nε ∈ N : ‖fn − f‖∞ < ε (6.5)

Theorem 6.1 (Continuity of Uniformly Convergent Sequences). Let (fn)n≥0 : (S, dS) −→ (X, d) be a
sequence of continuous functions. Then if fn ⇒ f , we have that f ∈ C(S), where C(S) is the
space of continuous functions

Proof.

∀x ∈ S, ∃ε > 0 : fn ⇒ f, ∴ ∀n ≥ Nε ∈ N : d(fn(x), f(x)) <
ε

3

fn ∈ C(S) =⇒ ∃δε > 0 : d(fn(x), fn(y)) <
ε

3
, ∀x, y ∈ S : dS(x, y) < δ

∴ d(f(x), f(y)) ≤ d(f(x), fn(x)) + d(fn(x), fn(y)) + d(fn(y), f(y)) < ε ⇐⇒ dS(x, y) < δε

(6.6)

91
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Theorem 6.2 (Integration of Sequences of Functions). Let (fn)n≥0 be a sequence of functions such
that fn ⇒ f Then we can define the following equality

lim
n→∞

ˆ b

a

fn(x)dx =

ˆ b

a

lim
n→∞

fn(x)dx =

ˆ b

a

f(x)dx (6.7)

Proof. We already know that in the closed set [a, b] we can say, since fn ⇒ f , that

∀ε > 0 ∃Nε ∈ N : ∀n ≥ Nε ‖fn − f‖∞ <
ε

b− a
(6.8)

Then, we have that

∀n ≥ Nε

∣∣∣∣∣
ˆ b

a

fn(x)dx−
ˆ b

a

f(x)dx

∣∣∣∣∣ ≤ ‖fn − f‖∞(b− a) < ε (6.9)

Theorem 6.3 (Differentiation of a Sequence of Functions). Define a sequence of functions as
fn : I −→ R, with fn(x) ∈ C1(I). If

1. ∃x0 ∈ I : fn(x0) → l

2. f ′n ⇒ g ∀x ∈ I

Then
fn(x) ⇒ f =⇒ ∀x ∈ I, f ′(x) = lim

n→∞
f ′n(x) = g(x) (6.10)

Proof. For the fundamental theorem of integral calculus, we can write, using the regularity of the
fn(x) that

fn(x) = fn(x0) +

ˆ x

x0

fn(t)dt

Taking the limit we have

lim
n→∞

fn(x) = l +

ˆ x

x0

g(t)dt = f(x)

∴ f ′(t) = g(t)

But, we also have that

∀ε > 0 ‖f ′n − f ′‖∞ ≤ |fn(x0)− l|+ ‖f ′n − g‖∞(b− a) < ε

∴ fn ⇒ f, f ′n ⇒ f ′
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§ 6.2 Series of Functions

Let now, for the rest of the section, (X, d) = C.

Definition 6.2.1 (Series of Functions). Let (fn)n≥0 ∈ C be a sequence of functions, such that fn : S → C.
We can define the series of functions as follows

sn(x) =

n∑
k=1

fk(x) (6.11)

Definition 6.2.2 (Convergent Series). A series of functions sn(x) : S → C is said to be convergent or
pointwise convergent if

sn(x) =

n∑
k=0

fk(x) −→ s(x) (6.12)

Where s(x) : S → C is the sum of the series.
This means that

∀x ∈ S, lim
k→∞

sk(x) =

∞∑
k=0

fk(x) = s(x) (6.13)

Theorem 6.4. Necessary Condition for the convergence of a series of functions:
Let (fn) ∈ C be a succession, then the series sn(x) defined as follows, converges to the
function s(x)

sn(x) =

n∑
k=0

fk(x) = s(x) =

∞∑
k=0

fk(x)

Proof.
∀x ∈ S lim

k→∞
fk(x) = lim

n→∞
(sn(x)− sn+1(x)) = 0

Definition 6.2.3 (Uniform Convergence). A series of functions is said to be uniformly convergent if
and only if

∞∑
k=0

fk(x) ⇒ s(x) ⇐⇒ sn(x) =

n∑
k=0

fk(x) ⇒ s(x) (6.14)

Definition 6.2.4 (Absolute Convergence). A series of functions is said to be absolutely convergent if
and only if

∞∑
k=0

fk(x)
A−→ s(x) =⇒

∞∑
k=0

|fk(x)| → s(x) (6.15)
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Theorem 6.5. Let
∑∞
k=0 fk(x)

A−→ s(x), then

∞∑
k=0

fk(x)
A−→ s(x) =⇒

∞∑
k=0

fk(x) → s(x) (6.16)

Proof. Let

sn(x) =

n∑
k=0

fk(x) ∴ ∃g(x) : (S, d) −→ C, ∃Nε(x) ∈ N :

∣∣∣∣∣g(x)−
∞∑
k=0

fk(x)

∣∣∣∣∣ =
=

∞∑
k=n+1

|fk(x)| < ε ∀n ≥ Nε(x)

∴ ∀n,m ∈ N,m > n

|sm(x)− sn(x)| =

∣∣∣∣∣
m∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(x)| < ε ∀x ∈ S

∴ (sn(x)) is a Cauchy series in C =⇒ sk(x) → s(x)

Definition 6.2.5 (Total Convergence). A series of functions sk(x) is said to be totally convergent if

1. ∃Mk : supS |fk(x)| ≤Mk ∀k ≥ 1

2.
∑∞
k=0Mk →M

The total convergence is then indicated as sk(x)
T−→ s(x)

Proposition 10. Let

sn(x) =

n∑
k=0

fn(x)

Then

1. fn(x) ∈ C(S) ∧ sk(x) ⇒ s(x) =⇒ s(x) ∈ C(S)

2. fn(x) ∈ C(S), sk(x) ⇒ s(x) =⇒
´
s(x)dx = limk→∞

´
sk(x)dx

3. sk(x)
A−→ s(x) =⇒ sk(x) → s(x)

4. sk(x) ⇒ s(x) =⇒ sk(x)
A−→ s(x)

5. sk(x)
T−→ s(x) =⇒ sk(x) ⇒ s(x)
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§§ 6.2.1 Power Series and Convergence Tests

Theorem 6.6 (Weierstrass Test). Let (fn) : (S, d) → C a sequence of functions.
If we have that

∀n > Nε ∈ N ∃Mn > 0 : |fn(x)| ≤Mn

∴ ∀x ∈ S

n∑
k=0

fk(x) ≤
∞∑
k=1

Mk →M ∴
∑
k=0

fk(x)
n ⇒ s(x)

Definition 6.2.6 (Power Series). Let z, z0, (an) ∈ C. A power series centered in z0 is defined as
follows

∞∑
k=0

ak(z − z0)
k (6.17)

Example 6.2.1. Take the geometric series. This is the best example of a power series centered in
z0 = 0, and it has the following form

∞∑
k=0

zk (6.18)

We can expand it as follows

m∑
k=0

zk = (1− z)
(
1 + z + z2 + · · ·+ zm

)
= 1− zn+1 =

1 + zn+1

1− z
∀|z| 6= 1 (6.19)

Taking the limit, we have, therefore

∞∑
k=0

zk =
1

1− z
∀|z| < 1 (6.20)

Theorem 6.7 (Cauchy-Hadamard Criteria). Let
∑∞
k=0 ak(z−z0)k be a power series, with an, z, z0 ∈ C.

We define the Radius of convergence R ∈ R? = R∪{±∞}, with the Cauchy-Hadamard criteria

1

R
= lim sup

n→∞
|an|

1
n =


+∞ 1

R
= 0

l 0 <
1

R
= l <∞

0
1

R
= +∞

(6.21)

Then sk(z) ⇒ s(z) ∀|z| ∈ (−R,R)

Theorem 6.8 (D’Alambert Criteria). From the power series we have defined before, we can write
the D’Alambert criteria for convergence as follows

1

R
= lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ =⇒ R = lim
k→∞

∣∣∣∣ akak+1

∣∣∣∣ (6.22)

Where R is the previously defined radius of convergence
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Theorem 6.9 (Abel). Let R > 0, then if a power series converges for |z| = R, it converges
uniformly ∀|z| ∈ [r,R] ⊂ (−R,R]. It is valid analogously for x = −R

Remark (Power Series Integration). If the series has R > 0 and it converges in |z| = R, calling s(x) the
sum of the series, with x = |z| we can say that

ˆ R

0

s(x)dx =

∞∑
k=0

ˆ R

0

akx
k dx =

ˆ R

0

∞∑
k=1

akx
k dz =

∞∑
k=0

ak
Rk+1

k + 1
(6.23)

Remark (Power Series Derivation). If Abel’s theorem holds, we have also that, if we have s(x) our
power series sum, we can define the n−th derivative of this series as follows

dns

dxn
=

∞∑
k=n

k(k − 1) · · · (k − n+ 1)akx
k−n (6.24)

§ 6.3 Series Representation of Functions

§§ 6.3.1 Taylor Series

Theorem 6.10 (Taylor Series Expansion). Let f : D −→ C be a function such that f ∈ H(BR(z0)),
with Br(z0) ⊆ D. Then

f(z) =

n∑
n=0

1

n!

dnf

dzn

∣∣∣∣
z0

(z − z0)
n ‖z − z0‖ < r (6.25)

Proof. Taken z ∈ Br(z0) and γ(t) = z0 + reit t ∈ [0, 2π] and ‖z − z0‖ < r < R we can write, using
the integral representation of f

f(z) =
1

2πi

ffi
γ

f(w)

(w − z)
dw =

1

2πi

ffi
γ

f(w)

(w − z0)− (z − z0)
dw

From basic calculus we know already that if z 6= w

1

w − z
=

1

w

(
1− (z/w)n

1− z/w
+

1

1− z/w

( z
w

)n)
=

=
1

w − z

( z
w

)n
+

n−1∑
k=0

1

w

( z
w

)n
Therefore, inserting it back into the integral representation, we have

f(z) =
∑
k=0

(z − z0)
k

2πi

ffi
γ

f(w)

(w − z0)k+1
dw +

(z − z0)
n

2πi

ffi
γ

f(w)

[(w − z0)− (z − z0)] (w − z0)n
dw
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On the RHS as first term we have the k−th derivative of f and on the right there is the so called
remainder Rn(z). Therefore

f(z) =

n∑
k=0

1

k!

dkf

dzk

∣∣∣∣
z0

(z − z0)
k +Rn(z)

It’s easy to demonstrate that Rn(z)
n→∞−→ 0, and therefore

f(z) =

∞∑
k=0

1

k!

dkf

dzk

∣∣∣∣
z0

(z − z0)
k

Definition 6.3.1 (Taylor Series for Scalar Fields). Given a function f : A ⊂ Rn −→ R f ∈ Cm(A), given
a multi-index α one can define the Taylor series of the scalar field as follows

f(x) =
∑

|α|≤m

1

α!
∂αf(x0)(x− x0)

α +Rm(x)

Where, the remainder is defined in integral form as follows

Rm(x) = (m+ 1)
∑

|α|=m+1

(x− x0)
α

α!

ˆ 1

0

(1− t)m∂αf(x0 + tx− tx0)dt

Definition 6.3.2 (MacLaurin Series). Taken a Taylor series, such that z0 = 0, we obtain a MacLaurin
series.

f(z) =

∞∑
k=0

1

k!

dkf

dzk

∣∣∣∣
z=0

zk (6.26)

Definition 6.3.3 (Remainders). We can have two kinds of remainder functions while calculating series:

1. Peano Remainders, Rn(z) = O(‖z − z0‖n)

2. Lagrange Remainders, Rn(x) = (n+ 1)!−1f (n+1)(ξ)(x− x0)
n+1, x, x0 ∈ R ξ ∈ (x, x0)

What we saw before as Rn(z) is the remainder function for functions f : D ⊂ C −→ C.
A particularity of remainder function is that Rn(z) → 0 always, if f is holomorphic

Theorem 6.11 (Integration of Power Series II). Let f, g : BR(z0) −→ C and {γ} ⊂ BR(z0) a piecewise
smooth path. Taken

f(z) =

∞∑
n=0

an(z − z0)
n g ∈ C({γ})

We have that
∞∑
n=0

an

ˆ
γ

g(z)(z − z0)
n dz =

ˆ
γ

g(z)f(z)dz (6.27)
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Proof. Since f, g ∈ C({γ}) by definition, and f ∈ H(Br(z0)) with r < R, we have that ∃K̂γ [fg].
Firstly we can write that ∀z ∈ BR(z0)

g(z)f(z) =

n−1∑
k=0

akg(z)(z − z0)
k + g(z)Rn(z) =

n−1∑
k=0

akg(z)(z − z0)
k + g(z)

∞∑
k=n

ak(z − z0)
k

Then we can write

ˆ
γ

g(z)f(z)dz =

n−1∑
k=0

ak

ffi
γ

g(z)(z − z0)
k dz +

ˆ
γ

g(z)Rn(z)dz

LettingM = supz∈{γ} ‖g(z)‖, and noting that ‖Rn(z)‖ < ε for ∀ε > 0 and for some n ≥ Nε ∈ N, z ∈
{γ} we have, using the Darboux inequality∥∥∥∥ˆ

γ

g(z)Rn(z)dz

∥∥∥∥ ≤MLγε→ 0

Theorem 6.12 (Holomorphy of Power Series). If a function f(z) is expressable as a power series
f(z) =

∑∞
k=0 ak(z − z0)

k, ‖z − z0‖ < R we have that f ∈ H(BR(z0))

Proof. Take the previous theorem on the integration of power series, and choose g(z) = 1. Since
g(z) ∈ H(C) we also have that it’ll be continuous on all paths {γ} ⊂ C piecewise smooth.
Take now a closed piecewise smooth path {γ}, then we can write

ffi
γ

f(z)g(z)dz =

ffi
γ

∞∑
k=0

ak(z − z0)
k =

∞∑
k=0

ak

ffi
γ

(z − z0)
k dz

Since the function h(z) = (z − z0)
k ∈ H(C) ∀k 6= 1, we have, thanks to the Morera and Cauchy

theorems ffi
γ

f(z)dz = 0 =⇒ f(z) ∈ H(BR({γ}))

Corollary 6.3.1 (Derivative of a Power Series II). Take f(z) =
∑∞
k=0 ak(z − z0)

k ‖z − z0‖ < R. Then,
∀z ∈ BR(z0) we have that

df

dz
=

∞∑
k=1

akk(z − z0)
k−1 (6.28)

Proof. Taken z ∈ BR(z0) and a continuous function g(w) ∈ C({γ}), with {γ} ⊂ BR(z0) a closed
simple piecewise smooth path. If z ∈ {γ}◦ and

g(w) =
1

2πi

(
1

(w − z)2

)
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We have, using the integral representation for holomorphic functions

1

2πi

ffi
γ

f(w)

(w − z)2
dw =

∞∑
k=0

ak
2πi

ffi
γ

(w − z0)
k

(w − z0)2
dw

Since h(w) = (w − z0)
k ∈ H(C) ∀k 6= 1 we have, using again the integral representation for

holomorphic functions
1

2πi

ffi
γ

f(w)

(w − z)2
dw =

df

dz

1

2πi

ffi
γ

(w − z0)
k

(w − z)2
dw = k(z − z0)

k−1

Therefore

1

2πi

ffi
γ

f(w)

(w − z)2
dw =

∞∑
k=0

akk(z − z0)
k =

df

dz

Corollary 6.3.2 (Uniqueness of the Taylor Series). Taken an holomorphic function f ∈ H(D) with
D ⊂ C some connected open set, we have that

f(z) =

∞∑
k=0

ak(z − z0)
k ak =

1

k!

dkf

dzk

∣∣∣∣
z0

∀‖z − z0‖ < R

Proof. Taken g(z) a continuous function over a closed piecewise simple path {γ} ⊂ C, where

g(z) =
1

2πi

(
1

(z − z0)k+1

)
We have that

1

2πi

ffi
γ

f(z)

(z − z0)n+1
dz =

∞∑
k=1

ak
2πi

ffi
γ

(z − z0)
k−n−1 dz

The integral on the RHS evaluates to δkn, and thanks to the integral representation of f(z) we can write

1

2πi

ffi
γ

f(z)

(z − z0)n+1
dz =

1

n!

dnf

dzn

∣∣∣∣
z0

= n!an

§§ 6.3.2 Laurent Series

Definition 6.3.4 (Annulus Domain). Let 0 ≤ r < R ≤ ∞ and z0 ∈ C, we define the annulus set as
follows

ArR(z0) := {z ∈ C| r < ‖z − z0‖ < R} (6.29)
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Special cases of this are the ones where r = 0, R = ∞ and r = 0, R = ∞

A0,R(z0) = BR(z0) \ {z0}
Ar,∞(z0) = C \Br(z0)
A0,∞(z0) = C \ {z0}

Theorem 6.13 (Laurent Series Expansion). Let f : AR1R2(z0) −→ C be a function such that
f ∈ H (AR1R2

(z0)), and {γ} ⊂ AR1R2
(z0) a closed simple piecewise smooth curve.

Then f is expandable in a generalized power series or a Laurent series as follows

f(z) =

∞∑
n=0

c+n (z − z0)
n +

∞∑
n=1

c−n
(z − z0)n

=

∞∑
k=−∞

ck(z − z0)
k (6.30)

Where the coefficients are the following

c−n =
1

2πi

ffi
γ

f(z)(z − z0)
n−1 dz n ≥ 0

c+n =
1

2πi

ffi
γ

f(z)

(z − z0)n+1
dz n > 0

ck =
1

2πi

ffi
γ

f(z)

(z − z0)k+1
dz k ∈ Z

(6.31)

Proof. Taken a random point z ∈ AR1R2(z0), a closed simple piecewise smooth curve {γ} ⊂ AR1R2(z0)
and two circular smooth paths {γ2}, {γ3} : {γ2}∪{γ3} = ∂Ar1r2(z0) ⊂ AR1R2

(z0) ∧{γ} ⊂ Ar1r2(z0)
and a third circular path {γ3} ⊂ Ar1r2(z0), we can write immediately, using the omotopy between all
the paths ffi

γ2

f(w)

w − z
dw =

ffi
γ1

f(w)

w − z
dw +

ffi
γ3

f(w)

w − z
dw

Using the Cauchy integral representation we have that the integral on γ3 yields immediately 2πif(z),
hence we can write

f(z) =
1

2πi

ffi
γ2

f(w)

(w − z0)− (z − z0)
dw +

1

2πi

ffi
γ1

f(w)

(z0 − z)− (w − z0)
dw

Using the two following identities for z 6= w

1

w − z
=

1

w − z

( z
w

)n
+

n−1∑
k=0

1

w

( z
w

)k
1

z − w
=

1

z − w

(w
z

)n
+

n∑
k=1

1

w

(w
z

)k
We obtain that

f(z) =

n−1∑
k=0

(z − z0)
k

2πi

ffi
γ2

f(w)

(w − z0)k+1
dw+ρn(z)+

n∑
k=1

1

2πi(z − z0)k

ffi
γ1

f(w)(w−z0)k−1 dw+σn(z)
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Where, after choosing appropriate substitutions with some coefficients c+k , c
−
k we have

f(z) =

n−1∑
k=0

c+k (z − z0)
k + ρn(z) +

n∑
k=1

c−k
(z − z0)k

+ σn(z)

Where ρn, σn are the two remainders of the series expansion, and are

ρn(z) =
(z − z0)

n

2πi

ffi
γ2

f(w)

[(w − z0)− (z − z0)] (w − z0)n
dw

σn(z) =
1

2πi(z − z0)n

ffi
γ1

f(w)

(w − z0)− (z − z0)
dw

In order to prove the theorem we now need to demonstrate that ρn, σn
n→∞−→ 0. Taken M1 =

supz∈{γ1} ‖f(z)‖, M2 = supz∈{γ2} ‖f(z)‖, we have, using the fact that both γ1, γ2 are circular

‖ρn(z)‖ ≤ M2

1− 1
r2
‖z − z0‖

(
‖z − z0‖

r2

)n
n→∞−→ 0 ‖z − z0‖ < r2

‖σn(z)‖ ≤ M1
1
r1
‖z − z0‖ − 1

(
r1

‖z − z0‖

)n
n→∞−→ 0 r1 < ‖z − z0‖

And the theorem is proved.

Theorem 6.14 (Convergence of a Laurent Series). Being defined on an annulus set, the Laurent
series of a function must have two radii of convergence. Given a function f holomorphic on
a set AR1R2(z0) we have

1

R2
= lim sup

n→∞

n
√
‖cn‖

R1 = lim sup
n→∞

n
√
‖c−n‖

(6.32)

It’s equivalent of showing the convergence of the two series

f(z) =

∞∑
k=0

c+k (z − z0)
k +

∞∑
k=1

c−k
(z − z0)k

Theorem 6.15 (Integral of a Laurent Series). Let f(z) ∈ H (AR1R2
(z0)) and take {γ} ⊂ AR1R2

(z0) a
piecewise smooth curve, and g ∈ C({γ}), then we have

∞∑
n=−∞

cn

˛
γ

g(z)(z − z0)
n dz =

˛
γ

g(z)f(z)dz

Proof. We begin by separating the sum in two parts, ending up with the following

∞∑
n=0

c+n

˛
γ

g(z)(z − z0)
n dz =

˛
γ

g(z)f+(z)dz

∞∑
n=1

c−n

˛
γ

g(z)

(z − z0)n
dz =

˛
γ

g(z)f−(z)dz
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Which is analogous to the integration of Taylor series. The same could be obtained keeping the bounds
of the sum in all Z

As for Taylor series, in a completely analogous fashion, a Laurent series is holomorphic and unique.
The derivative of a Laurent series, is then obviously the following

df

dz
=

∞∑
n=−∞

cnn(z − z0)
n−1

§§ 6.3.3 Multiplication and Division of Power Series

Theorem 6.16 (Product of Power Series). Take f(z) =
∑∞
n=0 an(z − z0)

n, z ∈ BR1(z0) and g(z) =∑∞
n=0 bn(z − z0)

n, z ∈ BR2
(z0). Then

f(z)g(z) =

∞∑
n=0

cn(z − z0)
n, cn =

n∑
k=0

akbn−k ‖z − z0‖ < min (R1, R2) = R

Proof. Due to the holomorphy of both f and g, we have that the function fg has a Taylor series
expansion

f(z)g(z) =

∞∑
n=0

cn(z − z0) ‖z − z0‖ < R

We have then, using Leibniz’s derivation rule

cn =
1

n!

dn

dzn
f(z)g(z) =

1

n!

n∑
k=0

(
n
k

)
dkf

dzk

∣∣∣∣
z0

dn−kg

dzn−k

∣∣∣∣
z0

=

=

n∑
k=0

1

k!

dkf

dzk

∣∣∣∣
z0

1

(n− k)!

dn−kg

dzn−k

∣∣∣∣
z0

=

=

n∑
k=0

akbn−k

Theorem 6.17 (Division of Power Series). Taken the two functions as before, with the added
necessity that g(z) 6= 0, we have that

f(z)

g(z)
=

∞∑
n=0

dn(z − z0)
n dn =

1

b0

(
an −

n−1∑
k=0

dkbn−k

)

Proof. Everything hold as in the previous proof. Remembering that (f/g)g = f and using the previous
theorem, we obtain

an =

n∑
k=0

dkbk−n
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And therefore, inverting

dn =
an
b0

− 1

b0

n−1∑
k=0

dkbn−k

§§ 6.3.4 Useful Expansions

ez =

∞∑
n=0

zn

n!
‖z‖ <∞ (6.33)

sin(z) =
1

2i

(
eiz − e−iz

)
=

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 ‖z‖ <∞ (6.34)

cos(z) =
d

dz
sin(z) =

∞∑
n=0

(−1)n

(2n)!
z2n ‖z‖ <∞ (6.35)

cosh(z) = cos(iz) =

∞∑
n=0

z2n

(2n)!
‖z‖ <∞ (6.36)

sinh(z) =
d

dz
cosh(z) =

∞∑
n=0

z2n+1

(2n+ 1)!
‖z‖ <∞ (6.37)

1

1− z
=

∞∑
n=0

zn ‖z‖ < 1 (6.38)

1

1 + z
=

∞∑
n=0

(−1)nzn ‖z‖ < 1 (6.39)

1

z
=

∞∑
n=0

(−1)n(z − 1)n ‖z − 1‖ < 1 (6.40)

(1 + z)s =

∞∑
n=0

(
s
n

)
zn s ∈ C, ‖z‖ < 1 (6.41)

e
1
z =

∞∑
n=0

1

n!zn
0 < ‖z‖ <∞ (6.42)
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§ 6.4 Residues

§§ 6.4.1 Singularities and Residues

Definition 6.4.1 (Singularity). Given a function f : G −→ C we define a singularity a point z0 ∈ G
such that

∀ε > 0 ∃z ∈ Bε(z0) : f(z) is holomorphic (6.43)

Definition 6.4.2 (Isolated Singularity). Given a function f : G −→ C we define an isolated singularity
a point z0 ∈ G such that

∃r > 0 : f ∈ H (A0r(z0)) (6.44)

Definition 6.4.3 (Residue). Let z0 ∈ G be an isolated singularity of f : G −→ C, then ∃r > 0 : ∀z ∈
A0r(z0) the following Laurent series expansion holds

f(z) =

∞∑
n=0

an(z − z0)
n +

∞∑
n=1

bn
(z − z0)n

=

∞∑
n=−∞

cn(z − z0)
n

The residue of the function f in z0 is defined as follows

Res
z=z0

f(z) = b1 = c−1 (6.45)

A second definitiion is given by the following contour integral

Res
z=z0

f(z) =
1

2πi

ffi
γ

f(z)dz

Where γ is a simple closed path around z0

Definition 6.4.4 (Winding Number). Given a closed curve {γ} we define the winding number or
index of the curve around a point z0 the following integral

n(γ, z0) =
1

2πi

˛
γ

dz

z − z0
(6.46)

Theorem 6.18 (Residue Theorem). Given a function f : G −→ C such that f ∈ H(D) where
D = G \ {z1, · · · , zn} and zk are isolated singularities, we have, taken a closed piecewise
smooth curve {γ}, such that {z1, · · · , zn} ⊂ {γ}◦

˛
γ

f(z)dz = 2πi

∞∑
k=0

n(γ, zk) Res
z=zk

f(z) (6.47)
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Proof. Firstly we can say that γ ∼
∑
k γk where γk are simple curves around each zk, then since the

function is holomorphic in the regions A0r(zk) with k = 1, · · · , n we can write

f(z) =

∞∑
n=−∞

cn(z − zk)
n

Therefore, we have

˛
γ

f(z)dz =

n∑
k=0

˛
γk

f(z)dz =

n∑
k=0

∞∑
j=−∞

cj

˛
γk

(z − zk)
j dz

We can then use the linearity of the integral operator and write

˛
γ

f(z)dz =

n∑
k=0

−2∑
j=−∞

cj

˛
γk

(z − zk)
j dz + c−1

˛
γk

dz

z − zk
+

∞∑
j=0

cj

˛
γk

(z − zk)
j dz

Thanks to the Cauchy theorem we already know that the first and last integrals on the RHS must be
null, therefore ˛

γ

f(z)dz =

n∑
k=0

c−1

˛
γk

dz

z − zk

Recognizing the definition of residue and the winding number of the curve, we have the assert˛
γ

f(z)dz = 2πi
∑
k=0

n(γ, zk) Res
z=zk

f(z)

Definition 6.4.5 (Residue at Infinity). Given a function f : G −→ C and a piecewise smooth closed
curve γ. If f ∈ H({γ} ∪ extr {γ}) we have

ffi
γ

f(z)dz = −2πi Res
z=∞

f(z) = 2πi Res
z=0

1

z2
f

(
1

z

)
(6.48)

Theorem 6.19. Given a function f : G −→ C as before, if the function has zk singularities with
k = 1, · · · , n

Res
z=∞

f(z) =

n∑
k=1

Res
z=zk

f(z) (6.49)

§§ 6.4.2 Classification of Singularities, Zeros and Poles

Definition 6.4.6 (Pole). Given a function f(z) with an isolated singular point in z0 ∈ C, we have that
in A0r(z0) the function can be expanded with a Laurent series

f(z) =

∞∑
k=0

ak(z − z0)
k +

∞∑
k=1

bk
(z − z0)k

The point z0 is called a pole of order m if bk = 0 ∀k > m
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Definition 6.4.7 (Removable Singularity). Given f(z), z0 as before, we have that z0 is a removable
singularity if bk = 0 ∀k ≥ 1

Definition 6.4.8 (Essential Singularity). Given f(z), z0 as before, we have that z0 is an essential
singularity if bk 6= 0 for infinite values of k

Definition 6.4.9 (Meromorphic Function). Let f : G ⊂ C −→ C be a function. f is said to be
meromorphic if f ∈ H(G̃) where G̃ = G \ {z1, · · · , zn} where zk ∈ G are poles of the function

Theorem 6.20. Let z0 be an isolated singularity of a function f(z). z0 is a pole of order m if
and only if

f(z) =
1

(m− 1)!

dm−1g

dzm−1

∣∣∣∣
z0

g ∈ H(Bε(z0)) ε > 0 (6.50)

Proof. Let f : G −→ C be a meromorphic function and g : G −→ C, g ∈ H(G) where f(z) has a pole
in z0 ∈ G and g(z0) 6= 0

f(z) =
g(z)

(z − z0)m

Since g(z) is holomorphic in z0 we have that, for some r

g(z) =

∞∑
k=0

1

k!

dkg

dzk0
(z − z0)

k z ∈ Br(z0)

And therefore, ∀z ∈ A0r(z0)

f(z) =
1

(z − z0)m
g(z) =

∞∑
k=0

1

k!

dkg

dzk0
(z − z0)

k−m

Since g(z0) 6= 0 we have the assert.
Alternatively we start by hypothesizing that z0 is already a pole of order m for f , and therefore we can
write the following Laurent expansion for some r > 0

f(z) =

∞∑
k=−m

ck(z − z0)
k ∀z ∈ A0r(z0)

Where c−m 6= 0. Therefore, we write

g(z) =

{
(z − z0)

mf(z) z ∈ A0r(z0)

c−m z = z0

And, expanding g(z) for z ∈ Br(z0) we obtain

g(z) = c−m + c−m+1(z − z0) + · · ·+ c−1(z − z0)
m−1 +

∞∑
k=0

ck(z − z0)
k+m

g(z) is holomorphic in the previous domain of expansion, and therefore we have, since the Taylor
expansion is unique

c−1 =
1

(m− 1)!

dm−1g

dzm−1
0

= Res
z=z0

f(z)
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Definition 6.4.10 (Zero). Let f : G −→ C be a holomorphic function. Taken z0 ∈ G, it’s said to be a
zero of order m if 

dkf

dzk0
= 0 k = 1, · · · ,m− 1

dmf

dzm0
6= 0

Theorem 6.21. The point z0 ∈ G is a zero of order m for f if and only if

f(z) =
g(z)

(z − z0)m
g(z0) 6= 0, g ∈ H(G)

Proof. Taken f(z) = (z − z0)
mg(z) such that g(z0) 6= 0 we can expand g(z) with Taylor and at the

end obtain

f(z) =

∞∑
k=0

1

k!

dkg

dzk0
(z − z0)

k+m

Since this is a Taylor expansion also for f(z) we have that, for j = 1, · · · ,m− 1

djf

dzj0
= 0

dmf

dzm0
= m!g(z0) 6= 0

The same is obtainable with the vice versa demonstrating the theorem

Notation. Let f be a meromorphic function. We will define the following sets of points accordingly

1. Zmf as the set of zeros of order m

2. Sf as the set of isolated singularities of f

3. Pmf as the set of poles of order m

We immediately see some special cases

1. P∞
f is the set of essential singularities of f

2. P 1
f is the set of removable singularities of f

Theorem 6.22. Let f : D −→ C be a function such that f ∈ H(D), with D an open set, then

1. f(z) = 0 ∀z ∈ D

2. ∃z0 : f (k)(z0) = 0 ∀k ≥ 0

3. Zf ⊂ D has a limit point
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Proof. 3) =⇒ 2)
Take z0 ∈ D as the limit point of Zf . Since f ∈ C(D) we have that z0 ∈ Zmf . therefore

f(z) = (z − z0)
mg(z) g(z0) 6= 0, g ∈ H(D) =⇒ ∃δ > 0 : g(z) 6= 0 ∀z ∈ Bδ(z0)

Therefore

f(z) 6= 0 ∀z ∈ A0δ(z0)  

2) =⇒ 1)
Suppose that Zf(k) :=

{
z ∈ D| f (k)(z) = 0

}
6= {}. We have to demonstrate that this set is clopen in

D.
Take z ∈ Zf(k) and a sequence (z)k ∈ Zf(k) such that zk → z. We have then

f (k)(z) = lim
k→∞

f (k)(zk) = 0

Therefore Zf(k) = Zf(k) and the set is closed.
Take then z ∈ Zf(k) ⊂ D, since D is open we have that ∃r > 0 : Br(z) ⊂ D, therefore

∀w ∈ Br(z), z 6= w f(w) =

∞∑
k=0

ak(w − z)k = 0 =⇒

{
z = w

ak = 0 ∀k ≥ 0

Since w 6= z we have that Br(z) ⊂ Zf(k) and the set is open. Taking both results we have that the set
is clopen and D = Zf(k)

Corollary 6.4.1. Let f, g : D −→ C and f, g ∈ H(D). We have that f = g iff the set {f(z) = g(z)}
has a limit point in D

Corollary 6.4.2 (Zeros of Holomorphic Functions). Let f : D −→ C be a non-constant function
f ∈ H(D) with D an open connected set. Then

∀z ∈ Zmf m <∞

Proof. Take z0 ∈ Zf , then since f is non-constant we have that Zf has no limit points in D, therefore

∃δ > 0 : f(z) 6= 0 ∀z ∈ A0δ(z0) ∧ ∃m ≥ 1 :
dkf

dzk0
= 0 k ∈ [0,m),

dmf

dzm0
6= 0

Therefore z0 ∈ Zmf

Theorem 6.23. Let f : D −→ C be a meromorphic function, such that

f(z) =
p(z)

q(z)
p, q ∈ H(D)

If z0 ∈ Zmq such that p(z0) 6= 0, then z0 ∈ Pmf
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Proof. z0 ∈ Zmq is an isolated singularity of q, therefore

∃δ > 0 : q(z) 6= 0 ∀z ∈ A0δ(z0) ∴ z0 ∈ Sp/q

We therefore can take q(z) = (z − z0)
mg(z) and we have

f(z) =
p(z)

g(z)(z − z0)m
=

h(z)

(z − z0)m

Where h(z) is a holomorphic function such that h(z0) 6= 0. By definition of pole we have z0 ∈ Pmf

Theorem 6.24 (Quick Calculus of Residues for Rational Functions). If f(z) = p(z)/q(z) as before,
there is a quick rule of thumb for calculating the residue in z0. We can write

Res
z=z0

f(z) =
1

(m− 1)!

dm−1h

dzm−1
0

If the pole is a removable singularity, we have z0 ∈ P 1
f and

Res
z=z0

f(z) =
p(z0)

q′(z0)

Theorem 6.25. Let f be a meromorphic function. If z0 ∈ Pmf we have

lim
z→z0

f(z) = ∞

Proof.

z0 ∈ Pmf =⇒ f(z) =
g(z)

(z − z0)m
, z0 /∈ Zg

Then

lim
z→z0

1

f(z)
= lim
z→z0

(z − z0)

g(z)
= 0

Theorem 6.26. If z0 ∈ P 1
f , ∃ε > 0 such that f ∈ A0ε(z0) and ‖f(z)‖ ≤M , ∀z ∈ A0ε(z0)

Proof. By definition we have that

∃r > 0 : f ∈ H(A0ε(z0))

And therefore the function is Laurent representable in this set as follows

f(z) =

∞∑
k=0

ck(z − z0)
k 0 < ‖z − z0‖ < ε

Taken the following holomorphic function

g(z) =


f(z) z ∈ A0ε(z0)
∞∑
z=0

ck(z − z0) z = z0

We have that g ∈ H
(
Bε(z0)

)
and therefore ‖f(z)‖ ≤M ∀z ∈ A0ε(z0)
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Lemma 6.4.1 (Riemann). Take a function f ∈ H (A0ε(z0)) for some ε > 0, then if ‖f(z)‖ ≤M ∀z ∈
A0ε(z0)
The point z0 is a removable singularity for f

Proof. In the set of holomorphy the function is representable with Laurent, therefore

f(z) =

∞∑
k=0

c+k (z − z0)
k +

∞∑
k=1

c−k
(z − z0)k

Wehave that the coefficients c−k are the following, where we integrate over a curve {γ} := {z ∈ C| ‖z − z0‖ = ρ < ε}

c−k =
1

2πi

ffi
γ

f(z)(z − z0)
k−1 dz

The function is limited, and therefore for Darboux

c−k ≤ ρkM → 0 ∀k ≥ 1

Therefore z0 ∈ P 1
f

Theorem 6.27 (Quick Calculus Methods for Residues). Let f be a meromorphic function, then

1. z0 ∈ Pnf then

Res
z=z0

f(z) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
(z − z0)

n
f(z) (6.51)

2. z0 ∈ Pmf and f(z) = p(z)/(z − z0)
m, where p ∈ Ck [z] with k ≤ m− 2 and p(z0) 6= 0, then

Res
z=z0

f(z) = Res
z=z0

p(z)

(z − z0)m
= 0

§ 6.5 Applications of Residue Calculus

§§ 6.5.1 Improper Integrals

Definition 6.5.1 (Improper Integral). An improper integral is defined as the integral of a function in
a domain where such function has a divergence, or where the interval is infinite. Some examples of
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such integrals, given a function f(x) with divergences at a, b ∈ R are the following

ˆ ∞

c

f(x)dx = lim
R→∞

ˆ R

c

f(x)dx

ˆ d

−∞
f(x)dx = lim

R→∞

ˆ d

−R
f(x)dx

ˆ ∞

−∞
f(x)dx =

ˆ
R
f(x)dx = lim

R→∞

ˆ R

−R
f(x)dx

ˆ b

a

f(x)dx = lim
ε→0+

ˆ b−ε

a+ε

f(x)dx

ˆ h

e

f(x)dx = lim
ε→0+

(ˆ a−ε

e

f(x)dx+

ˆ h

a+ε

f(x)dx

)
a ∈ (e, h)

Definition 6.5.2 (Cauchy Principal Value). The previous definitions give rise to the following definition,
the Cauchy principal value. Given an improper integral we define the Cauchy principal value as
follows
Let f(x) be a function with a singularity c ∈ (a, b), and g(x) another function then

PV

ˆ ∞

−∞
g(x)dx = PV

ˆ
R
g(x)dx = lim

R→∞

ˆ R

−R
g(x)dx

PV

ˆ b

a

f(x)dx = lim
ε→0+

(ˆ c−ε

a

f(x)dx+

ˆ b

c+ε

f(x)dx

)
In the first case. PV is usually omitted.
For a complex integral, if γR(t) = Reit is a circumference, we have

PV

ˆ
γR

f(z)dz = lim
R→∞

ˆ
γR

f(z)dz

Notation (Circumferences and Parts of Circumference). For a quick writing of the integrals in this
section, we will use this notation for the following circumferences

CR(t) = Reit t ∈ [0, 2π]

CRαβ = Reit t ∈ [α, β]

C+
R (t) = Reit t ∈ [0, π]

C−
R (t) = Re−it t ∈ [0, π]

C̃±
R = C±

R × [−R,R]

Hypothesis 1. Let R0 > 0 and f ∈ C(D), where D := {z ∈ C| ‖z‖ ≥ R0} ∪ R and

lim
z→∞

zf(z) = 0
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Hypothesis 2. Let R0 > 0 and f ∈ C(D), where D := {z ∈ C| ‖z‖ ≥ R0} ∪ R and

lim
z→∞

f(z) = 0

Theorem 6.28. If (1) holds true, then

PV

ˆ
γR

f(z)dz = 0 γR = CR, C
+
R , C

−
R (6.52)

Also, if f(x) is a real function
ˆ
R
f(x)dx = PV

ˆ
C̃+

R

f(z)dz = PV

ˆ
C̃−

R

f(z)dz (6.53)

Theorem 6.29. Let f(z) be an even function, if (1) holds we have
ˆ ∞

0

f(x)dx =
1

2
PV

ˆ
C̃+

R

f(z)dz =
1

2
PV

ˆ
C̃−

R

f(z)dz (6.54)

Theorem 6.30. Let f(z) = g(zk), k ≥ 2. If (1) holds
ˆ ∞

0

f(x)dx =
1

1− e
2iπ
k

PV

ˆ
C̃R0,2π/k

f(z)dz (6.55)

Theorem 6.31. If (2) holds
ˆ
R
f(x)eiλx dx = PV

ˆ
C̃+

R

f(z)eiλz dz λ > 0

ˆ
R
f(x)eiλx dx = PV

ˆ
C̃−

R

f(z)eiλz dz λ > 0

(6.56)

From this, we can write then, for λ > 0

ˆ
R
f(x) cos(iλx)dx = Re

(
PV

ˆ
C̃+

R

f(z)eiλz dz

)
λ > 0

ˆ
R
f(x) sin(iλx)dx = Im

(
PV

ˆ
C̃+

R

f(z)eiλz dz

)
λ > 0

(6.57)

Hypothesis 3. Let f(z) = g(z)h(z) with g(z) a meromorphic function such that Sg 6⊂ R+ and

1. h ∈ H(C \ R+)

2. limz→∞ zf(z) = 0
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3. limz→0 zf(z) = 0

Definition 6.5.3 (Pacman Path). Let ΓRrε be what we will call as the pacman path, this path is formed
by 4 different paths

γ1(t) = reit t ∈ [ε, 2π − ε]

γ2 = [−R,R]
γ3(t) = Reit t ∈ [ε, 2π − ε]

γ4 = [−R,R]

(6.58)

We will abbreviate this as Γ

Theorem 6.32. Given f(x) a function such that (3) holds, we have that
ˆ ∞

0

g(x)∆h(x)dx = PV

ˆ
Γ

g(z)h(z)dz (6.59)

Where
∆h(x) = lim

ε→0+
(h(x+ iε)− h(x− iε)) (6.60)

In general, we have the following conversion table

h(z) ∆h(x)

− 1
2πi log+(z) 1

log+(z) −2πi

log
2
+(z) −2πi log(x) + 4π2

log+(z)− 2πi log+(z) −4πi log(x)

i
4π log

2
+(z) +

1
2 log+(z) log(x)

[zα]+ xα
(
1− e2πiα

)

(6.61)

All the previous integrals are solved through a direct application of the residue theorem.

§§ 6.5.2 General Rules

Theorem 6.33 (Integrals of Trigonometric Functions). Let f(cos θ, sin θ) be some rational function
of cosines and sines. Then we have that

ˆ 2π

0

f(cos θ, sin θ)dθ =

ˆ
‖z‖=1

f

(
z + z−1

2
,
z − z−1

2i

)
dz

iz
(6.62)
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Theorem 6.34 (Integrals of Rational Functions). Let f(x) = pn(x)/qm(x) with m ≥ n + 2 and
qm(x) 6= 0 ∀x ∈ R, then ˆ

R

pn(x)

qm(x)
dx = 2πi

∑
k

Res
z=zk

pn(z)

qm(z)
(6.63)

Lemma 6.5.1 (Jordan’s Lemma). Let f(z) be a holomorphic function inA := {z ∈ C| ‖z‖ > R0, Im(z) ≥ 0}.
Taken γ(t) = Reit 0 ≤ t ≤ π with R > R0.
If ∃MR > 0 : ‖f(z)‖ ≤MR ∀z ∈ {γ} andMR → 0, we have that

PV

ˆ
γ

f(z)eiaz dz = 0 a > 0 (6.64)

Theorem 6.35. Let f(x) = pn(x)/qm(x) and m ≥ n+ 1 with qm(x) 6= 0 ∀x ∈ R, then ∀a > 0 we
have that ˆ

R

pn(x)

qm(x)
eiax dx = 2πi

∑
k

Res
z=zk

pn(z)

qm(z)
eiaz (6.65)

Lemma 6.5.2. Let f(z) be a meromorphic function such that z0 ∈ P 1
f and γ±r are semi circumferences

parametrized as follows
γ±r (t) = z0 + re±iθ θ ∈ [−π, 0]

Then

PV

ˆ
γ±
r

f(z)dz = ±πi Res
z=z0

f(z) (6.66)

Theorem 6.36. Let f(x) = pn(x)/qm(x) with m ≥ n+ 2 and qm(x) has xj ∈ Z1
g

∣∣
R then

ˆ
R

pn(x)

qm(x)
dx = 2πi

∑
k

Res
z=zk

pn(z)

qm(z)
+ πi

∑
j

Res
z=xj

pn(z)

qm(z)
(6.67)

If g(x) = rα(x)/sβ(x)e
iax and β ≥ α+ 1 with xj ∈ Z1

g

∣∣
R, then ∀a > 0

ˆ
R

rα(x)

sβ(x)
eiax dx = 2πi

∑
k

Res
z=zk

rα(z)

sβ(z)
eiaz + πi

∑
j

Res
z=xj

rα(z)

sβ(z)
eiaz (6.68)

zk are all the zeros of q, s contained in the plane {Im(z) > 0}



7 Hilbert and Banach Spaces

§ 7.1 Banach Spaces

§§ 7.1.1 Sequence Spaces

Definition 7.1.1 (Banach Space). Given a space and a norm (X, ‖·‖), the space is said to be a Banach
space if it’s complete with respect to the norm ‖·‖.
I.e. remembering the definition of completeness, we have that ∀(x)k ∈ X Cauchy sequence, xk →
x ∈ X

Notation (The Field F). Here in this section, the field F should be intended as either the field of real
numbers R or the field of complex numbers C

Definition 7.1.2 (Sequence Space). As a n-tuple in the field Fn can be seen as a sequence, as follows

x ∈ Fn, x = (x1, x2, · · · , xn) = (xk)
n
k=1

We can imagine a sequence as a point in a space. We will call this space FN, and an element of this
space will be indicated as follows

x ∈ FN, x = (x)n = (x1, x2, · · · , xn, · · · ) = (xk)
∞
k=1

Therefore, every point in FN is a sequence. Note that the infinite sequence of 0s and 1s will be indicated
as 0 = (0)n, 1 = (1)n

Definition 7.1.3 (Sequence of Sequences). We can see a sequence of sequences as a mapping from N
to the space FN, as follows

x :N −→ FN

n→ ((x)k)n

It’s important to note how there are two indexes, since every element of the sequence is a sequence in
itself (i.e. ((x)k)n ∈ FN for any fixed n ∈ N)

Definition 7.1.4 (Convergence of a Sequence of Sequences). A sequence of sequences is said to
converge to a sequence in FN if and only if

lim
n→∞

‖(x)k − ((x)k)n‖ = 0 (7.1)

For some norm ‖·‖

115
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Definition 7.1.5 (Pointwise Convergence). A sequence of sequence is said to converge pointwise to a
sequence in FN if and only if

∀k ∈ N lim
n→∞

((x)k)n = (x)k (7.2)

And it’s indicated as ((x)k)n → (x)k

Example 7.1.1. Take the following sequence of sequences in FN

((x)k)n =
k

n

This sequence converges pointwise to the null sequence, since

lim
n→∞

((x)k)n = lim
n→∞

k

n
= (0)k

Space of Bounded Sequences

Definition 7.1.6 (Limited Sequence Space). Let (x)k ∈ FN. Calling the space of bounded sequences as
`∞(F), we have that (x)k ∈ `∞(F) if and only if

sup
n∈N

|(x)n| =M ∈ F (7.3)

Therefore, this space is defined as follows

`∞(F) := { (x)n ∈ FN∣∣ sup
n∈N

|(x)n| < M, M ∈ F} (7.4)

Theorem 7.1. The application ‖·‖∞ = supn∈N |·| is a norm in `∞(F)

Proof. 1) ‖(x)n‖ ≥ 0 ∀(x)n ∈ FN, ‖(x)n‖∞ = 0 ⇐⇒ (x)n = (0)n, by definition of sup the first
statement is obvious, meanwhile for the second

0 ≤ |(x)n| ≤ sup
n∈N

|(x)n| = 0 =⇒ |(x)n| = 0 ∴ (x)n = (0)n

2) ‖c(x)n‖∞ = |c|‖(x)n‖∞

‖c(x)n‖∞ = sup
n∈N

|c(x)n| = sup
n∈N

|c||(x)n| = |c| sup
n∈N

|(x)n| = |c|‖(x)n‖∞

3) ‖(x)n + (y)n‖∞ ≤ ‖(x)n‖∞ + ‖(y)n‖∞

sup
n∈N

|(x)n + (y)n| ≤ sup
n∈N

(|(x)n|+ |(y)n|) = sup
n∈N

|(x)n|+ sup
n∈N

|(y)n| = ‖(x)n‖∞ + ‖(y)n‖∞

Since `∞(F) is a vector space, the couple (`∞(F), ‖·‖∞) is a normed vector space

Remark. Let V be a vector space over some field F. If dim(V) = ∞, a closed and bounded subset
W ⊂ V isn’t necessarily compact, whereas, a compact subset Z ⊂ V is necessarily closed and bounded.
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Example 7.1.2. Take V = `∞(F) and W = B1((0)n), where

B1((0)n) := { (x)n ∈ F∞| ‖(x)n‖∞ ≤ 1}

We have that diam(B1) = 2, therefore this set is bounded and closed by definition.
Take the canonical sequence of sequences ((e)k)n, defined as follows:

((e)k)n = ((0)k, (0)k, · · · , (0)k, (1)k, (0)k, · · · ), for some k ∈ N

Therefore, ∀n 6= m ∥∥((e)k)n − ((e)k)m
∥∥
∞ = ‖(1)k‖∞ = 1

Therefore there aren’t converging subsequences, and therefore B1 can’t be compact.

Space of Sequences Converging to 0

Definition 7.1.7 (Space of Sequences Converging to 0). The space of sequences converging to 0 is
indicated as `0(F) and is defined as follows

`0(F) := { (x)n ∈ FN∣∣ (x)n → 0} (7.5)

Proposition 11. `0(F) ⊂ `∞(F), and the couple (`0(F), ‖·‖∞) is a normed vector space, where the
norm ‖·‖∞ gets induced from the space `∞(F)

Proof.
lim
k→∞

(x)k = 0 =⇒ ∀ε > 0 ∃N ∈ N : |(x)n| < ε ∀n ≥ N

∴ sup
n∈N

|(x)n| = ε ≤M ∈ F =⇒ (x)n ∈ `∞(F), ∴ `0(F) ⊂ `∞(F)

`p(F) Spaces

Definition 7.1.8. The sequence space `p(F) is defined as follows

`p(F) := { (x)n ∈ FN∣∣ ‖(x)n‖pp =M ∈ F} (7.6)

Where ‖·‖p is the usual p−norm

Proposition 12. The application ‖·‖p : `p(F) −→ F is a norm in `p(F), and the couple (`p(F), ‖·‖p) is a
normed vector space

Proof. Webegin by proving that `p(F) is actually a vector space, therefore 1) ∀(x)n, (y)n ∈ `p(F), (x)n+
(y)n = (x+ y)n ∈ `p(F)

(x+ y)n ∈ `p(F) =⇒
∞∑
n=0

|(x)n + (y)n|p = ‖(x)n + (y)n‖pp < M ∈ F

‖(x)n + (y)n‖pp ≤ ‖(x)n‖pp + ‖(y)n‖pp < M ∈ F
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2) ∀(x)n ∈ `p(F), c ∈ F, c(x)n ∈ `p(F)

c(x)n ∈ `p(F) =⇒ ‖c(x)n‖pp < M ∈ F

‖c(x)n‖pp =
∞∑
n=0

|c(x)n|p = |c|p
∞∑
n=0

|(x)n|p = |c|p‖(x)n‖pp < M ∈ F

Remark. (x)n ∈ `p(F) =⇒ (x)n ∈ `0(F).

Proof. The proof is simple, taking (y)n = |(x)n|p, we can see that (y)n → 0, therefore (x)n → 0 and
(x)n ∈ `0(F)

Space of Finite Sequences

Definition 7.1.9 (Space of Finite Sequences). The space of finite sequences is indicated as `f (F) and
it’s defined as follows

`f (F) := { (x)n ∈ FN∣∣ (x)n = 0 ∀n > N ∈ N} (7.7)

It’s already obvious that `f (F) ⊂ `p(F) ⊂ `q(F) ⊂ `0(F) ⊂ `∞(F), where p < q ∈ R+ \ {0} where
p < q ∈ R+ \ {0}

§§ 7.1.2 Function Spaces

Notation. In this case, when there will be written the field F, we might either mean R only, i.e.
functions R −→ R, or R;C, i.e. functions R −→ C.

Definition 7.1.10 (Some Function Spaces). We are already familiar from the basic courses in one
dimensional real analysis, about the space of continuous functions C(A), where A ⊂ R. We can define
three other spaces directly, adding some restrictions.

1. Cb(F) := {f ∈ C(F)| supx∈F(f(x)) ≤M ∈ F}

2. C0(F) := {f ∈ C(F)| limx→∞(f(x)) = 0}

3. Cc(F) := {f ∈ C(F)| f(x) = 0 ∀x ∈ Ac ⊂ F} i.e. Cc(F) := {f ∈ C(F)| supp (f) is compact },
where with supp we indicate the following set suppF(f) := {x ∈ F| f(x) 6= 0}

Due to the properties of continuous functions, these spaces are obviously vector spaces.

Proposition 13. We have Cc(F) ⊂ C0(F) ⊂ Cb(F) ⊂ C(F), the application

‖f‖u = ‖f‖∞ = sup
x∈A

|f(x)| (7.8)

Is a norm in C(A), whereas

‖f‖u = ‖f‖∞ = sup
x∈F

|f(x)| (7.9)

Is a norm in the other three spaces
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Proof. The inclusion of these spaces is obvious, due to the definition of these. For the proof that the
application ‖·‖u is a norm, it’s immediately given from the proof that the application ‖·‖∞ is a norm in
`∞(F), and that ‖·‖u = ‖·‖∞
Remark. Take fn ∈ Cb(F) a sequence of functions. The uniform convergence of this sequence means
that fn → f in the norm ‖·‖u = ‖·‖∞
Proposition 14. If f ∈ C0(F), then f is uniformly continuous

Proof. Let f ∈ C0(F), then
∀ε > 0 ∃l : |x| ≥ l =⇒ |f(x)| < ε

2

Since every continuous function is uniformly continuous in a closed set, then

∀ε > 0 ∃δ : ∀x, y ∈ [−L− 1, L+ 1] ∧ |x− y| < δ =⇒ |f(x)− f(y)| < ε

Hence we can have two cases. We either have |x− y| < δ or x, y ∈ [−L− 1, L+ 1]. Hence we have,
in the first case

|f(x)− f(y)| ≤ |f(x)|+ |f(y)| < ε

Or, in the second case

∀ε > 0 ∃δ > 0 : |x− y| < δ =⇒ |f(x)− f(y)| < ε

Demonstrating our assumption

Cp(F) spaces

Definition 7.1.11. We can define a set of function spaces analogous to the `p(F) spaces. These spaces
are the Cp(F) spaces. We define analogously the p−norm for functions as follows

‖f‖p :=
p

√ˆ
F
|f(x)|p dx (7.10)

Thanks to what said about `p(F) spaces and p−norms, it’s already obvious that these spaces are normed
vector spaces

Remark. Watch out! Cp(F) 6⊂ C0(F), and Cp(F) 6⊂ Cq(F) for 1 ≤ p ≤ q. It’s easy to find counterex-
amples

Proposition 15. If 1 ≤ p ≤ q, then

Cp(F) ∩ Cb(F) ⊂ Cq(F)

Proof. Let f ∈ Cp(F) ∩ Cb(F). Therefore supx∈F |f(x)| < M ∈ F, then
ˆ
F
|f(x)|q dx =

ˆ
F
|f(x)|p|f(x)|q−p dx ≤Mq−p

ˆ
F
|f(x)|p dx ≤ ∞

Therefore f ∈ Cp(F) ∩ Cb(F) =⇒ f ∈ Cq(F)
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§§ 7.1.3 Function Spaces in Rn

Definition 7.1.12 (Seminorm). A seminorm is an application ‖·‖α,β : A −→ F with A a function space
and α, β multiindices, where

‖f‖α,β :=
∥∥xα∂βf∥∥∞ = sup

x∈F

∣∣xα∂βf(x)∣∣ (7.11)

Definition 7.1.13 (Schwartz Space). The space S(Rn) is called the Schwartz space, and it’s defined as
follows

S(Rn) :=
{
f ∈ C∞(Rn)| ‖f‖α,β <∞, α, β multiindices

}
(7.12)

Example 7.1.3. Taken p(x) ∈ R[x] a polynomial, a common example of functions f(x) ∈ S(R) is the
following.

f(x) = p(x)e−a|x|
2n

(7.13)

With a > 0, n ∈ N

Theorem 7.2. A function f ∈ C∞(Rn) is in S(Rn) if ∀β multiindex, ∀a > 0 ∃Cα,β such that∥∥∂βf(x)∥∥ ≤ Cα,β(
1 + ‖x‖2

) a
2

∀x ∈ Rn (7.14)

Proof. Taken n = 1 and f ∈ C∞(R), then

∣∣xj∂kf(x)∣∣ = |x|j
∣∣∂kf(x)∣∣ ≤ Cj,k|x|j

(1 + x2)
j
2

≤ Cj,k ∀x ∈ R

Therefore
‖f‖j,k ≤ Cj,k <∞ =⇒ f ∈ S(R)

Taken f ∈ S(R) we have that, if |x| ≥ 1

(1 + x2)
a
2 ≤ 2

a
2 |x|a

Taken j = dae

∣∣∂kf(x)∣∣ = ∣∣xj∂kf(x)∣∣
|x|j

≤
‖f‖j,k
|x|a

≤
2

a
2 ‖f‖j,k

(1 + x2)
a
2
≤

2
a
2 ‖f‖0,k

(1 + x2)
a
2

|x| < 1

Taken Cj,k = 2
a
2 max ‖f‖dae,k, ‖f‖0,k the assertion is demonstrated

Definition 7.1.14 (Space of Compact Support Function). Given a function with compact support f , we
define the space of compact functions C∞

c (Rn) as the space of all such functions.
We have obviously that C∞

c (Rn) ⊂ S(Rn)

Theorem 7.3. Both C∞
c (Rn) and S(Rn) are dense in (Cp(Rn), ‖·‖p)
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Theorem 7.4 (Other Function Spaces). 1. C(R) Space of continuous functions

2. R[x] Space of real polynomials

3. Ck(R) Space of continuous k−derivable functions

4. Ckc (R) Space of functions f ∈ Ck(R) with compact support

5. C∞(R) Space of infinitely differentiable (smooth) functions

6. C0(R) Space of smooth functions with limx→±∞ f(x) = 0

7. C∞
c (R) Space of smooth functions with compact support

We have the obvious inclusions

`f ⊂ `p ⊂ · · · ⊂ `0 ⊂ RN

Cc(R) ⊂ C0(R) ⊂ · · · ⊂ Cp(R) ⊂ C(R)
R[x] ⊂ C∞(R) ⊂ · · · ⊂ C(R)

C∞
c (R) ⊂ C∞

0 (R) ⊂ C∞(R)

§ 7.2 Hilbert Spaces

Definition 7.2.1 (Hermitian Product). Given V a complex vector space, and an application 〈·, ·〉 : V −→ C
such that ∀u, v, z ∈ V, c, d ∈ C

1. 〈v, v〉 ≥ 0

2. 〈v, v〉 = 0 ⇐⇒ v = 0

3. 〈u, v〉 = 〈v, u〉

4. 〈u+ v, z〉 = 〈u, z〉+ 〈v, z〉

5. 〈cu, dv〉 = cd〈u, v〉

The application 〈·, ·〉 is called an Hermitian product in V, and the couple (V, 〈·, ·〉) is called an
Euclidean space

Remark. It’s usual in physics that for a Hermitian product, we have that

〈cu, v〉 = c〈u, v〉 (7.15)

Definition 7.2.2 (Hilbert Space). Given (V, 〈·, ·〉) an euclidean space. It’s said to be a Hilbert space if
it’s complete

Theorem 7.5 (Cauchy-Schwartz Inequality). Given (V, 〈·, ·〉) a complex euclidean space, then
∀u, v ∈ V

‖〈u, v〉‖2 ≤ 〈u, u〉〈v, v〉 (7.16)
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Proof. Taken t ∈ C, we define p(t) = 〈tu+ v, tu+ v〉. Then by definition of the Hermitian product,
we have

p(t) = ‖t‖2〈u, u〉+ t〈u, v〉+ t〈v, u〉+ 〈v, v〉

Writing 〈u, v〉 = ρeiθ, t = se−iθ we have

p(se−iθ) = s2〈u, u〉+ 2sρ+ 〈v, v〉 ≥ 0 ∀s ∈ R

Then, by definition, we have

ρ2 = ‖〈u, v〉‖2 ≤ 〈u, u〉〈v, v〉

Theorem 7.6 (Induced Norm). Given a Hermitian product 〈·, ·〉 we can define an induced norm
‖·‖ by the definition

‖·‖ =
√

〈·, ·〉 (7.17)

Theorem 7.7. Addition, multiplication by a scalar and the scalar product are continuous in an
euclidean space V, then, given two sequences un −→ u ∈ V, vn → v ∈ V and

un + vn −→ u+ v

c ∈ C =⇒ cun −→ u

〈un, vn〉 −→ 〈u, v〉

Proof. Thanks to Cauchy-Schwartz we have

|〈u, v〉 − 〈un, vn〉| = |〈u, v〉 − 〈u, vn〉+ 〈u, vn〉 − 〈un, vn〉| ≤ |〈u, v〉 − 〈u, vn〉|+ |〈u, vn〉 − 〈un, vn〉| =
= ‖u‖‖v − vn‖+ ‖vn‖‖u− un‖

Since the successions are convergent, we have that ∃M > 0 : ‖vn‖ ≤M ∀n ∈ N, therefore

|〈u, v〉 − 〈un, vn〉| ≤ max{‖u‖,M} (‖v − vn‖+ ‖u− un‖) → 0

Example 7.2.1 (Some Euclidean Spaces). 1) `2(C)
Given x, y ∈ `2(C) we define the scalar product as

〈x, y〉 =
∞∑
i=1

xiyi

2) `2(µ), a weighted sequence space, where

`2(µ) :=

{
x ∈ CN∣∣ ∞∑

i=1

µi|xi|2 <∞, µi ∈ R, µi > 0 ∀i

}
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Given x, y ∈ `2(µ) we define

〈x, y〉 =
∞∑
i=1

µixiyi

3) C2(C) Given f, g ∈ C2(C) we define

〈f, g〉 =
ˆ
R
f(x)g(x)dx

4) C2(C, p(x)dx), weighted function spaces, where

C2(C, p(x)dx) :=
{
f ∈ C(C)|

ˆ
R
f(x)f(x)p(x)dx <∞, p(x) ∈ C(R;R+)

}
Given f, g ∈ C2(C, p(x)dx) we define

〈f, g〉 =
ˆ
R
f(x)g(x)p(x)dx

The spaces C2 aren’t complete therefore they’re not Hilbert spaces. The spaces L2(C) and the
weighted alternative are the completion of such spaces and are therefore Hilbert spaces

Theorem 7.8 (Polarization Identity). Given a complex euclidean space (V, 〈·, ·〉) we have, ∀u, v ∈ V

〈u, v〉 = 1

4

(
‖u+ v‖2 − ‖u− v‖2 + i

(
‖u+ iv‖2‖u− iv‖2

))
(7.18)

Theorem 7.9 (Parallelogram Rule). Let (V, ‖·‖) be a normed vector space. A necessary and
sufficient condition that the norm is induced by a scalar product is that

‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2

)
∀u, v ∈ V (7.19)

§ 7.3 Projections

§§ 7.3.1 Orthogonality

Definition 7.3.1 (Angle). Given a real euclidean space (V, 〈·, ·〉) we define the angle θ = u∠v as follows

θ = arccos

(
〈u, v〉
‖u‖‖v‖

)
(7.20)

Definition 7.3.2 (Orthogonal Complement). Given an euclidean vector space V and two vectors u, v,
we say that the two vectors are orthogonal u ⊥ v if

〈u, v〉 = 0 (7.21)
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If X ⊂ V and ∀x ∈ X we have that
〈u, x〉 = 0

We say that u ∈ X⊥ where this space is called the Orthogonal Complement of X, i.e.

X⊥ := {v ∈ V| 〈v, w〉 = 0 ∀w ∈ X} (7.22)

Theorem 7.10. Given X ⊂ V with V an euclidean space, the set X⊥ is a closed subspace of V

Proof. X⊥ is a subspace, hence ∀v1, v2 ∈ X⊥ and c1, c2 ∈ C we have

〈c1v1 + c2v2, w〉 = c1〈v1, w〉+ c2〈v2, w〉 ∀w ∈ X

Hence c1v1 + c2v2 ∈ X⊥.
Given a sequence (v)n ∈ X⊥ : (v)n −→ v ∈ V we have, given w ∈ X

〈vn, w〉 = 0 ∀n ∈ N

Due to the continuity of the scalar product we have that

lim
n→∞

〈vn, w〉 = 0 = 〈v, w〉

Therefore v ∈ X⊥ and the subspace X⊥ is closed in V

Theorem 7.11. Given X,Y ⊂ V with V an euclidean space, we have

X ⊂ Y =⇒ Y ⊥ ⊂ X⊥

X⊥ = (X)⊥ =
(
span(X)

)⊥
Proof. Taken v ∈ Y ⊥ we have by definition

〈v, y〉 = 0 ∀y ∈ Y

Since X ⊂ Y we have then
〈v, x〉 = 0 ∀x ∈ X

Therefore Y ⊥ ⊂ X⊥.
By definition we have that X ⊂ X ⊂ span(X), and thanks to the previous proof

X⊥ ⊃ (X)⊥ ⊃ (span(X))⊥

Taken w ∈ span(X) we have

w =
∑
i

ciwi wi ∈ X

And given v ∈ X⊥, we get

〈v, w〉 =
∑
i

ci〈v, wi〉 = 0
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Now take w ∈ span(X). Take a sequence (w)n ∈ span(X) such that (w)n −→ w. Thanks to the
continuity of the scalar product we have

〈v, w〉 = 〈v, lim
n→∞

wn〉 = lim
n→∞

〈v, wn〉 = 0

Demonstrating that X⊥ = (span(X))⊥

Lemma 7.3.1. Let V be a Hilbert space. Given W ⊂ V a closed subspace. Given v ∈ V

∃!w0 ∈ W : ∀w ∈ W d = ‖v − w0‖ ≤ ‖v − w‖

Proof. Take d = infw∈W ‖v − w‖. By definition of infimum we have that ∃(w)n ∈ W such that

lim
n→∞

‖v − wn‖ = d

Using the parallelogram rule, we have that

‖wn − wk‖2 = ‖(wn − v) + (v − wk)‖2 = 2‖v − wn‖2 + 2‖v − wk‖2 − 4

∥∥∥∥12(wn + wk)− v

∥∥∥∥2
Since 1/2(wn + wk) ∈ W we have by definition of d∥∥∥∥12 (wn + wk)− v

∥∥∥∥ ≥ d

Therefore, we can rewrite

‖wn − wk‖2 ≤ 2‖v − wn‖2 + 2‖v − wk‖2 − 4d2

Therefore, we have

∀ε > 0 ∃N ∈ N : ∀n, k ≥ N ‖wn − wk‖2 ≤ 4(d+ ε)2 − 4d2

Hence (w)n is a Cauchy sequence. Since by definition V is complete and W ⊂ V is closed, we have
that W is also complete, therefore (w)n → w0 ∈ W and we have

‖v − w0‖ = d

Now suppose that ∃w1, w2 ∈ W such that the previous is true, i.e.

‖v − w1‖ = ‖v − w2‖ ≤ ‖v − w‖ ∀w ∈ W

Taken w3 = 1/2(w1 + w2) we have

‖v − w3‖2 = ‖v − w1‖2 −
1

4
‖w2 − w1‖2

Taken d = ‖v − w1‖ = ‖v − w2‖, z1 = v − w3 and z2 = 1/2(w1 − w2) we get

‖z1 + z2‖2 + ‖z1 − z2‖2 = 2
(
‖z1‖2 + ‖z2‖2

)
And therefore

d2 =
1

2

(
‖v − w1‖2 + ‖v − w2‖2

)
= ‖v − w3‖2 +

1

4
‖w1 − w2‖2

I.e. if w1 6= w2, w3 is the infimum between v ∈ V and W  
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§§ 7.3.2 Projections and Orthogonal Projections

Theorem 7.12 (Projection). Given W ⊂ V closed subspace of a Hilbert space, we have

v = w + z ∀v ∈ V, w ∈ W, z ∈ W⊥

Proof. Given v ∈ V, due to the previous lemma we have that ∃!w ∈ W such that

d = ‖v − w‖ ≤ ‖v − w′‖ ∀w′ ∈ W

Taken z = v − w, and an element x ∈ W , define the vector w + tx with t ∈ C. Since W is a subspace
w + tx ∈ W and ∀t ∈ C we have

d2 ≤ ‖v − (w + tx)‖2 = ‖v − w‖2 − t〈v − w, x,−〉t〈x, v − w〉+ ‖t‖2‖x‖2

Writing 〈x, v − w〉 = ‖〈x, v − w〉‖eiθ and t = se−iθ with s ∈ R we have

−2s‖〈v − w, x〉‖+ s2‖x‖2 ≥ 0 ∀s ∈ R

Which implies
〈v − w, x〉 = 0 =⇒ z = v − w ∈ W⊥

Therefore there exists a representation v = w + z with w ∈ W, z ∈ W⊥ Now, we suppose that
v = w′ + z′, then

0 = (w − w′) + (z − z′)

Therefore
0 = ‖(w − w′) + (z − z′)‖2 = ‖w − w′‖+ ‖z − z′‖2

Therefore the representation is unique.

Theorem 7.13. If W ⊂ V with V a Hilbert space, we have(
W⊥)⊥ = W

If W is closed (
W⊥)⊥ = W

Proof. Taken w ∈ W we have that w ⊥ v with v ∈ W⊥, therefore w ∈ (W⊥)⊥. Therefore

W ⊂
(
W⊥)⊥

Since the space on the right is closed, we have

W = (W⊥)
⊥
=
(
W⊥)⊥

Now taken w ∈
(
W⊥)⊥, since W is a closed subspace by definition, we can write

w = v + z v ∈ W, z ∈ W⊥
= W⊥

We have w ⊥ z, and therefore

‖z‖2 = 〈z, w − v〉 = 0 =⇒ w = v ∈ W
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Definition 7.3.3 (Orthogonal Projection). Given a closed subspace W ⊂ V we can define an operator
π̂W : V −→ W such that

π̂Wv = w ⇐⇒ w ∈ W, v − w ∈ W⊥ (7.23)

π̂W is linear and called a orthogonal projection

Theorem 7.14. Given W ⊂ V a closed subspace of the Hilbert space V , then given an orthogonal
projection π̂W : V −→ W we have, ∀v, z ∈ V and another closed subspace Z ⊂ V

1. π̂2
W = π̂W

2. 〈π̂Wv, z〉 = 〈v, π̂Wz〉 ≥ 0

3. If Z ⊆ W⊥ π̂W ◦ π̂Z = π̂Z ◦ π̂W = 0

4. If Z ⊂ W π̂W ◦ π̂Z = π̂Z ◦ π̂W = π̂W

Definition 7.3.4 (Direct Sum). An euclidean space V is called the direct sum of closed subspaces
Vi ⊂ V and it’s indicated as follows

V = V1 ⊕ V2 ⊕ · · · =
∞⊕
k=1

Vk (7.24)

If

1. The spaces Vk are orthogonal in couples

2. ∀v ∈ V v =
∑∞
k=1 vk with vk ∈ Vk

Corollary 7.3.1. Given a Hilbert space V and a closed subspace W, then

V = W ⊕W⊥ (7.25)

§§ 7.3.3 Orthogonal Systems and Bases

Definition 7.3.5 (Orthogonal System). A set of vectors X ⊂ V X 6= {} is said to be an orthogonal
system if ∀u, v ∈ X, u 6= v u ⊥ v.

Definition 7.3.6 (Orthonormal System). Given an orthogonal system X ⊂ V such that ∀u ∈ X we
have ‖u‖ = 1, the system X is called an orthonormal system

Theorem 7.15. Given an orthogonal system X ⊂ V with (V, 〈·, ·〉) an euclidean space, then we
have that X is a system of linearly independent vectors

Definition 7.3.7 (Basis). Given an orthogonal and complete set of vectors (v)α in an euclidean space V
it’s said to be an orthogonal basis of V . If it’s an orthonormal and complete set of vectors it’s said to
be an orthonormal basis of V
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Lemma 7.3.2. Given an orthogonal system (v)nk=1 ∈ V and let u ∈ V an arbitrary vector. Then given
z ∈ V as follows

z := u−
n∑
k=1

〈u, vk〉
‖vk‖2

vk

We have that z ⊥ vi ∀1 ≤ i ≤ n and therefore z ⊥ span {v1, · · · , vn}

Proof. ∀i = 1, · · · , n it’s obvious that 〈z, vi〉 = 0, therefore

z ∈ {v1, · · · , vn}⊥

Therefore

z ∈ {v1, · · · , vn}⊥ = span {v1, · · · , vn}
⊥
= span {v1, · · · , vn}⊥

Theorem 7.16 (Gram-Schmidt Orthonormalization). Given V an euclidean space and (v)n∈N ∈ V a
set of linearly independent vectors. Then ∃(u)n∈N ∈ V orthonormal system such that

1. un is a linear combination of vi ∀0 ≤ i ≤ n, i.e.

un =

n∑
k=1

ankvk ann 6= 0

2. vn can be written as follows

vn =

n∑
k=1

bnkuk bnn 6= 0

Therefore, ∀n ∈ N we have that

span {v1, · · · , vn} = span {u1, · · · , un}

Proof. Defining

wn = vn −
n−1∑
k=1

〈vn, vk〉
‖wk‖2

wk un =
wn
‖wn‖

We can say immediately that ∀n ≥ 1 wn ∈ {w1, · · · , wn−1}⊥. By induction we can say that it holds
∀(w)n∈N, therefore (w)n is an orthogonal system and (u)n∈N is an orthonormal system
We can also say that

vn = wn +

k−1∑
j=1

βnjwj

I.e. ∀n ≥ 1 wn is a linear combination of {v1, · · · , vn}, therefore, by definition

span {v1, · · · , vn} = span {w1, · · · , wn} = span {u1, · · · , un}
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Example 7.3.1. 1) Legendre Polynomials
Using the Gram-Schmidt orthonormalization procedure, we can find an orthonormal system {p0, · · · , pn} ⊂
C2[−1, 1] starting from the following system

(v)n :=
{
1, x, x2, x3, x4, · · · , xn

}
The final result will be called the Legendre Polynomials We begin by taking the canonical scalar
product in C2[−1, 1] as follows

〈f, g〉 =
ˆ 1

−1

f(x)g(x)dx

And using that ˆ 1

−1

xn dx =


2

n+ 1
n = 2k ∈ N

0 n = 2k ∈ N
Therefore, we have that

w0 = 1 ‖w0‖2 =

ˆ 1

−1

dx = 2

w1 = x− 1

2

ˆ 1

−1

xdx = x ‖w1‖2 =
−1

1
x2 dx =

2

3

w2 = x2 − 1

3
‖w2‖2 =

ˆ 1

−1

(
x2

1

3

)2

dx =
8

45

...

Normalizing, we find

p0 =
1√
2

p1(x) =

√
3

2
x

p2(x) =

√
45

8

(
x2 − 1

3

)
=

1

2

√
5

2

(
3x2 − 1

)
...

And so on. The set (p)n is called the set of Legendre polynomials 2) Hermite Polynomials

Using the same procedure, we can find the Hermite polynomials Hn(x) in the space C2(R, e−x
2

dx).
The first 5 are the following

H1 = 1

H2(x) = x

H3(x) = x2 − 1

2

H4(x) = x3 − 3

2
x

H5(x) = x4 − 3x2 +
3

4
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Theorem 7.17 (Existence of an Orthonormal Basis). Given a separable or complete euclidean
space V, there always exists an orthonormal basis

Proof. Taken V a separable euclidean space and (v)n∈N a dense subset of V.
Removing the linearly independent elements of this subset, we can call the new linearly independent
set (w)n∈N. We have obviously

span {(w)∞n=1} = span {(v)∞n=1}

span {(w)∞n=1} = span {(v)∞n=1} = V

Orthonormalizing the system (w)n∈N with the Gram-Schmidt procedure I obtain then a new set (u)n∈N
such that

span {(u)n∈N} = span {(w)n∈N} = V

(u)n∈N is complete and therefore a basis.

Remark. If V is a complete euclidean space but not separable, we can find thanks to Zorn’s lemma a
maximal orthonormal basis, but

1. There isn’t a standard procedure for finding this basis

2. Taken the basis (u)α∈I it can’t be numerable. If it was then V = span {(u)α}. Taken X =
spanQ {(u)k} as the set of finite linear combinations with rational coefficients, we have that

X = span {(u)k} and therefore X = V contradicting the fact that V is not separable



8 Distributions

§ 8.1 Linear Functionals

§§ 8.1.1 Dual Spaces and Functionals

Definition 8.1.1 (Dual Space II). Given (V, ‖·‖) a normed vector space over a field F, we define the
following set

V? := {f : V −→ F| v 7→ f(v)}

An element f ∈ V? is called a continuous linear functional, with the following properties, ∀f, g ∈
V?, u, v ∈ V, λ, λ1, λ ∈ F

f(λ1u+ λ2v) = λ1f(u) + λ2f(v)

(f + g)(u) = f(u) + g(v)

(λf)(u) = f(λu) = λf(u)

(8.1)

With these properties the set V? has a vector space structure, and it’s called the dual space

Definition 8.1.2 (Bounded Linear Functional). Given f ∈ V?, we call f a bounded linear functional
if, ∀x ∈ V

sup
‖x‖≤1

|f(x)| <∞ (8.2)

Definition 8.1.3 (Dual Norm). Given a normed vector space (V, ‖·‖) we can give a structure of normed
vector space to its dual with the couple (V?, ‖·‖?), where the application ‖·‖? is called the dual norm

‖·‖? : V
? −→ F

The dual norm is defined in two ways. ∀f ∈ V?, v ∈ V

‖f‖?1 = sup
v 6=0

|f(v)|
‖v‖

(8.3a)

‖f‖?2 = sup
‖v‖≤1

|f(x)| (8.3b)

Where f ∈ V? is a bounded linear functional.

131
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Theorem 8.1. For a bounded linear functional f ∈ V? the two definitions of the dual norm
coincide, i.e.

‖f‖?1 = ‖f‖?2 = ‖f‖?
And we can define the following inequality

|f(v)| ≤ ‖f‖?‖v‖ ∀v ∈ V (8.4)

Proof. Since f ∈ V? is bounded we have that both norms exist and must be finite. We can therefore
write, thanks to the homogeneity of f , taken v ∈ V

‖f‖?1 = sup
v 6=0

∣∣∣∣f ( v

‖v‖

)∣∣∣∣ = sup
‖v‖=1

|f(v)| ≤ sup
‖v‖≤1

|f(v)| = ‖f‖?2

I.e. ‖f‖?1 ≤ ‖f‖?2 , analogously

‖f‖?2 = sup
‖v‖≤1

|f(v)| ≤ sup
0<‖v‖≤1

|f(v)|
‖v‖

≤ sup
v 6=0

|f(v)|
‖v‖

= ‖f‖?2

I.e. ‖f‖?1 ≥ ‖f‖?2 , therefore we have

‖f‖?1 = ‖f‖?2 = ‖f‖?

The inequality is obvious taken the definition of supremum

Theorem 8.2. Given f ∈ V? with V normed vector space, we have that the following assump-
tions are equivalent

1. f is continuous

2. f is continuous at the origin

3. f is bounded

Proof. 1) =⇒ 2)
Since f ∈ V? is linear by definition, we have that it’s also continuous and injective, therefore

lim
v→0

f(v) = f(0) = 0

2) =⇒ 3)
Since f is continuous at the origin, we have by definition of continuity and limit

∀ε > 0 ∃δ > 0 : ‖x‖ < δ =⇒ |f(x)| < ε x ∈ V

Taken u = δx ∈ V, we have ‖u‖ = |δ|‖x‖ and

|f(x)| =
∣∣∣f (u

δ

)∣∣∣ = 1

δ
|f(u)| ≤ ε
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Therefore, if ‖x‖ ≤ 1 we have that |f(u)| ≤ δε, therefore

|f(u)| ≤ ‖f‖?‖u‖ =⇒ ‖f‖?‖x‖ ≤ ‖f‖? ≤ ε

3) =⇒ 1) By definition of continuity and boundedness we have

∀v, w ∈ V,∀ε > 0 ∃δ > 0 : ‖u− w‖ < δ =⇒ |f(u)− f(w)| < ε

Through the linearity of f we have

|f(u)− f(w)| = |f(u− w)| ≤ ‖f‖?‖u− w‖ ≤ δ‖f‖?

Taken δ = ε‖f‖−1
? , we have

|f(u)− f(v)| ≤ δ‖f‖? = ε

Corollary 8.1.1. Given f ∈ V?, we have that, given C ∈ F a constant

‖f‖? = C ⇐⇒

{
∀x ∈ V |f(x)| ≤ C‖x‖
∀ε > 0 ∃x ∈ V : |f(x)| ≥ (C − ε)‖x‖

Proof. We have, by definition of ‖f‖?

‖f‖? = sup
‖x‖≤1

|f(x)| ≤ sup
‖x‖≤1

|c‖x‖| = C

In the second case, supposing ‖f‖? < C and taken ε = 1/2(C − ‖f‖?)

∃x ∈ V : |f(x)| ≥ (C − ‖f‖?)‖x‖  

Definition 8.1.4 (Kernel). Given a linear functional f ∈ V? we define the kernel of f as the set of
zeros of f , i.e.

ker f = {v ∈ V| f(v) = 0} (8.5)

Theorem 8.3 (Riesz Representation Theorem). Given (V, 〈·, ·〉) a Hilbert space, we can uniquely
define its dual V? through the isomorphism φv : V

∼−→ F defined as follows

∀u, v ∈ V φv(u) = 〈u, v〉

I.e. v 7→ 〈·, v〉.
This isomorphism has the following properties

1) ∀v ∈ V φv ∈ V?, ‖φv‖? = ‖v‖
2) ∀c1, c2 ∈ F, v1, v2 ∈ V φc1v1+c2v2 = c1φv1 + c2φv2
3) f ∈ V? =⇒ ∃v ∈ V : f = φv

(8.6)
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Proof. Taken w, v, z ∈ V and c, s ∈ F we have by definition

φv(w + z) = 〈w + z, v〉 = 〈w, v〉+ 〈z, v〉 = φv(w) + φv(z)

φv(cw) = 〈cw, v〉 = c〈w, v〉 = cφv(w)

φcw+sz(v) = 〈v, cw + sz〉 = c〈v, w〉+ s〈v, z〉 = cφw(v) + sφz(v)

We also have, thanks to Cauchy-Schwartz

|φv(z)| = |〈z, v〉| ≤ ‖z‖‖v‖

|φv(v)| = |〈v, v〉| ≤ ‖v‖2 ∴ ‖φv‖? = ‖v‖

For the last one we take f ∈ V?. If ker f = V we have by definition that

f(v) = 0 ∀v ∈ V ∴ f = 0

Taken v = 0 we then have

φ0(v) = 〈0, v〉 = 0 = f(v) ∀v ∈ V

Supposing now ker f 6= V there must be w ∈ ker f⊥ : w 6= 0. Taken u ∈ V we can write

u = u1 +
f(u)

f(w)
w = u− f(u)

f(w)
w +

f(u)

f(w)
w

Therefore, through the linearity of f

f(u1) = f

(
u− f(u)

f(w)
w

)
= f(u)− f(w) = f(u− v) = 0 ∴ u1 ∈ ker f

Since w ∈ ker f⊥, we have that

〈u1, w〉 = 0

By definition of φv, then

φv(u) = 〈v, u1〉+ 〈v, f(u)
f(w)

w〉 = 〈 f(w)
‖w‖2

w, u1〉+ 〈 f(w)
‖w‖2

w,
f(u)

f(w)
w〉

Then

φv(u) =
f(w)

‖w‖2
〈w, u1〉+

f(w)

‖w‖2
f(u)

f(w)
〈w,w〉 = f(u)

Therefore

φv(u) = f(u) ∀f ∈ V?, ∀u ∈ V
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§ 8.2 Distributions

§§ 8.2.1 Local Integrability

Definition 8.2.1 (Weak Convergence). Given a normed vector space (V, ‖·‖), a sequence (v)k∈N ∈ V
is said to be weakly convergent to v ∈ V and it’s indicated as vk⇀w v if

∀f ∈ V? lim
k→∞

f(vk) = f(v)

Theorem 8.4. Given a normed vector space V and a sequence (v)k∈N ∈ V such that vk → v ∈ V
(i.e. converges strongly), we have that

vk → v =⇒ vk⇀w v

Proof. Given vk → v, we have by definition that

vk → v ⇐⇒ lim
k→∞

‖vk − v‖ = 0

Now, writing the definition of weak convergence and applying the linearity of the limit

vk⇀w v ⇐⇒ ∀f ∈ V? lim
k→∞

(f(vk)− f(v)) = 0

Therefore

∀f ∈ V? lim
k→∞

(f(vk − v)) ≤ ‖f‖? lim
k→∞

‖vk − v‖

Therefore we have that, since f is bounded

∃C ∈ F : lim
k→∞

(f(vk − v)) ≤ C lim
k→∞

‖vk − v‖ ∀f ∈ V?

And therefore

vk → v =⇒ vk⇀w v

Remark. The opposite isn’t necessarily true.

Proof. Take (V, ‖·‖) = (`2, ‖·‖2) and take the standard sequence (ei)j where

(ei)j = (0, 0, · · · , 0, (1)j︸︷︷︸
i−th

, 0, · · · )

And (1)j is the identity sequence.
We have that (ei)j 6→ (a)i since

‖(ei)j − (ei)k‖2 =
√
2 ∀j 6= k
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Now, considering that (`2, ‖·‖2) is a Hilbert space, we have that, due to Riesz representation theorem

∀f ∈ `2? f = 〈·, a〉 = φa a ∈ `2

Therefore

f(eij) = 〈eij , ai〉 =
∞∑
i=1

aieij = aj → 0

Therefore
∀(a)j ∈ `2 ∀f ∈ `2? lim

j→∞
f(eij) = 0

Hence, by definition eij⇀w 0

Definition 8.2.2 (Isolated Singularities II). Given a function f : R −→ C, it’s said to have isolated
singularities if

Sf :=

{
x ∈ R| lim

y→x
f(y) 6= f(x)

}
Doesn’t have accumulation points, i.e. if |Sf | <∞

Definition 8.2.3 (Piecewise Continuity). A function f : [a, b] ⊂ R −→ C is said to be piecewise
continuous if

1. Sf 6= {} and |Sf | <∞

2. ∀u ∈ Sf
∃ lim
x→u+

f(x) = f(u+)

∃ lim
x→u−

f(x) = f(u−)
(8.7)

3.
∃ lim
x→a+

f(x) = f(a+)

∃ lim
x→b−

f(x) = f(b−)
(8.8)

Definition 8.2.4 (Jump). Given a piecewise continuous function f we define the jump of the function
at a discontinuity x ∈ Sf as follows

∆f(x) = f(x+)− f(x−)

Definition 8.2.5 (Piecewise Differentiability). A piecewise continuous function f : [a, b] −→ C is said to
be piecewise differentiable if and only if

1. f is piecewise continuous in [a, b]

2. f ′ is piecewise continuous in [a, b]

Definition 8.2.6 (Local Integrability). A function f : R −→ C is said to be locally integrable if
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1. Sf 6= {} and |Sf | <∞

2. ∀a, b ∈ R, a < b we have that ˆ b

a

|f(x)|dx <∞

The set of locally integrable functions forms a subspace of L1(R) and it’s indicated as L1
loc(R)

Theorem 8.5. Let f : R −→ C be a piecewise continuous function, then f ∈ L1
loc(R)

Proof. Take f(x) a piecewise continuous function, then ∀a, b ∈ R ∃(u)0≤k≤n ∈ R : u0 = a, un = b

for which we have f ∈ C((uk−1, uk)) ∀0 ≤ k ≤ n. I can therefore define f̃k : [uk−1, uk] −→ C, where

f̃k(x) =


f(x) x ∈ (uk−1, uk)

f(u+k−1) x = uk−1

f(u−k ) x = uk

We have that

f(x) =

∞∑
k=0

f̃k(x)

And therefore ˆ b

a

|f(x)|dx =

n∑
k=0

ˆ uk

uk−1

|f(x)|dx =

n∑
k=0

ˆ uk

uk−1

∣∣∣f̃k(x)∣∣∣dx
Therefore f(x) ∈ L1

loc(R) and the theorem is proved

Theorem 8.6 (Integration by Parts in L1
loc(R)). Let f, g ∈ L1

loc([a, b]), then indicating the evaluation
of a function at two points as [f(x)]wz we have

[fg]b
−

a+ =

ˆ b

a

(f ′(x)g(x) + f(x)g′(x))dx+

+
∑

x∈Sf∪Sg

(
f(x−)∆g(x) + g(x−)∆f(x) + ∆f(x)∆g(x)

) (8.9)

Proof. Take H : [a, b] −→ C, then for the fundamental theorem of calculus

H(b−)−H(a+) =

ˆ b

a

dH

dx
dx+

∑
x∈SH

∆H(x)

Taken H(x) = f(x)g(x) we have

∆(fg)(x) = f(x+)g(x+)− f(x−)g(x−)

With some manipulation we have

∆(fg)(x) = f(x+)g(x+)− f(x+)g(x−) + f(x+)g(x−)− f(x−)g(x−) = f(x+)∆g(x) + g(x−)∆f(x) =

=
(
f(x−) + ∆f(x)

)
∆g(x) + g(x−)∆f(x) = f(x−)∆g(x) + g(x−)∆f(x) + ∆f(x)∆g(x)
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Therefore

(fg)(b−)− (fg)(a+) =

ˆ b

a

(fg)′(x)dx+
∑

x∈Sf∪Sg

(
f(x−)∆g(x) + g(x−)∆f(x) + ∆f(x)∆g(x)

)

§§ 8.2.2 Regular and Singular Distributions

Definition 8.2.7 (Test Functions). A function f : R −→ C is said to be a test function if supp{f} is
compact and f ∈ C∞(R), i.e. f ∈ C∞

c (R)
This space is usually denoted as follows C∞

c (R) = K

Definition 8.2.8 (K-convergence). Given a sequence (f)n∈N ∈ K, it’s said to be K−convergent if

1. ∃I ⊂ R : ∀x ∈ Ic fn(x) = 0

2. ∀k ∈ N f
(k)
n (x) ⇒ f (n)(x)

Then, it’s indicated as fn⇀K f

Definition 8.2.9 (Distribution). A distribution is a continuous linear functional ϕ : K −→ C, i.e.

∀(f)n ∈ K, fn⇀K f =⇒ ϕ(fn) = ϕ(f)

By definition of dual space, we have that ϕ ∈ K?

Theorem 8.7. Given g ∈ L1
loc(R) and ϕg : K −→ C, if we have

ϕg(f) =

ˆ
R
g(x)f(x)dx ∀f ∈ K

Then ϕg ∈ K?

Proof. Using the fact that f ∈ K we can immediately say that |f(x)| ≤M ∀x ∈ [−a, a] ⊂ R, therefore
ˆ
R
|g(x)f(x|)dx =

ˆ a

−a
|g(x)f(x)|dx ≤M

ˆ a

−a
|g(x)|dx <∞

Alternatively, using the defintion of integral we can say that

ϕg(αf + βh) = αϕg(f) + βϕg(h) ∀α, β ∈ C, ∀f, h ∈ K

We only need to show that this application is K−continuous. I take fn⇀K f , with fn ∈ K.
It’s obvious that fn ⇒ f , and using the linearity and that g ∈ L1

loc(R), calling A = ‖g‖, we have

|ϕg(f)− ϕg(fn)| ≤ A‖f − fn‖u → 0

Therefore ϕg(fn) → ϕg(f) ∀fn ∈ K, fn⇀K f
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Definition 8.2.10 (Regular Distribution). A distribution f ∈ K? is said to be regular if ∃g ∈ L1
loc(R)

such that

f = 〈·, g〉 = ϕg

I.e.

f(h) = ϕg(h) = 〈h, g〉 =
ˆ
R
h(x)g(x)dx

Definition 8.2.11 (Ceiling and Floor Functions). We define the ceiling function d·e : R −→ Z and the
floor functions b·c : R −→ Z as follows

bxc = max {m ∈ Z|m ≤ x}
dxe = min {n ∈ Z| n ≥ x}

(8.10)

Definition 8.2.12 (Heaviside Function). We define the Heaviside function as a function H : R −→ R
as follows

H(x) =

{
1 x ≥ 0

0 x < 0

It’s obviously piecewise continuous and therefore H ∈ L1
loc(R)

A secondary definition is the one that follows H̃ : R −→ R

H̃(x) =

{
1 x > 0

0 x ≤ 0

Example 8.2.1 (Floor and Ceiling Distributions). Since both the floor and ceiling distributions are locally
integrable, we can build a regular distribution ϕ ∈ K? as follows

ϕbxc(f) =

ˆ
R
f(x)bxcdx =

∑
k∈Z

ˆ k+1

k

kf(x)dx

ϕdxe(f) =

ˆ
R
f(x)dxedx =

∑
k∈Z

ˆ k+1

k

(k + 1)f(x)dx

Example 8.2.2 (Theta Distribution). Given H ∈ L1
loc(R) we can define the associated theta distribu-

tion ϕH = ϑ ∈ K, as follows

ϑ(f) =

ˆ
R
f(x)H(x)dx =

ˆ
R+

f(x)dx

It’s already obvious that ϕH̃ = ϕH , but it’s better to formalize it in the following theorem

Theorem 8.8. Let f, g ∈ L1
loc(R) such that {x ∈ R| f(x) 6= g(x)} = {u1, · · · , un}. Then we have

ϕg = ϕf ∈ K?
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Proof. We have by Riesz theorem that

ϕg(f) =

ˆ
R
g(x)f(x)dx =

ˆ u1

−∞
f(x)g(x)dx+

n−1∑
k=2

ˆ uk+1

uk

f(x)g(x) +

ˆ ∞

un

f(x)dx

But, since f(x) = g(x), ∀x ∈ (uk, uk+1) we have

ˆ
R
f(x)g(x)dx =

ˆ u1

−∞
f(x)g(x)dx+

n−1∑
k=2

ˆ uk+1

uk

f(x)g(x)dx+

ˆ ∞

un

f(x)g(x)dx =

=

ˆ u1

−∞
f(x)h(x)dx+

n−1∑
k=2

ˆ uk+1

uk

f(x)h(x)dx+

ˆ ∞

un

f(x)h(x)dx =

ˆ
R
f(x)h(x)dx

Therefore

ϕg = ϕh

Definition 8.2.13 (Singular Distribution). A singular distribution is a distribution f ∈ K? for which,
given g ∈ L1

loc(R), f 6= ϕg, where

ϕg(h) =

ˆ
R
h(x)g(x)dx

Definition 8.2.14 (Dirac Delta Distribution). An example of singular distribution is the Dirac delta
distribution δa ∈ K?. This distribution is defined as follows

δa(f) = f(a) ∀f ∈ K, a ∈ R

Theorem 8.9. Given the Dirac delta distribution δa, @δ(x) ∈ L1
loc(R) such that (taken a = 0

without loss of generality)

δ0(f) =

ˆ
R
f(x)δ(x)dx

Proof. Let’s say that ∃δ(x) ∈ L1
loc(R), therefore, we could define δ0 = 〈·, δ(x)〉. This function therefore

must have these properties

δ(x) 6= 0 ⇐⇒ x = 0, x ∈ Sδ

But, since for b ∈ R, b 6= 0, we have that δ(x) → δ(b) continuously, i.e. δ(b) = A > 0, therefore

∃ε > 0 : δ(x) ≥ A

2
∀x ∈ [b− ε, b+ ε]

But, then ∃f ∈ K such that f(x) → f(b) continuously, f > 0, f(b) = 1. Taken ε < b we can say

∃ε̃ ∈ (0, ε) : f(x) ≥ 1

2
∀x ∈ [b− ε′, b+ ε′]
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Therefore, we have that
ˆ
R
f(x)δ(x)dx =

ˆ ε

−ε
f(x)δ(x)dx ≥

ˆ ε

−ε

A

2

1

2
dx =

ε′A

2

But, by definition f(0) = 0, therefore
ˆ
R
f(x)δ(x)dx = 0 =⇒ ϕδ(f) = ϕ0(f)  

Therefore, the distribution δ0 6= 〈·, δ(x)〉

Notation (Common Abuse of Notation). A common abuse of notation in the usage of the Dirac delta
distribution, is supposing that it’s writable like a regular distribution, i.e. supposing that ∃δ(x) ∈ L1

loc(R),
the “Dirac delta function” such that

δa(f) =

ˆ
R
f(x)δ(x− a)dx = f(a) ∀f ∈ K

This is obtainable only if the “delta function” is defined as follows

δ(x) =

{
+∞ x = 0

0 x 6= 0
(8.11)

Note that

δ0(1) =

ˆ
R
δ(x)dx = 1

Theorem 8.10. Given gn ∈ L1
loc(R) such that gn ∈ C[−an, an] with an → 0, an > 0 ∀n ∈ N, we

have that, if ˆ
R
gn(x)dx = 1

Then
lim
n→∞

ϕgn(f) = δ0(f)

Proof. We use the definition of limit, therefore we have∣∣∣∣ˆ
R
f(x)gn(x)dx− δ0(f)

∣∣∣∣ ≤ ˆ an

−an
|f(x)− f(0)|gn(x)dx

Using that the integral over the real axis of gn is unitary∣∣∣∣ˆ
R
f(x)gn(x)dx− δ0(f)

∣∣∣∣ ≤ sup
|x|≤an

|f(x)− f(0)| → 0

Therefore
lim
n→∞

ϕgn(f) = δ0(f)
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Corollary 8.2.1. Given g ∈ C1(R) a non-negative function g ≥ 0 such thatˆ
R
g(x)dx = 1

Then, if we put gn(x) = ng(nx) we have that

lim
n→∞

ϕgn(f) = δ0(f)

Proof. As before, we use the definition, and therefore we have∣∣∣∣ˆ
R
f(x)gn(x)dx− δ0(f)

∣∣∣∣ ≤ ˆ
R
|f(x)− f(0)|gn(x)dx = n

ˆ
R
|f(x)− f(0)|g(nx)dx

Using the substitution u = nx we therefore getˆ
R
|f(x)− f(0)|g(nx)ndx =

ˆ
R

∣∣∣f (u
n

)
− f(0)

∣∣∣g(u)du
But, by definition of g(x), we have that ∃L > 0 : ∃ε > 0 for which

1− ε ≤
ˆ L

−L
g(u)du ≤ 1 ∧

ˆ
|u|≥L

g(u)du ≤ ε

And thereforeˆ
R

∣∣∣f (u
n

)
− f(0)

∣∣∣g(u)du =

ˆ L

−L

∣∣∣f (u
n

)
− f(0)

∣∣∣g(u)du+

ˆ
|u|≥L

∣∣∣f (u
n

)
− f(0)

∣∣∣g(u)du
By using the properties of the integral, we know thatˆ

R

∣∣∣f (u
n

)
− f(0)

∣∣∣g(u)du ≤ sup
x≤L

n

|f(x)− f(0)|+ ε

(
sup
u∈R

∣∣∣f (u
n

)∣∣∣− |f(0)|
)

Since f(x) → f(0) continuously, due to the fact that f ∈ K, we have thatˆ
R
|f(x)− f(0)|g(nx)ndx ≤ 2ε‖f‖u

Therefore

lim
n→∞

∣∣∣∣ˆ
R
f(x)gn(x)dx− δ0(f)

∣∣∣∣ = 0

Definition 8.2.15 (PV (x−n)−Distribution). Taken n > 0, n ∈ N, we have that x−n /∈ L1
loc(x) and

therefore there is no associated distribution ϕx−n ∈ K?.
A useful thing we could do is utilizing the definition of the Cauchy principal value of the function.
Therefore, we define the following singular distribution

PV

(
1

xn

)
[f ] = lim

a→∞

ˆ a

−a

1

xn

(
f(x)−

n−1∑
k=0

f (k)(0)

k!
xk

)
dx (8.12)
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Theorem 8.11. The application PV(x−n) : K −→ R defined as before is a distribution, hence
PV(x−n) ∈ K?

Proof. We already know that this distribution is linear, since ∀f, g ∈ K, ∀c, d ∈ R

PV

(
1

xn

)
[cf + dg] = lim

a→∞

ˆ a

−a

1

xn

(
cf(x) + dg(x) +

n−1∑
k=0

1

k!

(
cf (k)(0) + dg(k)(0)

)
xk

)
dx =

= c PV

(
1

xn

)
[f ] + d PV

(
1

xn

)
[g]

Secondly we must show that the integral is well defined.
Let f ∈ K, then

InR(f) =

ˆ R

−R

1

xn

(
f(x)−

n−1∑
k=0

1

k!
f (k)(0)xk

)
dx, n ∈ N, R > 0

Using the Lagrange formulation for the remainder of the McLaurin expansion, we have

Rn−1(x) = f(x)−
n−1∑
k=0

f (k)(0)

k!
xk = xnrn−1(x)

And therefore we have

InR(x) =

ˆ R

−R
rn−1(x)dx

Since rn−1(x) ∈ C∞(R) (it’s a polynomial) and supp f ⊂ [−b, b] for some b ∈ R, b > 0, we have that
for R > b

InR(f) = Inb (f)−
n−1∑
k=0

f (k)(0)

k!

ˆ
b≤|x|≤R

1

xn−k
dx

The last integral evaluates to

ˆ
b≤|x|≤R

1

xn−k
dx =


2

n− k − 1

[
1

bn−k−1
− 1

Rn−k−1

]
n− k mod 2 = 0, n− k > 2

0 else

Therefore, introducing the following dummy index j = n− k where j mod 2 = 0, we have

PV

(
1

xn

)
(f) = Inb (f)−

n−1∑
j=0

f (j)(0)

j!

2

(j − 1)bj−1

Therefore the integral defining the distribution is well defined.
Lastly we need to prove that PV(x−n)(fn)⇀K PV(x−n)(f), ∀(f)n ∈ K : fn → f , i.e. that it’s a
continuous functional.
Going back to the previous definition we have that

rn−1(x) =
Rn−1(x)

xn
=

1

xn
dn−1f

dxn−1
(ξ(x)) ξ(x) ∈ (0, x)
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Therefore

|InR(f)| ≤ 2 sup
x∈[−R,R]

|rn−1(x)| ≤
2R

n!
‖f‖u

Which means ∣∣∣∣PV( 1

xn

)
(f)

∣∣∣∣ ≤ 2b

n!

∥∥∥f (n)∥∥∥
u
+

n−1∑
j=0

∣∣f (j)(0)∣∣
j!

2

(j − 1)bj−1

Taken b1 = max {b, 1} we have that supp f ⊂ [−b1, b1] and whenever j − 1 > 1, b1 ≥ 1

2

(j − 1)bj−1
1

≤ 2

Therefore, finally ∣∣∣∣PV( 1

xn

)
(f)

∣∣∣∣ ≤ 2

n!
max {b, 1}

∥∥∥f (n)∥∥∥
u
+ 2

n−1∑
j=0

∣∣f (j)(0)∣∣
j!

Now, defined fj ∈ K and hj(x) = f(x)− fj(x) with fj → f we have that supphj ⊂ [−b, b], ∀j ∈ N.
By definition we have that hj ⇒ 0 and h

(n)
j ⇒ 0 ∀n ∈ N

PV

(
1

xn

)
(hj) ≤

2

n!
max {b, 1}

∥∥∥h(n)j

∥∥∥
u
+ 2

n−1∑
j=0

∣∣∣h(j)j (0)
∣∣∣

j!

This means

∀k ∈ N,∀ε > 0, ∃NR ∈ N : ∀k ≥ Nj

∣∣∣h(k)j (x)
∣∣∣ ≤ ε

2(b+ 1 + ε)

Chosen N = max0≤k≤n−1Nk we have that ∀j ≥ N

∣∣∣∣PV( 1

xn

)
(hj)

∣∣∣∣ ≤ 2ε

2(b+ 1 + ε)

max {b, 1}+
n−1∑
j=0

1

j!

 ≤ ε→ 0

Therefore, PV(x−n) ∈ K?

§§ 8.2.3 Operations with Distributions

Definition 8.2.16 (Weak Derivative). Given u ∈ L1([a, b]), we define the weak derivative v ∈ L1([a, b])
if, ∀h ∈ C∞

c ([a, b]) we have

ˆ b

a

u(x)h′(x)dx = −
ˆ b

a

v(x)h(x)dx

The function v(x) will then be identified as follows

v(x) = Du(x)
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Theorem 8.12 (Operations with Distributions). Given ϕ, γ ∈ K?, f ∈ K, h ∈ C∞(R) and c ∈ C we
define the following operations in K?

+ : K? ×K? −→ K?

· : C×K? −→ K?

◦ : C∞ ×K? −→ K?

D : K? −→ K?

(8.13)

Where, they act as follows

+(ϕ(f), γ(f)) = (ϕ+ γ)(f) = ϕ(f) + γ(f)

·(c, ϕ(f)) = (cϕ)(f) = cϕ(f)

◦(h, ϕ(f)) = (hϕ)(f) = ϕ(hf)

Dϕ(f) = −ϕ(f ′)

The last operation is the distributional derivative.

Theorem 8.13. Given g(x) ∈ L1
loc(R) and ϕg ∈ K? its associated distribution. Then, ∀h ∈

C∞, f ∈ K
(hϕg)(f) = ϕg(hf) = ϕhg(f) (8.14)

Proof. The proof is quite straightforward

(hϕg)(f) = ϕg(hf) =

ˆ
R
g(x) (h(x)f(x))dx =

ˆ
R
f(x) (g(x)h(x))dx = ϕhg(f)

Theorem 8.14. Taken g ∈ L1
loc(R) and g 7→ ϕg ∈ K? its associated distribution, we have that

Dϕg = ϕD g

Where D g is the weak derivative of g

Proof. ∀f ∈ K we have that

Dϕg(f) = −ϕg(f ′) = −
ˆ
R
f ′(x)g(x)dx =

ˆ
R
f(x)D g(x)dx = ϕD g(f)

Theorem 8.15. ∀g, f ∈ L1
loc(R) and given ϕg, γf ∈ K?, c ∈ C their associated distributions, we

have that
ϕg + ϕf = ϕg+f

ϕcf = cϕf
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Proof. The proof is obvious using the linearity of the integral operator

Theorem 8.16 (Useful Identities). Here is a list of some useful identities

xδ0 = 0

xPV

(
1

x

)
= ϕ1

xD δ0 = −δ0

(8.15)

Proof. 1) xδ0 = 0.
Taken f ∈ K

xδ0(f) = δ0(xf) = 0f(0) = 0

2) xPV
(

1
xn

)
= ϕ1

Again, taken g ∈ K

x PV

(
1

x

)
(g) = PV

(
1

x

)
(xg) = lim

ε→0

ˆ
|x|≥0

f(x)dx = ϕ1

For the last one, taken h ∈ K

xD δ0(f) = D δ0(xf) = −δ0 (f + xf ′) = −f(0)− 0f(0) = −f(0) = −δ0(f)

Notation (Abuse of Notation). Given g ∈ L1
loc(R) and its associated distribution g 7→ ϕg, is quite

common to use the original function to indicate actually the distribution. Together with this, the
distributional derivative D gets indicated as an usual derivative, therefore

ϕg → g(x)

Dϕg → g′(x) =
dg

dx

Therefore it isn’t uncommon to see identities like this

xPV

(
1

x

)
= 1

Where actually 1 → ϕ1 is the identity distribution.
Or

δ′0 = −δ0
This makes an easy notation for calculating distributional derivatives and have some calculations, but
one should watch out to this common abuse of notation

Definition 8.2.17 (K? Convergence). Given (σ)n∈N ∈ K? a sequence of distributions, it’s say to
K?−converge if

(σ)n(f) → σ(f) ∈ K?

It’s indicated as follows
(σ)n⇀? σ
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Theorem 8.17. Given κ ∈ K? a distribution, we have that f ∈ C∞(K) in the sense of distribu-
tional derivatives, where the n−th derivative is defined as follows

Dn κ(f) = (−1)nκ(f (n)) ∀f ∈ K

Proof. Taken f ∈ K we have that f ∈ C∞
c (R) ⊂ C∞(R) hence f is smooth, therefore we have, for

κ ∈ K?
Dκ(f) = −κ(f ′)

Iterating, we get for n = 2
D2 κ(f) = −Dκ(f ′) = κ(f ′′)

Iterating till n we get finally
Dn κ(f) = (−1)nκ(f (n))

Hence the derivability depends only on the test function f , and since it’s smooth, the distributional
derivatives can be defined ∀n ∈ N

Example 8.2.3. Take for example the delta distribution δ0 ∈ K?, given f ∈ K we want to calculate
the following value

Dn δ0(f)

Using the previous identity, we have that

Dn δ0(f) = (−1)nδ0[f
(n)] = (−1)nf (n)(0)

Theorem 8.18 (Chain Rule). Given h ∈ C∞(R) and η ∈ K?, we have that

D(hη) = h′η + hD η

Where the distributional derivative is identical to the usual derivative for h and it’s the usual
distributional derivative for η

Proof. Taken h ∈ C∞, η ∈ K? and f ∈ K we have

(hη)(f) = η(fh)

Therefore, using the identity for derivating a distribution we have that

D(hη)[f ] = −(hη)[f ′] =

= −η[hf ′] = −η[(hf)′ − h′f ] = −η[(hf)′] + η[h′f ] =

= (hD η)[f ] + (h′η)[f ]

Theorem 8.19. Given gn(x) : R −→ C a continuous sequence of functions such that gn ⇒ g ∈
C(R). Then, taken gn 7→ ϕgn ∈ K? the associated distribution, we have that

ϕgn ⇀? ϕg ∈ K?
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Proof. By definition of convergence, we have that, given f ∈ K, where supp f ⊂ [−a, a]

|ϕgn(f)− ϕg(f)| ≤ ϕ|gn−g|(|f |) ≤ 2a‖gn − g‖u‖f‖u → 0

Therefore, ϕgn ⇀? ϕg

Theorem 8.20. Given (η)n ∈ K? a sequence of distribution, then if (η)n⇀? η we have that

D ηn⇀? D η

Proof. By definition, we have

lim
n→∞

D ηn(f) = − lim
n→∞

ηn(f
′) = −η(f ′) = D η(f)

Example 8.2.4 (The Absolute Value Distribution). Taken g(x) = |x| we have that (obviously) |x| ∈
L1
loc(R), therefore there exists a distribution ϕ|x| ∈ K? defined as follows

ϕ|x|(f) =

ˆ
R
|x|f(x)dx

We have that the distributional derivative it’s actually the function sgn (x), (in this case, since it’s a locally
integrable function it coincides with its weak derivative), therefore it’s not unusual to see expressions
like this

d

dx
|x| = sgn(x) weakly/distributionally

The proof of this is quite easy. Taken f ∈ K

Dϕ|x|(f) = −ϕ|x|(f
′) = −

ˆ
R
|x|f ′(x)dx =

= [xf(x)]R− − [xf(x)]R+ +

ˆ
R+

f(x)dx−
ˆ
R−

f(x)dx =

=

ˆ
R
sgn(x)f(x)dx = ϕsgn(x)(f)

Since we have that
Dϕg = ϕD g

Where D g is intended as the weak derivative of g, we have that

D |x| = sgn(x)

Where in order to emphasize tha this is a weak derivative, one could use the notation

Dw |x| = sgn(x)

Note that in literature it’s common to use the abuse of notation written beforehand in general and in
this particular case.
Also note that if the function we had used would have been an ordinarily derivable function, the weak
derivative would have coincided with the ordinary derivative.
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Theorem 8.21. In general, given g ∈ C1(R), we can say that g(|x|) has the following weak
derivative

D g(|x|) = D g(|x|) sgn(x)

Proof. Since g(|x|) ∈ L1
loc(R) we can say that exists g 7→ ϕg ∈ K? such that

Dϕg(|x|) = ϕD g(|x|)

Where D g is the weak derivative of g(|x|). Since it’s a derivative (and it’s also demonstrable) we can
use the rules for composite derivation, and knowing that D |x| = sgn(x) we have

Dϕg(|x|) = ϕD g(|x|) = ϕD g D |x| = ϕsgn D g

Theorem 8.22 (Derivative of the ϑ Distribution). Given ϑ ∈ K? the theta distribution, we define

ϑ(f) =

ˆ
R
f(x)H(x)dx =

ˆ
R+

f(x)dx

The derivative of this distribution is
Dϑ = δ0

Proof. We have ∀f ∈ K

Dϑ(f) = −ϑ(f ′) = −
ˆ
R
f ′(x)H(x)dx = −

ˆ
R+

f ′(x)dx = f(0) = δ0(f)

Therefore
Dϑ = δ0

Or, using a common abuse of notation

ϑ = ϑ(x) = H(x), DH(x) = δ(x)

Notation (Piecewise Derivative). Given g : R −→ C a piecewise differentiable function, we define the
differential operator D◦ as follows

D◦ g(x) =

{
g′(x) ∃g′(x)
0 @g′(x)

(8.16)

Theorem 8.23. Given f : R −→ C a piecewise differentiable function and Sf := {u1, · · · , uk}
isolated singularities, then

D f(x) = D◦ f(x) +

∞∑
i=1

∆f(ui)δ(ui)
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Proof. Taken Sf := {u} without loss of generality, we have that

lim
x→u+

f(x) = f(u+)

lim
x→u−

f(x) = f(u−)

∆f(u) = f(u+)− f(u−)

And, ∀g ∈ K, taken f 7→ ϕf ∈ K?

Dϕf (g) = −ϕf (g′) = −
ˆ u

−∞
g′(x)f(x)dx−

ˆ ∞

u

g(x)f(x)dx

Integrating by parts and rebuilding the definition of ∆f(u) we have

Dϕf (g) = g(u)∆f(u) +

ˆ
R
g(x)D◦ f(x)dx = ϕD◦ g(f) + ∆f(u)δu(f)

And therefore

D f(x) = D◦ f +∆f(u)δ(u)

Example 8.2.5 (Deriving the Sign Function). Take a ∈ R and the function sgn(x − a), using the
previous formula we have that Ssgn(x−a) = {a} and ∆ sgn(a) = 2, therefore

D sgn(x− a) = D◦ sgn(x− a) + 2δ(x− a)

Since D◦ sgn(x− a) = 0 we have finally

D sgn(x− a) = 2δ(x− a)

And equivalently

D sgn(a− x) = −2δ(x− a)

Example 8.2.6 (A General Piecewise Differentiable Function). Take the function g : R −→ R defined
as follows

g(x) =

{
1 x < 0

x− 2 x ≥ 0

We have that

D◦ g(x) = H(x) =

{
0 x ≤ 0

1 x > 0

Since the discontinuity is in the origin and we have ∆g(0) = −3 we have

D g(x) = H(x)− 3δ(x)
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Example 8.2.7 (Derivative of the Floor Function). Given the floor function bxc : R −→ Z we have that
Sbxc = Z, ∆bxc = 1 and D◦bxc = 0 therefore

Dbxc =
∑
k∈Z

δ(x− k) =

∞∑
k=−∞

δ(x− k)

Given instead a different function, bx2c we have that D◦bx2c = 0 and Sbx2c =
{
k ∈ Z| ±

√
k
}
⊂ R

with ∆b±
√
kc = ±1, therefore

Dbx2c =
∑
k≥1

δ(x−
√
k)− δ(x−

√
−k) =

∞∑
k=1

δ(x−
√
k)− δ(x−

√
−k)

Theorem 8.24. Given h ∈ C∞(R) a smooth function and a ∈ R, we have that

h(x)Dn δ(x− a) =

n∑
k=0

(−1)k
(
n
k

)
h(k)(a)Dn−k δ(x− a)

Proof. Taken f ∈ K we have that

(h(x)Dn δa)(f) = Dn δa(hf) = δa

(
(hf)(n)

)
Using now Leibnitz’s composite derivation rule, we have

dn

dxn
h(x)f(x) =

n∑
k=0

(
n
k

)
dkh

dxk
dn−kf

dxn−k

We have that

(h(x)Dn δa)(f) = δa

[
(−1)n

n∑
k=0

(
n
k

)
h(k)(x)f (n−k)(x)

]
=

=
n∑
k=0

(
n
k

)
(−1)kh(k)(x)Dn−k δa(f)

Example 8.2.8. Take as an example the following distributional derivative

D7
(
xex D2 δ0

)
We have from that formula that

xex D2 δ0 =
d2

dx2
(xex)δ0 =

d

dx
(ex + xex)δ0 = (2 + x)exδ0



CHAPTER 8. DISTRIBUTIONS 152

And therefore h′(0) = 1, h′′(0) = 2
Which means that

xex D2 δ0 =

(
2
2

)
h(0)D2 δ0 −

(
2
1

)
h′(0)D δ0 +

(
2
0

)
h′′(0)δ0

Inserting the values, we get
xex D2 δ0 = 2D δ0 − 2δ0

The derivative is now trivial, and we get

D7
(
xex D2 δ0

)
= 2D7 (δ0 − D δ0) = 2

(
D7 δ0 − D8 δ0

)

Theorem 8.25. Given k,m ∈ N and a function f ∈ Ck(R) we have that

Dk (xmf) (0) =


0 k < m(
k
m

)
m!f (k −m)(0) k ≥ m

And
Di(xm)(0) = m!δim

Proof. We apply immediately the Leibnitz chain rule and we have

Dk (xmf) (0) =

m∑
j=0

(
k
j

)
f (k−j)(0)m!δjm = m!

(
k
m

)
f (k−m)(0) ∀k ≥ m

Theorem 8.26 (Properties of the PV(x−n) Distribution). Here there will be listed some properties
of the PV(x−n) distribution

1. D log |x| = PV(x−n)

2. Given n,m ∈ N, then

xmPV

(
1

xn

)
=


xm−n m ≥ n

PV

(
1

xn−m

)
m < n

3. Dm PV(x−n) = (−m)!PV(x−n−m)

Proof. 1) Taken log |x| ∈ L1
loc(R)we know that ∃ϕlog |x| ∈ K? such that log |x| 7→ ϕlog |x| and therefore

we can write as follows the previous derivative, that ∀f ∈ K

Dϕlog |x|(f) = −ϕlog |x|(f
′) = − lim

ε→0−

ˆ ε

−∞
f ′(x) log(−x)dx− lim

ε→0+

ˆ ∞

ε

f(x) log(x)dx
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Integrating by parts we get

Dϕlog |x|(f) = lim
ε→0+

log ε (f(ε)− f(−ε)) + lim
ε→0+

ˆ
|x|≥ε

f(x)

x
dx = PV

(
1

xn

)
(f)

Or

D log |x| = PV

(
1

xn

)
2) Taken f ∈ K(

xmPV

(
1

xn

))
(f) = PV

(
1

xn

)
(xmf) = lim

R→∞

ˆ R

−R

1

xn

(
xmf(x)−

n−1∑
k=0

Dk(xmf)(0)

k!
xk

)
dx

Taken m ≥ n we have that the sum is null ∀k ≤ m, therefore since k ≤ n− 1 < m it sums to 0
Therefore

lim
R→∞

InR(x
mf) = PV

(
1

xn

)
(xmf) =

ˆ
R
xm−nf(x)dx = ϕxm−n(f)

Taken m < n we have that

n−1∑
k=0

xk

k!
Dk(xmf)(0) =

n−1∑
k=m

(
k
m

)
m!

k!
f (k−m)(0) =

n−m−1∑
k=0

f (k)(0)

k!
xk

Therefore

lim
R→∞

InR(x
mf) = lim

R→∞
lim
ε→0

ˆ R

−R

1

xn−m

(
f(x)−

n−m−1∑
k=0

fk(0)

k!
xk

)
dx = PV

(
1

xn−m

)
(f)

3) Taken n ∈ N, n > 0, m = 1 we have

D PV

(
1

xn

)
(f) = −PV

(
1

xn

)
(f ′) = − lim

R→∞
InR(f

′)

Integrating by parts we have

InR(f
′) =

[
1

xn

(
f(x)− f(0)−

n−1∑
k=0

f (k+1)(0)

(k + 1)!
xk+1

)]R
−R

+

+

ˆ R

−R

n

xn+1

(
f(x)− f(0)−

n−1∑
k=0

f (k+1)(0)

(k + 1)!
xk

)
dx =

=
1

Rn

(
f(R)−

n∑
k=0

f (k)(0)

k!
Rk

)
− 1

(−R)n

(
f(−R)−

n∑
k=0

f (k)(0)

k!
(−R)k

)
+ nIn+1

R (f)

Since supp f ⊂ [−b, b] we have two cases, R > b and R < b.
Supposing R > b we have

InR(f
′) = nIn+1

R (f)−
n∑
k=0

f (k)(0)

k!

(
1

(−R)n−k
− 1

Rn−k

)
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Taken a new index j = n− k such that j mod 2 = 0 we have

InR(f
′) = nIn+1

R − 2

n∑
j=0

f (j)(0)

j!

1

Rn−k
−→ −nPV

(
1

xn+1

)
(f)

In case that m > 1, by iteration we get

Dm PV

(
1

xn

)
= (−m)!PV

(
1

xn+m

)

§§ 8.2.4 A Physicist’s Trick, The Dirac δ “Function”

Definition 8.2.18 (Composite Delta). Supposing that a Dirac δ exists also as a function, we can imagine
describing it as a composite function (δ ◦ f)(x) = δ(f(x)).
Watch out, since δ(f(x)) 6= δ0(f)

Definition 8.2.19 (Giving it Some Meaning). Taken gn ∈ L1
loc(R) a sequence of functions such that

gn ∈ C[−an, an] with an > 0, an → 0, we have that ∃!gn 7→ ϕgn such that ϕgn ⇀? δ0
A good choice for this sequence would be the Gaussian function γn defined as follows

γn(x) =
n√
π
e−n

2x2

(8.17)

Then, we have that ϕγn ⇀? δ0, or written in a clear abuse of notation with non-existing functions

lim
n→∞

γn(x) = δ(x)

Which, actually means that

lim
n→∞

ˆ
R
γn(x)f(x)dx = f(0) = δ0(f) ∀f ∈ K

Then, letting b(x) ∈ C1(R) we can define the following quantity

ˆ
R
f(x)δ(b(x))dx = lim

n→∞

ˆ
R
γn(b(x))f(x)dx ∀f ∈ K

Theorem 8.27. Let g ∈ C1(R) be a function with isolated and simple zeros Zg := {x1, x2, x3, · · · },
then ∀f ∈ K we have

lim
n→∞

ˆ
R
γn(g(x))f(x)dx =

ˆ
R
f(x)δ(g(x))dx =

∑
xk∈Zg

δxk
(f)

|g′(xk)|
(8.18)
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Proof. Taken g(x) ∈ C1(R) such that g(x) ≥ g(y) ∀x ≥ y, supposing that Zg = {x0} we have, since
it’s a simple zero, that g′(x0) 6= 0
Taking in the previous integral the substitution y = g(x), we have that x = g−1(y) and dx =
D g−1(y)dy, therefore

I = lim
n→∞

ˆ
R
γn(g(x))f(x)dx = lim

n→∞

ˆ sup(g)

inf(g)

γn(y)
f(g−1(y))

g′(g(y))
dy

Evaluating the integral we have

I =
f(g−1(0))

g′(g−1(0))
=
f(x0)

g′(x0)
=

1

|g′(x0)|
δx0

This is easily generalizable if there is more than one zero

Example 8.2.9 (Composition with a Constant). Take δ(ax) with g(x) = ax and a 6= 0. Since Zg = {0}
using the previous formula we have g′(0) = a and therefore

δ(ax) =
1

|a|
δ(x)

Example 8.2.10. Taken g(x) = atan(x) we have that Zg := {0} and

g′(x) =
1

1 + x2
g′(0) = 1

Therefore
δ(atan(x)) = δ(x)

Example 8.2.11 (Composition with a Polynomial). Take g(x) = (x2 − a2), then Zg := {−a, a} and
g′(±a) = ±2a, therefore, if a 6= 0

δ(x2 − a2) =
1

2|a|
(δ(x− a) + δ(x+ a))

Example 8.2.12 (Composition with an Exponential). Taken g(x) = ex we have that Zg = {} therefore
δ(ex) = 0

Example 8.2.13 (Composition with a Trigonometric Function). Taken now g(x) = cos(x) we have
that Zg = {k ∈ Z| kπ/2} and g′(x) = − sin(x), therefore

g′(xk) = − sin

(
kπ

2

)
= (−1)k+1

Therefore

δ(cos(x)) =
∑
k∈Z

δ

(
x− kπ

2

)
=

∞∑
k=−∞

δ

(
x− kπ

2

)
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Example 8.2.14 (Calculating an Integral with the Composite Delta). Take the following integral

ˆ
R
e−|x|δ(sin(2x))dx

In order for solving it we expand the composite delta. We have that Zg = {k ∈ Z| kπ/2} and
g′(xk) = (−1)k2, therefore

ˆ
R
e−|x|δ(sin(2x))dx =

1

2

∞∑
k=−∞

e−|x|δ

(
x− kπ

2

)
=

1

2

∞∑
k=−∞

e−
∣∣ kπ

2

∣∣

Fixing the sum and summing, we have

ˆ
R
e−|x|δ(sin(2x))dx =

∑
k∈N

e−
kπ
2 − 1

2
=

1

1− e
π
2
− 1

2

§ 8.3 Integral Representation of Distributions

§§ 8.3.1 Dirac Delta and Heaviside Theta

Theorem 8.28 (Integral Representation of the Delta Distribution). Taken the non-existent δ(x)
function, we can represent it as follows

δ(x− y) =
1

2π

¨
R2

eik(x−y)f(x)dk dx (8.19)

Which means

δy(f) =
1

2π

¨
R2

eik(x−y)f(x)dk dx

Theorem 8.29 (Integral Representation of the Theta Distribution). Taken ϑ(x) the Heaviside regular
distribution we can write ∀x ∈ R \ {0}

ϑ(x) =
1

2πi
PV

ˆ
R

eikx

k − iε
dk (8.20)

Proof. This equation has two cases, one with x > 0 and one with x < 0. Therefore taking x > 0 we
have

I(x) = PV

ˆ
R

eikx

k − iε
dk

This integral can be evaluated using the residue theorem. We have defining the function f(k) as follows

f(k) =
1

k − iε
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The integral can be seen as follows

I(x) = PV

ˆ
R
eikxf(k)dk

This can be written as a complex integral, writing the transformation x→ z with z ∈ C

I(x) → J(x) = lim
R→∞

˛
γR

eizx

z − iε
dz

Where the path is the following

{γR} = C+
R ∪ [−R,R]

Writing it all out explicitly we have that

J(x) = lim
R→∞

ˆ
CR

eizx

z − iε
dz + lim

R→∞

ˆ R

−R

eizx

z − iε
dz = JR + I(Rez)

Due to the Jordan lemma we know for sure that JR = 0 therefore we have that, writing Re(z) = x,
thanks to the residue theorem

J(x) = I(x) = 2πi
∑
zk∈Sf

Res
z=zk

eizx

z − iε

The set of singularities of f is formed by a single point Sf = {iε} which is a simple pole, and therefore,
since iε ∈ {γR}◦ we have

J(x) = 2πi Res
z=iε

eizx

z − iε
= 2πi lim

z→iε
(z − iε)

eizx

z − iε
= e−εx

Therefore, we get

J(x) = 2πie−εx

For getting back to the first integral, we have

1

2πi
I(x) = lim

ε→0+
e−εx = 1 = ϑ(x) x > 0

In the second case, for x < 0 we have that the new curve will be

{γ−R} = C−
R ∪ [−R,R]

Since Sf 6⊂ {γ−R}◦ we have thanks to Cauchy-Goursat that

1

2πi
I(x) =

1

2πi
J−(z) = 0 = ϑ(x) x < 0

Proving our assumption
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§§ 8.3.2 Distributions in Rn

Definition 8.3.1 (Scalar Test Fields). Given a scalar field f : Rn −→ C one can define the space of
scalar test fields K(Rn) as follows

K(Rn) = C∞
c (Rn) (8.21)

A function f ∈ C∞
c (Rn) is a function such that supp f ⊂ A ⊂ Rn with A a compact set and

∃∂αf ∀|α| ∈ N

Definition 8.3.2 (K(Rn)−Convergence). Given fn ∈ K(Rn) a sequence of scalar fields. fn converges
to f ∈ K(Rn) if

1. ∃A ⊂ Rn compact set such that fn (A
c) = {0}

2. ∀α ∈ Nn multi-index ∂αfn ⇒ ∂αf , ∀x ∈ A

It’s indicated as
fn⇀Kn

f

Definition 8.3.3 (Multidimensional Distribution). A n−dimensional distribution is a continuous
functional ϕ : K(Rn) −→ C such that

∀gn⇀Kn
g ϕ(gn) → ϕ(g) (8.22)

Then ϕ ∈ K?(Rn)

Theorem 8.30 (Operations in K?(Rn)). We can define the usual distributional operations in
K(Rn). The usual operations defined for K? are defined in the same way, the only difference
is given by the definition of the derivative Given α ∈ Nn, f ∈ K(Rn), ϕ ∈ K?(Rn)

∂αϕ(f) = (−1)|α|ϕ(∂αf) (8.23)

Example 8.3.1 (Laplacian of a Distribution). Taken ∂α = ∂2 = ∂µ∂
µ

∂µ∂
µϕ(f) = ϕ(∂µ∂

µf)

Remark (Local Integrability). The local integrability of some functions is different in Rn. In fact taken
the spherical (n− 1)-dimensional coordinate transformation we have

dnx = rn−1 dr dSn−1

And taken the function g(xν) = ‖xµ‖−aµ we get

ˆ
Rn

f(x)

‖xµ‖aµ
d
n
x =

ˆ
R

ˆ
Sn−1

f(x)dSn−1
rn−1

ra
dr

Which means that ‖xµ‖−aµ ∈ L1
loc(Rn) ∀a < n
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§ 8.4 Some Applications in Physics

§§ 8.4.1 Electrostatics

Example 8.4.1 (Point Charge). Taken q a point charge in the origin (0, 0, 0) we define the potential
generated by this charge as follows (in cgs)

∂µ∂
µV (xν) = −4πρ(x)

Where ρ(x) is the charge density, defined as

ρ(x) = qδ3(xν)

With δ3 being the 3−d Dirac delta
Therefore

∂µ∂
µ

(
1

‖xµ‖µ

)
= −4πδ3(xν)

Which means actually, that ∀f ∈ K(R3)
˚

R3

∂µ∂
µf

‖xµ‖µ
d
3
x = −4πf(0)

Proof. Since f ∈ K(R3) we have that ∃R > 0 : f(xµ) = 0∀x /∈ BR
2
(0)

Therefore we get that ˚
R3

∂µ∂
µf

‖xµ‖µ
d
3
x = lim

ε→0

ˆ
ε≤‖xµ‖µ≤R

∂µ∂
µf

‖xµ‖µ
d
3
x

Taken AεR(0) =
{
xµ ∈ R3

∣∣ ε ≤ ‖xµ‖µ ≤ R
}
We have that the second integral becomes, using Stokes’

theorem

˚
AεR

f(x)∂µ∂
µ

(
1

‖xµ‖µ

)
f(x)d

3
x+

¨
∂AεR

[
1

‖xµ‖µ
∂µf − f∂µ

(
1

‖xµ‖µ

)]
nµ dσ

Changing to spherical coordinates we have that

∂µ∂
µ

(
1

‖xµ‖µ

)
=

1

r2
∂

∂r

(
r2
∂

∂r

(
1

r

))
= 0

Therefore we get

˚
AεR

1

‖xµ‖µ
∂µ∂

µf d
3
x = −

¨
‖xµ‖µ=ε

(
1

r
∂µf − f∂µ

(
1

r

))
rµ dS2

Which, taken ∂µr
−1 = −r̂µr−2 we have

˚
AεR

1

‖xµ‖µ
∂µ∂

µf d
3
x = −

¨
‖xµ‖µ=ε

r̂µ∂µfr dS2 −
¨

‖xµ‖µ=ε

f(x)dS2
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We have for the first integral that∥∥∥∥∥
¨

‖xµ‖µ=ε

r̂µ∂µfr dS2

∥∥∥∥∥ ≤ 4πε sup
R3

‖∂µf‖

And for the second ∥∥∥∥∥
¨

‖xµ‖µ=ε

f(x)dS2 − 4πf(0)

∥∥∥∥∥ ≤ 4π sup
‖xµ‖µ=ε

|f(xν)− f(0)|

Since ε → 0+ and since f ∈ K(R3) we have that the first and second integral converge to 0, and
therefore ˚

R3

1

‖xµ‖µ
∂µ∂

µf d
3
x = − lim

ε→0

¨
‖xµ‖µ=ε

f(x)dS2 = −4πf(0)



9 Ordinary Differential Equations

§ 9.1 Existence of Solutions

You might test that assumption at your convenience1

Definition 9.1.1 (Differential Equation). Given y ∈ Cm(I), I ⊆ R we define a differential equation
of order m the following

F (x, y, y′, · · · , y(m)) = 0

If the equation can be rewritten as follows

dmy

dxm
= f(x, y, · · · , y(m−1))

It’s called in normal form.
If only total derivatives appear, the differential equation is called ordinary, whereas if also partial
derivatives appear, the differential equation is called partial.

Theorem 9.1 (Reduction of Order). Given an ODE (ordinary differential equation) of order m,
one can reduce the order of the equation through a mapping to Rm, where

(y, y′, · · · , y(m)) 7→ yµ(x) =


y(x)
y′(x)

...
y(m)(x)


And f(x, y, · · · , y(m)) 7→ fµ(x, yµ).
The equation becomes a first order differential equation

dyµ

dx
= fµ(x, yµ)

1Captain Picard, Star Trek: The Next Generation

161
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If f is linear, this system can be expressed in matrix form, where

dyµ

dx
= Aµνy

µ

Definition 9.1.2 (Cauchy Problem). A Cauchy or initial value problem is defined as the following
system {

y′(x) = f(x, y(x))

y(x0) = y0
(9.1)

Where y0, t0 ∈ R are known values

Theorem 9.2. Given the Cauchy problem (9.1) we say that y(x) ∈ C1 is a solution of the system
if and only if is a continuous solution of the following integral equation

y(x) = y0 +

ˆ x

x0

f(s, y(s))ds (9.2)

Proof. Supposing y ∈ C1 we have that for the fundamental theorem of integral calculus

y(x) = y(x0) +

ˆ x

x0

y′(s)ds = y0 +

ˆ x

x0

f(s, y(s))ds

Instead, considering f ◦ y we have that the new composed function must be continuous, therefore we
have for the fundamental theorem of integral calculus that y(x) ∈ C1 and that

y(x0) = y0 +

ˆ x0

x0

f(s, y(s))ds = y0

And therefore
dy

dx
=

d

dx

ˆ x

x0

f(s, y(s))ds = f(x, y(x))

Which gives back the thesis

Theorem 9.3 (Picard-Lindelöf-Cauchy Existence). Let A ⊂ R2 with f : A −→ R a continuous
function which defines an ODE (9.1) where

y(x) = y0 +

ˆ x

x0

f(s, y(s))ds

Let a, b > 0 and take R = [x0 − a, x0 + a]× [y0 − b, y0 + b] = Ia × Jb ⊂ A. Supposing f Lipschitz
continuous on the second variable, i.e.

∃L > 0 : |f(x, u)− f(x,w)| ≤ L|u− w| ∀(x, u), (x,w) ∈ R

Then, if M = maxR |f(x, y)|
∃ε > 0 : ∃!y(x) ∈ C1(Bε(y0))

Where ε = min {a, b/M, 1/L}
Therefore, there is an unique local solution y(x) to the ODE
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Proof. We firstly define a Banach space (X, ‖·‖u) where X := {y ∈ C (Iε)| ‖y(x)− y0‖u ≤ b}.
Define the Picard operator as follows

T̂ : X −→ X

Where

T̂ (w) = y0 +

ˆ x

x0

f(s, w(s))ds = z(x)

We have∥∥∥T̂ (y)− T̂ (z)
∥∥∥
u
=
∥∥∥T̂ (y − z)

∥∥∥
u
=

∥∥∥∥ˆ x

x0

f(s, u(s))− f(s, v(s))ds

∥∥∥∥
u

≤ Lε‖u− v‖u ∀u, v, y, z ∈ X

Since x ∈ Iε is completely arbitrary we have therefore, putting d(x, y) = ‖x− y‖u

d(y, z) = d(T̂ (y), T̂ (z)) ≤ Lεd(u, v)

Since Lε ∈ (0, 1), T̂ is a contractor and it has a single fixed point in X.
Taking this fixed point as y(x) we have

T̂ (y) = y0 +

ˆ x

x0

f(s, y(s))ds = y(x)

Which is our searched solution, and it’s unique

Definition 9.1.3 (Maximal and Global Solutions). Given y(x) a solution to the Cauchy problem (9.1)
we define a maximal solution ym(x) a solution for which ym(x) = y(x) ∀x ∈ Iε and which still
solves the problem in a set (a, b) ⊃ Iε, and (a, b) is the biggest set for which ym(x) solves the ODE.
If ym is defined ∀x ∈ R, the solution is called global

Theorem 9.4 (Prolungability of Solutions). Given the ODE (9.1) and let f : (a, b) × R −→ R. Let
c1, c2 ∈ K ⊂ (a, b) with K a compact set, such that

|f(x, y)| ≤ c1 + c2|y(x)| x ∈ K, ∀y ∈ R

Then the solution can be extended in the whole set (a, b). The previous statement means
that f is sublinear in the second variable

Theorem 9.5. Let ym(x) be a maximal solution to (9.1) defined on (a, b). Then ∀K ⊂ A ∃δ >
0 : ∀x 6∈ (a+ δ, b− δ), (x, ym(x)) 6∈ K

Theorem 9.6. Taken y(x) a solution to the ODE (9.1). If ∃c > 0 such that

|y(x)| ≤ c ∀t ∈ A

Then ∃ym(x) : (a, b) −→ R

Lemma 9.1.1 (Peano-Gronwall Inequality). Let ϕ : I ⊂ R −→ R be a function ϕ ∈ C(I), if

|ϕ(t)| ≤ c+ L

∣∣∣∣ˆ t

t0

|ϕ(s)|ds
∣∣∣∣
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Then the following inequality holds
|ϕ(t)| ≤ ceL|t−t0|

Therefore, if y′(t) = f(t, y) is an ODE, taken f(t, y) Lipschitz continuous on the second variable and
chosen ϕ(t) = u(t)− v(t) where u, v are two solutions, we have that

|f(t, u)− f(t, v)| ≤ ceL|t−t0|

§ 9.2 Common Solving Methods

Definition 9.2.1 (Separable ODE). Given y′(t) = f(t, y(t)) an ODE we define a separable ODE a
differential equation such that

y′(t) = f(t, y(t)) = g(t)h(y)

Method 1 (Separation of Variables). Suppose that we have the previous ODE, then, thanks to the
Picard-Lindelöf-Cauchy theorem we can immediately say that

1. There is at least one local solution in Bε(t0) if f ∈ C, i.e. if g, h ∈ C

2. There is a unique local solution in Bε(t0) if ∂yf ∈ C, i.e. if h ∈ C1

The first thing to do is finding all constant solution to the ODE, called the equilibrium solutions.
Then, a general solution can be found by direct integration, where we’re integrating the following
differential form

1

h(y)
dy = g(t)dt

Integrating, and putting H(t), G(t) as the two primitives, we can say that

H(y) = G(t) +H(y0)−G(t0)

Where c = H(y0)−G(t0) is the integration constant in terms of the initial values, if given

Example 9.2.1. Take the following initial value problem{
w′(x) = w2(x)

w(0) = 1

We have f(x,w) = w2(x) i.e. the equation is separable, therefore
ˆ

w′(x)

w2(x)
dx =

ˆ
dx− 1

Therefore, integrating the LHS

− 1

w(x)
= x− 1

And

w(x) =
1

1− x
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Definition 9.2.2 (Autonomous Differential Equation). Given a differential equation in normal form
y′(x) = f(x, y(x)), it’s said to be an autonomous differential equation if

f(x, y(x)) = g(y(x))

Therefore

y′(x) = g(y(x)) (9.3)

Note that it’s a separable equation, and therefore, writing the primitive of 1/g(y) = G(y) we have that
the general solution of this problem would be

G(y) = x+ c

Where c ∈ R is a constant

Example 9.2.2. Take the following initial value problem{
y′(x) = t|y|
y(0) = y0

This is obviously a separable ODE, and we have f(t, y(t)) = t|y|.
We have that f ∈ C(R2) therefore there exists at least one solution for this equation.
Now, applying Picard-Lindelöf-Cauchy we can see that, ∀[α, β] ⊂ R compact set

|f(t, y)− f(t, z)| = |t|y| − t|z|| = |t|||y| − |z|| ≤ max {|α|, |β|} |y − z|

Taken L = max {|α|, |β|} we have that f is Lipschitz continuous in the second variable in every compact
set K ⊂ R and therefore there exists a unique solution y : K −→ R.
Successively we move on to integrate directly the differential equation. We have

ˆ y

y0

dy

|y|
=

ˆ t

t0

tdt

I.e.

log

∣∣∣∣ yy0
∣∣∣∣ = 1

2

(
t2 − t20

)
∣∣∣∣ yy0
∣∣∣∣ = e

1
2 t

2
0e

1
2 t

2

Since t0 = 0 we get

|y|(t) = |y0|e
1
2 t

2

The solutions depend on the sign of y0 and we finally get

y(t) =

{
y0e

1
2 t

2

y0 > 0

y0e
− 1

2 t
2

y0 < 0
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§§ 9.2.1 First Order Linear ODEs

Definition 9.2.3 (Integrating Factor). An example of linear ODE is the following kind of equation

y′(t) = p(t)y(t) + q(t) p, q ∈ C(I), I ⊆ R (9.4)

This equation has a unique solution in all of R, since f(t, y) is Lipschitz continuous and sublinear in R.
We immediately know that the solution y ∈ C1 exists since f ∈ C(R2) and by Cauchy-Picard-Lindelöf
we have

|f(t, y)− f(t, z)| = |p(t)y(t)− p(t)z(t)| = |p(t)||y − z| ≤ ‖p‖u|y − z|

Taken L = ‖p‖u we see immediately that f satisfies the theorem and the solution is uniquely defined
in every compact set K ⊂ R.
We also see that f is sublinear, since

|f(t, y)| = |p(t)y(t) + q(t)| ≤ ‖p‖u|y(t)|+ ‖q‖u

Which means that the solution can be extended in R, and ∃!y : R −→ R solution to the ODE.
We now proceed to integrate the ODE, for which we will proceed with a different method than usual.
Let µ(t) be what we will call the integrating factor, defined as follows

µ(t) = e−
´
p(t) dt

Which has the property that p(t)µ(t) = µ′(t)

Method 2 (Integrating Factor). Let y′(t) = p(t)y(t) + q(t) be a linear ODE, we solve by finding the
integrating factor µ(t) and then multiplying both sides of the equayion by the integrating factor and
moving the p(t)y(t) term from the RHS to the LHS

µ(t)y′(t)− p(t)µ(t)y(t) = q(t)µ(t)

By definition of the integrating factor we have that p(t)µ(t) = −µ′(t) and therefore

µ(t)y′(t) + µ′(t)y(t) = q(t)µ(t)

Using the chain rule we get

d

dt
(µ(t)y(t)) = µ(t)q(t)

Integrating

µ(t)y(t) =

ˆ
µ(t)q(t)dt+ c

And therefore, the final general solution will be the following

y(t) =
1

µ(t)

ˆ
µ(t)q(t)dt+

c

µ(t)
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Example 9.2.3. Take the following initial value problem y′(t) =
1

t
y(t) + 3t3

y(−1) = 2

We immediately see the previous definition, therefore we can immediately say that since f is Lipschitz
continuous and sublinear the solution to the problem will be uniquely defined on all of R.
For integrating this ODE we use the integrating factor method, taking p(t) = t−1 and q(t) = 3t3.
By definition, we have µ(t) = |t|, and therefore, since t < 0, µ(t) = −t−1, which gives

−1

t
y(t) = −3

ˆ
t2 dt+ c

Therefore
y(t) = t4 − ct

Applying the initial condition
y(−1) = 1 + c = 2 =⇒ c = 1

And therefore the final, unique solution of the initial value problem is the following

y(t) = t4 − t

Theorem 9.7 (General Solutions). Taken y′(x) + p(x)y(x) = q(x) a linear non homogeneous ODE,
we define the associated homogeneous ODE as the equation

z′(x) + p(x)z(x) = 0

The solution of the complete ODE will be given by the sum of the particular solution y(x)
and the homogeneous solution z(x)

Proof. Take y(x) a solution of the equation and y(x) the particular solution of the ODE, we then have,
since both are solutions {

y′(x) + p(x)y(x) = q(x)

y′(x) + p(x)y(x) = q(x)

Subtracting term a term we have

(y′(x)− y(x)) + p(x)(y(x)− y(x)) = 0

Chosen y′(x)− y(x) = z(x) we have that

z′(x) + p(x)z(x) = 0

Therefore z(x) is a solution, but it’s also the solution to the associated homogeneous ODE, and therefore,
inverting for the general solution y(x), we have

y(x) = y(x) + z(x)
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Example 9.2.4. Taken the following initial value problemy′(x) +
2

x
y(x) =

1

x2

y(−1) = 2

We want to find the general integral of the equation, y(x). We begin by solving the associated
homogeneous equation

z′(x) +
2

x
z(x) = 0

In order to integrate this we use the integrating factor µ(x), where

µ(x) = exp

(
2

ˆ x

−1

1

x
dx

)
= exp (2 log(|x|)) = exp

(
log
(
x2
))

= x2

We multiply by the integrating factor, and get

d

dx

(
x2z(x)

)
= 0

Therefore

x2z(x) = c =⇒ z(x) =
c

x2

The particular solution y(x) will be

y(x) =
1

µ(x)

ˆ x

x0

1

x2
µ(x)dx

Therefore

y(x) =
1

x2

ˆ x

−1

dx =
1

x

The general solution will be y(x) = y(x) + z(x), and we finally get

y(x) =
c

x2
+

1

x

Imposing the initial condition we have

y(−1) = c− 1 = 2 =⇒ c = 3

Therefore

y(x) =
3

x2
+

1

x

Note how we could have found the general integral directly using the formula

y(x) =
c

x2
+

1

x2

ˆ x

−1

dx =
3

x2
+

1

x2

ˆ x

−1

dx
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Method 3 (Variation of Constants). Given a linear ODE y′(t) + a(t)y = f(t), with a, f ∈ C(I), I ⊆ R
suppose that z(t) is the solution of the homogeneous equation, we have therefore

z(t) =
c

µ(t)
= c exp

(ˆ
a(t)dt

)
We can find a particular solution through variation of constants, i.e. we suppose c = c(t), and we
have

y(t) = c(t) exp

(ˆ
a(t)dt

)
Imposing this on the differential equation, we have

y′(t) = c′(t) exp

(
−
ˆ
a(t)dt

)
− a(t)c(t) exp

(
−
ˆ
a(t)

)
dt

And therefore
1

µ(t)
(c′(t)− a(t)c(t)) +

a(t)c(t)

µ(t)
= f(t)

Therefore
c′(t)

µ(t)
= f(t) =⇒ c(t) =

ˆ
f(t)µ(t)dt

Which implies

y(t) =
1

µ(t)

ˆ
f(t)µ(t)dt

We then recover the previous formula by adding the particular and homogeneous solutions

y(t) =
c

µ(t)
+

1

µ(t)

ˆ
f(t)µ(t)dt

§§ 9.2.2 Second Order Linear ODEs

Definition 9.2.4 (Initial Value Problem for 2nd Order Linear ODEs). Given a second order linear
differential equation y′′(x) + a(x)y′(x) + b(x)y(x) = f(x) we define the initial value problem for
such differential equation as follows

y′′(x) + a(x)y′(x) + b(x)y(x) = f(x)

y′(x0) = y′0

y(x0) = y0

This kind of problem, if a, b, f ∈ C(I) I ⊆ R is said to be well defined

Theorem 9.8 (Space of Solutions). Given a second order linear ODE, the solutions of the ho-
mogeneous equation span a vector space of dimension 2 S, and the general solution of the
homogeneous equation has the following form

zg(x) = c1z1(x) + c2z2(x) ∈ S
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I.e., if we define a matrix Wµν(t) as follows

Wµν(t) =

(
z1(t) z2(t)
z′1(t) z′2(t)

)
If z1, z2 solve the differential equation, the matrix Wµν(t) is non-singular

Proof. Suppose z1, z2 ∈ C2(I) are two solutions. If they’re linearly inddependent we have that they
solve the following system with c1, c2 ∈ R \ {0}{

c1z1(x) + c2z2(x) = 0

c1z
′
1(x) + c2z

′
2(x) = 0

This system is solvable only if the determinant of the matrixWµν is non zero, and therefore the two
functions must be linearly independent and span the vector space of solutions S

Method 4 (Characteristic Polynomial). Take the following linear homogeneous ODE of order 2

z′′(x) + az′(x) + bz(x) = 0 a, b ∈ R

We begin by “guessing” a solution in exponential form z(x) = eλx, where λ ∈ C. Therefore, reinserting
into the ODE, we have

eλx
(
λ2 + aλ+ b

)
= 0

Since the exponential is never zero ∀x ∈ R, ∀λ ∈ C we have that the polynomial must be zero, and
therefore we get two roots

λ1,2 = −a
2
± 1

2

√
a2 − 4b

We can now discern 3 cases.
Case 1), a2 − 4b > 0
There are two real roots λ1, λ2, and therefore we have

z(x) = c1e
λ1x + c2e

λ2x

Case 2), a2 − 4b < 0
There are two complex conjugate roots λ, λ, and the solution will be

z(x) = Re
(
c1e

λx + c2e
λx
)
= c1e

Re(λ)x cos(Im(λ)x) + c2e
Re(λ)x sin(Im(λ)x)

Or
z(x) = AeRe(λ)x cos(Im(λ) + ϕ)

With A,ϕ ∈ R Case 3) a2 − 4b = 0
There is only one root λ = a/2 with multiplicity 2. In order to find the general integral z(x) we impose
the variation of constants, and we have

z(x) = c(x)eλx

And
z′(x) = c′(x)eλx + λc(x)eλx = eλx(c′(x) + λc(x))

z′′(x) = c′′(x)eλx + λc′(x)eλx + λ2c(x)eλx = eλx(c′′(x) + λc′(x) + λ2c(x))
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Since λ is a root of the characteristic polynomial, we end up with

c′′(x) = 0 =⇒ c(x) = c2 + c1t

Therefore
z(x) = eλt(c1 + c2t) = e−

a
2 t(c1 + c2t)

Method 5 (Similarity Method). Another method for finding a particular solution is the similarity method.
Given the following linear ODE

y′′(x) + ay′(x) + by(x) = f(x)

The particular solution of this problem can be found using the shape of f(x).
Case 1) f(x) ∈ Rn[x]
In this case we will suppose that the solution will be a polynomial, and we can discern 3 cases

y(x) =


q(x) b 6= 0

xq(x) b = 0, a 6= 0

x2q(x) b = 0, a = 0

Where q(x) ∈ Rn[x]
Case 2) f(x) = Aeλx, λ ∈ C
In this case we will suppose the particular solution as the real part of a complex exponential, where

y(x) = Re (ỹ(x)) = γ(x)Re
(
eλx
)

Where γ(x) ∈ C2(I), I ⊂ R is some unknown function. From this we will have, deriving twice

ỹ′(x) = eλx (γ′(x) + λγ(x))

ỹ′′(x) = eλx
(
λ2γ(x) + 2λγ′(x) + γ′′(x)

)
Substituting into the differential equation we obtain

γ′′(x) + (2λ+ a)γ′(x) + (λ2 + bλ+ a)γ(x) = A

We get again 3 different cases
a) λ2 + aλ+ b = 0
In this case we have

γ(x) =
A

λ2 + aλ+ b
=⇒ ỹ(x) =

A

λ2 + aλ+ b
eλx

b) λ2 + aλ+ b = 0, 2λ+ a 6= 0
In this gase instead we have

γ′(x) =
A

2λ+ a
=⇒ ỹ(x) =

A

2λ+ a
xeλx

c) λ2 + aλ+ b = 0, 2λ+ a = 0
Lastly we have

γ′′(x) = A =⇒ ỹ(x) =
A

2
x2eλx

The solution for the differential equation will lastly be either the real (or imaginary, if there is a sine in
the RHS) part of the function we found.
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Example 9.2.5. We will use the similarity method to solve the following differential equation

y′′(x) + 2y′(x) + 3y(x) = 2e3x

We see immediately that f(x) = 2e3x so we choose a particular solution y(x) with the following form

y(x) = ke3x

We therefore have
y′(x) = 3ke3x

y′′(x) = 9ke3x

Substituting

18k = 2 =⇒ k =
1

9

Therefore our searched solution will be the following

y(x) =
1

9
e3x

Example 9.2.6. Let’s now solve the following differential equation

y′′(x) + 2y′(x)− 3y(x) = 2e−3x

Following the same approach, we see that the characteristic polynomial is null, and we end up with a
contradiction, therefore we find a solution of the following kind

y(x) = kxe−3x

Deriving the particular solution, we have

y′(x) = ke−3x (1− 3x)

y′′(x) = 3ke−3x (3x− 2)

Substituting

3k(3x− 2) + 2k(1− 3x)− 3kx = 2

−4k = 2

k = −1

2

Therefore the particular solution we’re searching for is, finally

y(x) = −x
2
e−3x
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Method 6 (Variation of Constants). Another method that might be used to solve a second order linear
differential equation is the method of variation of constants.
Given the following differential equation and the associated homogeneous equation

y′′(x) + ay′(x) + by(x) = f(x)

z′′(x) + az′(x) + bz(x) = 0

Suppose that z1(x), z2(x) are two linearly independent homogeneous solutions, and

z(x) = c1z1(x) + c2z2(x)

We search for a particular solution supposing that the two constants are actually functions, and we
have

y(x) = c1(x)z1(x) + c2(x)z2(x)

Due to the necessity of a non-singular Wronskian determinant, we impose the following condition

c′1(x)z1(x) + c′2(x)z2(x) = 0

Deriving two times the particular solution and then substituting in the original equation we end up
with the following system {

c′1(x)z1(x) + c′2(x)z2(x) = 0

c′1(x)z
′
1(x) + c′2(x)z

′
2(x) = f(x)

The necessity for the linear independence of the solutions is clear here, since the system is solvable if
and only if the Wronskian determinant is zero.
We solve the system by substitution, and we have

c′1(x) = −c′2(x)
z2(x)

z1(x)

c′2(x) =
f(x)− c′1(x)z

′
1(x)

z′2(x)

Therefore 
c′1(x) = − z1(x)

z1(x)z′2(x)− z2(x)z′1(x)
f(x)

c′2(x) =
z2(x)

z1(x)z′2(x)− z2(x)z′1(x)
f(x)

Written in terms of the Wronskian determinant detµνWµν(x) we finally have as particular solution

y(x) = z2(x)

ˆ
z2(x)

detµνWµν(x)
f(x)dx− z1(x)

ˆ
z1(x)

detµνWµν(x)
f(x)dx+ c

And the general solution of the differential equation will be the following

y(x) = z2(x)

ˆ x

x0

z2(x)

detµνWµν(x)
f(x)dx− z1(x)

ˆ x

x0

z1(x)

detµνWµν(x)
f(x)dx+ c1z1(x) + c2z2(x)
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10 Fourier Calculus

§ 10.1 Bessel Inequality and Fourier Coefficients

Definition 10.1.1 (Fourier Coefficients). Suppose (uk)k∈N = U ⊂ V , with (V, 〈·, ·〉) an euclidean space,
taken v ∈ V we can define an operator F̂U : V −→ CN such that

∀v ∈ V F̂U (v) = c ∈ CN

Where
c = (〈v, u1〉, 〈v, u2〉, · · · ) ∈ CN

The coefficients 〈v, uk〉 ∈ C are called the Fourier coefficients of the vector v ∈ V

Theorem 10.1 (Bessel Inequality & Parseval’s Theorem). Given (uk)k∈N = U ⊂ V an orthonormal
system and V an euclidean space with v ∈ V. Taken α1, · · · , αk ∈ C some coefficients and
defined the two following sums

Sn =

n∑
k=1

〈v, uk〉uk =

n∑
k=1

ckuk

Sαn =

n∑
k=1

αkuk

Then
‖v − Sn‖ ≤ ‖v − Sαn‖
∞∑
k=1

‖ck‖2 ≤ ‖v‖2

The last inequality is known as Bessel’s inequality
Lastly we also have Parseval’s equality or Parseval’s theorem, which states

v =

∞∑
k=1

〈v, uk〉uk =

∞∑
k=1

ckuk ⇐⇒
∞∑
k=1

‖ck‖2 = ‖v‖2

Due to this the operator F̂U actually acts into `2(C), i.e.

F̂U : V −→ `2(C)

175
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Proof. By definition of euclidean norm and using the bilinearity of the scalar product we have

0 ≤ ‖v − Sαn‖ = ‖v‖2 − 2Re (〈v, Sαn 〉) + ‖Sαn‖
2
=

= ‖v‖2 − 2Re

(
n∑
k=1

〈v, uk〉αk

)
+

n∑
k=1

‖αk‖2

Therefore

0 ≤ ‖v‖2 −
n∑
k=1

‖ck‖2 +
n∑
k=1

‖αk − ck‖2

The minimum on the left is given for αk = ck and therefore, since Scn = Sn we have

‖v − Sn‖ ≤ ‖v − Sαn‖

And, using the non-negativity of the norm operator, putting n→ ∞ we have

0 ≤ ‖v − Sn‖ = ‖v‖2 −
n∑
k=1

‖ck‖2 =⇒
n∑
k=1

‖ck‖2 ≤ ‖v‖2

Therefore
∞∑
k=1

‖〈v, uk〉‖2 ≤ ‖v‖2

Which means that the sum on the left converges uniformly, and therefore ck ∈ `2(C). This demonstrates
that F̂U : V −→ `2(C) and Bessel’s inequality.
This also gives Parseval’s equality, since, for n→ ∞∥∥∥∥∥v −

∞∑
k=1

〈v, uk〉uk

∥∥∥∥∥
2

= 0 ⇐⇒ ‖v‖2 =
∞∑
k=1

‖〈v, uk〉‖2

Due to the uniform convergence in V we have therefore

F̂U (v) =

∞∑
k=1

〈v, uk〉uk

Definition 10.1.2 (Closed System). An system (uk)k∈N ∈ V is said to be closed iff ∀v ∈ V

‖v‖2 =

∞∑
k=1

‖〈v, uk〉‖2

v =

∞∑
k=1

〈v, uk〉uk
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Theorem 10.2 (Closeness and Completeness). Given an orthonormal system U = (uk)k∈N ∈ V
with V an euclidean space, we have that U is a complete set if and only if U is a closed system.
If U is complete or closed, V is separable

Proof. Defined Sn the partial sums of the Fourier representation of v (ndr the series that represents v
with respect to the system (uk)), we have that for the theorem to be true the following two things
must hold

lim
n→∞

Sn = v span(uk) = V

I.e. ∀ε > 0 ∃N ∈ N, α1, · · · , αN ∈ C such that ‖v − Sαn‖ < ε. Using Bessel-Parseval we have

0 ≤ ‖v − SN‖ ≤ ‖v − SαN‖ < ε

Proving the closure of the system if the space V is complete.
Taken (uk)k∈N a closed system, we have that Sn → v, therefore v ∈ ad (span(U)), which implies

v ∈ span(U) =⇒ V = span(U)

The last implication is given by the fact that v ∈ V is arbitrary, and it implies the completeness of U and
the separability of V

Theorem 10.3 (Riesz-Fisher). Given V a hilbert space and U = (uk)k∈N ∈ V an orthonormal
system, therefore ∀c ∈ `2 ∃v ∈ V : F̂U [v] = c and

ck = 〈v, uk〉

‖v‖2 = ‖c‖22 =

∞∑
k=1

‖ck‖2

v =

∞∑
k=1

〈v, uk〉uk

Proof. Taken a sequence (vk) ∈ V defined as follows

vn =

m∑
k=1

ckuk

This sequence is a Cauchy sequence, therefore it converges to v ∈ V, since

‖vn − vm‖2 =

∥∥∥∥∥
m∑

k=n+1

ckuk

∥∥∥∥∥
2

= 〈
m∑

k=n+1

ckuk,

m∑
k=n+1

ckuk〉 =

=

m∑
k=n+1

m∑
i=n+1

ckci〈ui, uk〉 =
m∑

k=n+1

‖ck‖2

By definition, since c ∈ `2, the sum on the right converges, therefore

‖vn − vm‖2 ≤
∞∑

k=n+1

‖ck‖2 <∞
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Which means, that ∀ε > 0 ∃N ∈ N such that

‖vn − vm‖2 ≤
∞∑

k=n+1

‖ck‖2 < ε ∀n ≥ N

Which implies that vn → v and

v =

∞∑
k=1

ckuk

We can now write 〈v, uk〉 = 〈vn, uk〉+ 〈v − vn, uk〉.
We have

∀n ≥ k 〈vn, uk〉 =
n∑
i=1

ci〈ui, uk〉 = ck

For Cauchy-Schwartz we also have that

‖〈v − vn, uk〉‖ ≤ ‖v − vn‖ → 0

Which implies that ck = 〈v, uk〉 and therefore

v =

∞∑
k=1

〈v, uk〉uk =

∞∑
k=1

ckuk

§ 10.2 Fourier Series

§§ 10.2.1 Fourier Series in L2[−π, π]

Definition 10.2.1 (Fourier Series). Given a function f ∈ L2[−π, π] we define the Fourier series
expansion of this function the following expression

f(x) ∼ a0
2

+

∞∑
k=1

ak cos(kx) + bk sin(kx) (10.1)

Where 
ak =

1

π

ˆ π

−π
f(x) cos(kx)dx

bk =
1

π

ˆ π

−π
f(x) sin(kx)dx

(10.2)

The notation ∼ indicates that the Fourier series of the function converges to the function f(x). Usually
an abuse of notation is used, where the function is actually set as equal to the Fourier expansion.

Definition 10.2.2 (Trigonometric Polynomial). A function p ∈ L2[−π, π] is said to be a trigonometric
polynomial if, for some coefficients αk, βk we have

p(x) =
α0

2
+

∞∑
k=1

αk cos(kx) + βk sin(kx) (10.3)
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Theorem 10.4 (Completeness of Trigonometric Functions). Given (uk), (vk) ∈ L2[−π, π] two se-
quences of functions, where {

uk(x) = cos(kx)

vk(x) = sin(kx)

The set {uk, vk} is orthogonal and complete, i.e. a basis in L2[−π, π]

Remark. These trigonometric identities always hold, ∀n, k ∈ N, n 6= k

cos(nx) cos(kx) =
1

2
(cos[(n+ k)x] + cos[(n− k)x])

sin(nx) sin(kx) =
1

2
(cos[(n− k)x]− cos[(n+ k)x])

cos(nx) sin(kx) =
1

2
(sin[(n+ k)x]− sin[(n− k)x])

(10.4)

Proof. We begin by demonstrating that the two function sequences uk, vk are orthogonal in L
2[−π, π].

Therefore, by explicitly writing the scalar product, we have, for k 6= n

〈un, uk〉 =
ˆ π

−π
cos(nx) sin(kx)dx =

1

2

ˆ π

−π
cos[(n+ k)x] + cos[(n− k)x]dx

Therefore

〈un, uk〉 =
1

2

[
sin[(n+ k)x]

n+ k
+

sin[(n− k)x]

n− k

]π
−π

= 0

Analogously

〈vn, vk〉 =
1

2

[
sin[(n− k)x]

n− k
− sin[(n+ k)x]

n+ k

]π
−π

= 0

And, finally

〈un, vk〉 =
1

2

[
cos[(n+ k)x]

n+ k
− cos[(n− k)x]

n− k

]π
−π

=
1

2
− 1

2
= 0

Which demonstrates that, for k 6= n uk ⊥ un, vk ⊥ vn, uk ⊥ vk.
Now, taken a trigonometric polynomial p(x) ∈ L2[−π, π] we need to prove that span {uk, vk} =
L2[−π, π], i.e.

∀ε > 0 ∀f ∈ L2[−π, π] ‖p− f‖2 < ε

We have already that C[−π, π] = L2[−π, π] and that for a Weierstrass theorem (without proof), every
periodic function with period 2π is the uniform limit of a trigonometric polynomial.
Using these two results, given f ∈ L2[−π, π], ∃g ∈ C[−π, π] : ‖f − g‖2 < ε/3. Taken ĝ(x) as the
periodic extension of g(x), for Weierstrass we have

‖g − ĝ‖2 <
ε

3
‖p− ĝ‖2 <

ε

3
=⇒ ‖p− ĝ‖u <

ε

3
√
2π

Therefore, finally ‖f − p‖2 < ε
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Theorem 10.5 (Parseval Identity). Given f ∈ L2[−π, π] we have that

ˆ π

−π
|f(x)|2 dx =

|a0|2

2
+

∞∑
k=1

|ak|2 + |bk|2

Proof. The proof is quite straightforward, since trigonometric polynomials form a basis for L2[−π, π]
we have that this is simply the already known Parseval identity, since

‖f‖22 =

∞∑
k=0

‖ck‖2

Writing ck = ak + bk we have

‖f‖22 =
‖a0‖2

2
+

∞∑
k=1

‖ak‖2 + ‖bk‖2

§§ 10.2.2 Fourier Series in L2[a, b]

Definition 10.2.3 (Basis of the Space). In order to define a trigonometric basis in L2[a, b] with a 6= b,
we can use a simple coordinate transformation onto the {(uk), (vk)} basis of the space L2[−π, π].
Therefore, taken

y(x) =
π

b− a
(2x− a− b)

The new basis on L2[a, b] will be
(uk(y(x))) = cos(ky(x)) = cos

(
kπ

b− a
(2x− a− b)

)
(vk(y(x))) = sin(ky(x)) = sin

(
kπ

b− a
(2x− a− b)

)
The completeness of this basis is given by the fact that, this change of coordinates is a smooth
diffeomorphism between L2[−π, π], L2[a, b].

Definition 10.2.4 (General Fourier Series). With the previous definition, the Fourier series of a function
f ∈ L2[a, b] is given as follows

f(x) ∼ ã0
2

+

∞∑
k=1

ãk cos

(
kπ

b− a
(2x− a− b)

)
+ b̃k sin

(
kπ

b− a
(2x− b− a)

)
(10.5)

Where 
ãk =

1

b− a

ˆ b

a

f(x) cos

(
kπ

b− a
(2x− b− a)

)
dx

b̃k =
1

b− a

ˆ b

a

f(x) sin

(
kπ

b− a
(2x− b− a)

)
dx

(10.6)
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§§ 10.2.3 Fourier Series in Symmetric Intervals, Expansion in Only Sines and Cosines

Definition 10.2.5. We firstly begin finding the Fourier series of a function in L2[−l, l]. Using the
previous general case in L2[a, b] and setting a = −l, b = l we have ∀f ∈ L2[−l, l]

f(x) ∼ a0
2

+

∞∑
k=1

ak cos

(
kπx

l

)
+ bk sin

(
kπx

l

)
(10.7)

With coefficients 
ak =

1

l

ˆ l

−l
f(x) cos

(
kπx

l

)
dx

bk =
1

l

ˆ l

−l
f(x) sin

(
kπx

l

)
dx

(10.8)

Theorem 10.6. Taken the space L2[0, π] we have that both trigonometric sequences (uk(x))
and (vk(x)) are orthogonal bases in this space, and the following equalities hold.
∀f ∈ L2[0, π]

f(x) ∼ a′0
2

+

∞∑
k=1

a′k cos(kx)

f(x) ∼
∞∑
k=1

b′k sin(kx)

Where

a′k =
2

π

ˆ π

0

f(x) cos(kx)dx

b′k =
2

π

ˆ π

0

f(x) sin(kx)dx

Proof. The proof of this theorem is straightforward, we firstly define the even and uneven extensions
of the function f(x) in L2[−π, π] as follows

fe(x) =

{
f(x) x ∈ [0, π]

f(−x) x ∈ [−π, 0)

And

fu(x) =

{
f(x) x ∈ [0, π]

−f(−x) x ∈ [−π, 0)

Expanding both these functions in [−π, π]we have that, indicating the coefficients of each as aek, b
e
k, a

u
k , b

u
k

aek =
1

π

ˆ π

−π
fe(x) cos(kx)dx =

2

π

ˆ π

0

f(x) cos(kx)dx = a′k

bek = 0

auk = 0

buk =
1

π

ˆ π

−π
fu(x) sin(kx)dx =

2

π

ˆ π

0

f(x) sin(kx)dx = b′k
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Therefore

fe(x) ∼ a′0
2

+

∞∑
k=1

a′k cos(kx)

fu(x) ∼
∞∑
k=1

b′k sin(kx)

Which implies that
‖fe − Sn‖22 = 2‖f − Sn‖2[0,π] → 0

And
‖fu − Sn‖22 = 2‖f − Sn‖2[0,π] → 0

Proving the theorem.

Example 10.2.1. Taken the function f(x) = x2 x ∈ [−l, l] we want to find the Fourier expansion of
this function.
Since x2 is even, thanks to the previous theorem we know that the coefficients bk = 0 in all the set of
definition, therefore

x2 ∼ a0
2

+

∞∑
k=1

ak cos

(
kπx

l

)
We firstly calculate the coefficient a0 of the expansion

a0 =
1

l

ˆ l

−l
x2 dx =

2l2

3

The coefficients ak can be calculated using the fact that x2 is even, and therefore we have

ak =
1

l

ˆ l

−l
x2 cos

(
kπx

l

)
dx =

1

l

[
x2 sin

(
kπx

l

)
l

kπ

]l
−l

− 4

kπ

ˆ l

0

x sin

(
kπx

l

)
dx =

=
4l

(kπ)2

[
x cos

(
kπx

l

)]l
−l

− 4l

(kπ)2

ˆ l

0

sin

(
kπx

l

)
dx

Since the last integral is 0 we have

ak =
4l

(kπ)2

[
x cos

(
kπx

l

)]l
−l

=
(−1)kl2

(kπ)2

The searched Fourier expansion is therefore

x2 ∼ l2

3
+

4l2

π2

∞∑
k=1

(−1)k

k2
cos

(
kπx

l

)

Example 10.2.2 (Parseval’s Equality). Having now found the Fourier expansion for x2, we can use
Parseval’s equality in order to calculate the sum

∞∑
k=1

1

k2
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Thanks to Parseval, we therefore have

∥∥x2∥∥2
2
=

1

l

ˆ l

−l
x4 dx =

2l4

9
+

16l2

π4

∞∑
k=1

1

k4

The integral on the left is obvious, and moving the terms around we finally have

∞∑
k=1

1

k4
=

π4

16l5

ˆ l

−l
x4 dx− π4

36
=
π4

16

(
2

5
− 2

9

)
Therefore

∞∑
k=1

1

k4
=
π4

90

§§ 10.2.4 Complex Fourier Series

Theorem 10.7 (Complex Exponential Basis). Taken the space L2[−π, π], and defining a system
(ek)k∈Z = eikx, this system is an orthogonal basis for the space.

Proof. Using Euler’s formula for complex exponentials we have

(ek)k∈Z = eikx = cos(kx) + i sin(kx) = uk(x) + ivk(x)

Therefore, due to the linearity of the scalar product, these functions are orthogonal to each other, and
due to linearity we also have

span{eikx} = span{cos(kx), sin(kx)}

Which, implies

span{eikx} = L2[−π, π]

Note that ∥∥eikx∥∥2
2
= 2π

Definition 10.2.6 (Complex Fourier Series). Given f ∈ L2[−π, π]we can now define a Fourier expansion
in complex exponentials as follows

f(x) ∼
∞∑

k=−∞

〈f(x), eikx〉
‖eikx‖22

eikx =
∑
k∈Z

cke
ikx (10.9)

Where, the coefficients will be

ck =
〈f(x), eikx〉
‖eikx‖22

=
1

2π

ˆ π

−π
f(x)eikx dx (10.10)
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Note that if f(x) : R −→ R we have

ck =
1

2π

ˆ π

−π
f(x)eikx dx =

1

2π

ˆ π

−π
f(x)eikx dx =

1

2π

ˆ π

−π
f(x)e−ikx dx = c−k

Therefore, for a real valued function

f(x) ∼ c0 +

∞∑
k=1

cke
ikx + c−ke

−ikx = c0 + 2

∞∑
k=1

Re
{
cke

ikx
}

(10.11)

Example 10.2.3. Taken the function f(x) = ex, x ∈ [−π, π], we want to find the Fourier series in
terms of complex exponentials. Since f(x) is a real valued function, we have

ex ∼ c0 + 2

∞∑
k=1

Re
{
cke

ikx
}

The coefficients will be

c0 =
1

2π

ˆ π

−π
ex dx =

1

2π

(
eπ − e−π

)
=

sinh(π)

π

ck =
1

2π

ˆ π

−π
e(1−ik)x dx =

1

2π

[
1

1− ik

(
eπ(1−ik) − e−π(1−ik)

)]
The second expression can be seen as follows

ck =
1

2π(1− ik)

(
eikπeπ − e−ikπe−π

)
=

(−1)k

π(1− ik)
sinh(π)

The final expansion will then be given from finding the real part of this coefficient times the basis vector,
i.e.

Re

{
(−1)k sinh(π)

π(1− ik)
eikx

}
=

(−1)k sinh(π)

1 + k2
Re ((1 + ik)(cos(kx) + i sin(kx)))

The last calculation is obvious, and we therefore have

Re

{
(−1)k sinh(π)

π(1− ik)
eikx

}
=

(−1)k sinh(π)

1 + k2
(cos(kx)− k sin(kx))

And the final solution will be

ex ∼ sinh(π)

π
+

2 sinh(π)

π

∞∑
k=1

(−1)k

1 + k2
(cos(kx)− k sin(kx))
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§§ 10.2.5 Piecewise Derivability, Pointwise and Uniform Convergence of Fourier Series

Definition 10.2.7 (One Sided Derivatives). Let f : [a, b] −→ C be a piecewise continuous function and
let x ∈ [a, b). f(x) is said to be right (or left) derivable, if the following limits exist

f ′+(x) = lim
ε→0+

f(x+ ε)− f(x+)

ε

f ′−(x) = lim
ε→0−

−f(x+ ε)− f(x+)

ε

Where
f(x±) = lim

y→x±
f(y)

Example 10.2.4. Take the following function

f(x) =


0 x < 0

1

2
x = 0

1− x x > 0

We have

f ′+(0) = lim
ε→0+

f(ε)− f(0+)

ε
=

1− ε− 1

ε
= −1

f ′−(0) = lim
ε→0+

f(ε)− f(0+)

−ε
=

0

ε
= 0

It’s important to see how the right and left derivatives might not coincide with the right and left limits
of the derivative, as explained in the following theorem

Theorem 10.8. Let f(x) : [a, b] −→ C be a piecewise differentiable function, then given x ∈ [a, b)
we have

f ′+(x) = f ′(x+)

f ′−(x) = f ′(x−)

Proof. Since f(x) is piecewise differentiable, we have that ∃γ > 0 such that f(x) is differentiable
∀x ∈ (x, x+ γ) and we can define f ′ (x+)
Therefore ∀α > 0, ∃ε1 > 0 such that

∀y ∈ (x, x+ ε1)
∣∣f ′(y)− f ′(x+)

∣∣ < α

Thanks to the Lagrange theorem, and the definition of one sided limit, we have, given 0 < δ < ε ≤ ε1∣∣∣∣f(x+ ε)− f(x+ δ)

ε− δ
− f ′(x+)

∣∣∣∣ < α

Which implies therefore

lim
ε→0+

lim
δ→0+

∣∣∣∣f(x+ ε)− f(x+)

ε
− f ′(x+)

∣∣∣∣ = 0



CHAPTER 10. FOURIER CALCULUS 186

Which also implies, by definition

f ′+(x) = lim
ε→0+

f(x+ ε)− f(x+)

ε
= f ′(x+)

Definition 10.2.8 (Periodic Extension). Given a function f : [−π, π] −→ C, non periodic, we define the
periodic extension f̃ : R −→ C as

f̃(x) = f(x+ 2kπ) k ∈ Z, x+ 2kπ ∈ (−π, π]

Note that it coincides with the same function, given that x ∈ (−π, π] and therefore the periodic
extension has discontinuities of the first kind at the points xk = (2k + 1)π, k ∈ Z

Lemma 10.2.1 (Riemann-Lebesgue). Let f ∈ C[a, b] be a function such that f ′ is piecewise continuous
(also holds ∀f ∈ L1[a, b]), then

lim
s→∞

ˆ b

a

f(x) sin(sx)dx = 0

Proof. The proof comes directly from the calculus of the integral

ˆ b

a

f(x) sin(sx)dx = −1

s
[f(x) cos(sx)]

b
a +

1

s

ˆ b

a

f ′(x) sin(sx)dx

Since ‖f‖u =M and ‖f ′‖u =M ′, we have∣∣∣∣∣
ˆ b

a

f(x) sin(sx)dx

∣∣∣∣∣ ≤ 1

|s|
(2M + |b− a|M ′) → 0

Definition 10.2.9 (Dirichlet Kernel). We define the Dirichlet kernel as the following function

Dn(z) =
1

2π

(
sin
(
2n+1

2 z
)

sin
(
z
2

) )
=

1

2π
+

1

π

n∑
k=1

cos(kz)

Lemma 10.2.2. Given f : R −→ C a piecewise continuous function, and x ∈ R such that exists f ′+(x)
we have that 

lim
n→∞

ˆ π

0

f(x+ z)Dn(z)dz =
1

2
f(x+)

lim
n→∞

ˆ 0

−π
f(x+ z)Dn(z)dz =

1

2
f(x−)
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Theorem 10.9. Given f : R −→ C a 2π−periodic piecewise continuous function and letting Sn
be the n-th partial sum of the Fourier series expansion of f and letting x ∈ R such that exist
both the left and right derivative in the point, we have that

lim
n→∞

Sn(x) =

f(x) f is continuous in x

1

2

(
f(x+) + f(x−)

)
f is not continuous inx

Or also
lim
n→∞

Sn(x) =
1

2

(
f(x+) + f(x−)

)
Proof. By definition of the Fourier expansion, we have that, in the trigonometric basis

Sn(x) =
a0
2

+

n∑
k=1

ak cos(kx) + bk sin(kx)

Inserting the usual definitions of the Fourier coefficients and using the fact that the sum is finite, hence
it converges, we have

Sn(x) =
1

π

[ˆ π

−π
f(s)

(
1

2
+

n∑
k=1

cos(kx) cos(ks) + sin(kx) sin(ks)

)
ds

]
Simplifying

Sn(x) =
1

π

ˆ π

−π
f(s)

(
1

2
+

n∑
k=1

cos (k(s− x))

)
ds

Rearranging the second term we see that it’s the Dirichlet kernel, and using a transformation z = s− x,
we have

Sn(x) =

ˆ π

−π
f(x+ z)Dn(z)dz

Note that the extremes of integration are the same since both these functions are 2π−periodic.
Using the definition of the integral between f and the Dirichlet kernel, we have finally the statement
of the theorem, in the case that the function has a discontinuity at the point x

lim
n→∞

Sn(x) =
1

2

(
f(x+) + f(x−)

)

Theorem 10.10 (Pointwise Convergence of the Fourier Series). Given a piecewise continous 2π−pe-
riodic function f : R −→ C, we have that the Fourier series converges pointwise to the
following two cases, in case the function is continous or not in the point x ∈ R

Theorem 10.11 (Uniform Convergence of the Fourier Series). Given a 2π−periodic function f ∈
C(R), such that its derivative is piecewise continuous, we have that

Sn ⇒ f
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Proof. Since f(x) ∈ C(R) for the previous theorem we have that Sn(x) → f(x) ∀x ∈ R, therefore

f(x) =
a0
2

+

∞∑
k=1

ak cos(kx) + bk sin(kx) x ∈ R

Using the Weierstrass M-test we have that, taken the following sequence

ck = ak cos(kx) + bk sin(kx)

The sequence is limited as follows

|ck| ≤ |ak||cos(kx)|+ |bk||sin(kx)| ≤ |ak|+ |bk| =Mk

In order to check that the sum of this extremum is convergent we find the Fourier expansion of the
derivative of f

f ′(x) ∼ a′0
2

+

∞∑
k=1

a′k cos(kx) + b′k sin(kx)

It’s not hard to prove that 
a′k = −bk

k

b′k =
ak
k

Therefore
∞∑
k=1

|ak|+ |bk| =
∞∑
k=1

1

k
(|a′k|+ |b′k|) ≤

1

2

∞∑
k=1

|a′k|
2
+ |b′k|

2
+

2

k2
<∞

Since ak, a
′
k, bk, b

′
k ∈ `2(R) Therefore, the sum converges and for Weierstrass’ M-test it converges

uniformly

§§ 10.2.6 Solving the Heat Equation with Fourier Series

Definition 10.2.10 (Heat Equation). In physics, the equation governing heat transfer is the heat
equation a partial differential equation of order 2 in space and of order 1 in time.
The equation is the following

∂u

∂t
= λ

∂2u

∂x2
(10.12)

Example 10.2.5 (Heat Equation with Von Neumann Boundary Conditions). We firstly write the heat
equation with Von Neumann boundary conditions

∂tu = λ∂2xu

∂xu(0, t) = ∂xu(l, t) = 0

u(x, 0) = f(x)

(10.13)

Where x ∈ [0, l], t > 0
We suppose that u(x, t) is expressible as a uniformly convergent Fourier series of only sines or cosines.
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Since we want the derivative on the x to vanish in order to satisfy immediately the boundary conditions,
we suppose the following expansion

u(x, t) =
a0(t)

2
+

∞∑
k=1

ak(t) cos

(
kπx

l

)
Deriving, we have

∂tu =
a′0(t)

2
+

∞∑
k=1

a′k(t) cos

(
kπx

l

)

∂xu = −π
l

∞∑
k=1

kak(t) sin

(
kπx

l

)

∂2xu = −π
2

l2

∞∑
k=1

k2ak(t) cos

(
kπx

l

)
It’s immediate to see that the boundary conditions are immediately satisfied, and therefore, reinserting
it back into the differential equation, we get

−π
2λ

l2

∞∑
k=1

k2ak(t) cos

(
kπx

l

)
=
a′0(t)

2
+

∞∑
k=1

a′k(t) cos

(
kπx

l

)
Therefore, we end up with the following infinite system of ODEs of order 1

a′0(t) = 0

a′k(t) = −λ
(
kπ

l

)2

ak(t)

With k > 1, k ∈ N. Therefore, integrating we get

a0 = a0 ak(t) = ake
−λ

(
kπ
l

)2
t

Reinserting into the second boundary condition u(x, 0) = f(x) we end up determining the coefficients
as the cosine-Fourier coefficients of the function f(x)

ak =
2

l

ˆ l

0

f(x) cos

(
kπx

l

)
dx

a0 =
1

l

ˆ l

0

f(x)dx

Therefore, the complete solution to the PDE is

u(x, t) =
1

2l

ˆ l

0

f(x)dx+
2

l

∞∑
k=1

e−
(
kπ
l

)2
λt cos

(
kπx

l

)ˆ l

0

f(s) cos

(
kπs

l

)
ds
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Example 10.2.6 (Dirichlet Boundary Conditions). Let’s now take the heat equation with different
boundary conditions, namely 

∂tu = λ∂2xu

u(x, 0) = f(x)

u(0, t) = u(l, t) = 0

Where (x, t) ∈ [0, l] × R+ \ {0} Since the first derivative doesn’t appear in the boundary conditions
we choose a particular form of u(x, t) in terms of an only sine Fourier expansion (assuming uniform
convergence). We have therefore

u(x, t) =

∞∑
k=1

bk(t) sin

(
kπx

l

)
Deriving, we get therefore

∂tu =

∞∑
k=1

b′k(t) sin

(
kπx

l

)

∂2xu = −π
2

l2

∞∑
k=1

k2bk(t) sin

(
kπx

l

)
Reinserting into the differential equation, we have

∞∑
k=1

b′k(t) sin

(
kπx

l

)
+
λπ2k2

l2
bk(t) sin

(
kπx

l

)
= 0

Therefore, equating the coefficients for the infinite ODEs we get

b′k(t) =

(
kπ

l

)2

bk(t)

bk(t) = bke
−λ

(
kπ
l

)2
t

And our particular solution will be, therefore

u(x, t) =

∞∑
k=1

bke
−λk2π2

l2
t sin

(
kπx

l

)
Imposing the last condition we get

u(x, t) =

∞∑
k=1

e−
λk2π2

l2
t sin

(
kπx

l

)ˆ l

0

f(x) sin

(
kπs

l

)
ds

§ 10.3 Fourier Transform

§§ 10.3.1 Fourier Integrals, Translations, Dilations

Proposition 16 (Extending the Fourier Series). Let f : R −→ C be a non periodic function and
fl : [−l, l] ⊂ R −→ C be a function with periodic extension that converges to f(x) for l → ∞.
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We have, using the complex exponential basis that

fl(x) ∼
1

2l

∑
k∈Z

e
−ikπx

l

ˆ l

−l
fl(s)e

ikπs
l ds

Sending l → ∞ we have that the sum of coefficients behaves like a Riemann sum and converges to the
following integral ˆ

R
g(λ)eikx dx = f(x)

Where the last equality is given by the fact that fl(x) → f(x).
We define the integral used for finding these “coefficients” the Fourier Integral Transform of f

g(λ) = F̂ [f ](λ) = f̂(λ)
1

2π

ˆ
R
f(x)e−iλx dx

Definition 10.3.1 (Parity, Translation and Dilation Operators). Let f : R −→ C be some function. We
define the following operators

P̂ [f ](x) = f(−x) Parity

T̂a[f ](x) = f(x− a) Translation

Φ̂a[f ](x) = f(ax) Dilation

Definition 10.3.2 (Fourier Operator). Given a function f ∈ L1(R) we define the Fourier operator
F̂ [f ] as follows

F̂ [f ] =

ˆ
R
f(x)e−iλx dx λ ∈ R

Which is basically the Fourier transform f̂ of the function f .
Note that F̂ : L1(R) → L1(R), since∥∥∥F̂ [f ]

∥∥∥ =

ˆ
R

∣∣f(x)e−iλx∣∣dx =

ˆ
R
|f(x)|dx

Theorem 10.12 (Properties of the Fourier Transform). Given f, g ∈ L1(R) and a, b ∈ C we hafe that

1. F̂ [af + bg] = aF̂ [f ] + bF̂ [g]

2. F̂ [f ](λ) = F̂ [f ](−λ)

3. Im(f) = 0 =⇒ F̂ [f ](λ) = F̂ [f ](−λ)

4. Im(f) = 0, f even =⇒ Im
(
F̂ [f ]

)
= 0, F̂ [f ] even

5. Im(f) = 0, f uneven =⇒ Re
(
F̂ [f ]

)
= 0, F̂ [f ] uneven
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Theorem 10.13 (Action of the Dilation, Parity and Translation Operators on the Fourier Operator).
Given f ∈ L1(R) and a ∈ R \ {0} we have

1. F̂ P̂ = P̂ F̂

2. F̂ T̂a = e−iλaF̂

3. T̂aF̂ = F̂ [eiaxf(x)]

4. F̂Φ̂a = |a|−1
Φ̂a−1F̂

5. F̂ΦaT̂b = |a|−1
e−iλbΦ̂a−1F̂

6. F̂ T̂bΦ̂a = |a|−1
e−iλb/aΦ̂a−1F̂

7. F̂D̂ = iλF̂

Example 10.3.1 (Fourier Transform of the Set Index Function). Let f(x) = 1[−a,a](x) be the index
function of [−a, a], we have

F̂ [1[−a,a]](λ) =

ˆ
R
1[−a,a](x)e

−iλx dx =

ˆ a

−a
e−iλx dx =

i

λ
[e−iλx]a−a =

2

λ
sin(λa)

For a = 1/2 we have 1−1/2,1/2(x) = rect(x) and therefore

F̂ [rect(x)](λ) =
sin(λ/2)

λ/2
= sinc

(
λ

2π

)

Example 10.3.2 (Fourier Transform of the Triangle Function). We define the triangle function tri(x) =
max {1− |x|, 0} = rect(x/2)(1− |x|). We then have

F̂ [max {1− |x|, 0}] =
ˆ
R
max {1− |x|, 0} e−iλx dx =

ˆ 1

−1

(1− |x|)e−iλx dx

Using the properties of the absolute value and using a change in coordinayes we have

F̂ [max {1− |x|, 0}] =
ˆ 1

0

(1− x)
(
eiλx + e−iλx

)
dx = 2

ˆ 1

0

(1− x) cos(λx)dx

By direct integration, we therefore get

F̂ [max {1− |x|, 0}] = 2

λ

ˆ 1

0

sin(λx)dx =
2

λ2
(1− cos(λ)) =

4

λ2
sin2(λ/2) = sinc2

(
λ

2π

)

Example 10.3.3 (A Couple Fourier Transforms More). 1) f(x) = H(x)e−ax where a ∈ R, a > 0 This
one is quite straightforward. We have

F̂ [H(x)e−ax] =

ˆ
R
H(x)e−(a+iλ)x dx =

ˆ
R+

e−(a+iλ)x = −
[
e−(a+iλ)x

a+ iλ

]+∞

0

=
1

a+ iλ
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2) f(x) = 1/(1+ x2) For this we immediately choose to use the residue theorem, so, we firstly suppose
that λ < 0 and we choose a path enclosing the region Im(z) < 0, for which the only singularity is
given by z̃ = −i

F̂
[

1

1 + x2

]
= lim
R→∞

ˆ
γ−
R

e−iλz

1 + z2
dz = −2πi Res

z=−i

(
e−iλz

1 + z2

)
Therefore

F̂
[

1

1 + x2

]
= −2πi lim

z→−i

[
(z + i)

e−iλz

(z + i)(z − i)

]
= πeλ

Analogously, for λ > 0 we choose a curve enclosing the region Im(z) > 0, and therefore, noting that
the only encompassed singularity is z̃ = i

F̂
[

1

1 + x2

]
= lim
R→∞

ˆ
γ+
R

e−iλz

1 + z2
dz = 2πi Res

z=i

(
e−iλz

1 + z2

)
Therefore

F̂
[

1

1 + x2

]
= 2πi lim

z→i

[
(z − i)

e−iλz

(z + i)(z − i)

]
= πe−λ

Uniting both cases, i.e. for λ ∈ R, we have finally

F̂
[

1

1 + x2

]
= πe−|λ|

3) f(x) = e−a|x| Last but not least, we can calculate this Fourier transform using the properties of the
Fourier operator. Firstly

e−a|x| = H(x)e−ax +H(−x)eax

We can also write this as follows

e−a|x| = H(x)e−ax + P̂ [H(x)e−ax]

Therefore, using the linearity of the Fourier transform and the behavior of it under parity transformations,
we have

F̂ [e−a|x|] =
1

a+ iλ
+ P̂

[
1

a+ iλ

]
=

1

a+ iλ
+

1

a− iλ
=

2a

a2 + λ2

Example 10.3.4 (A Particular Way of Solving a Fourier Integral). Take now the function f(x) = e−x
2

,
using the properties of this function under derivation we can build easily a differential equation

df

dx
= −2xf(x)

Applying the Fourier operator on both sides we get

F̂
[
df

dx

]
= −2F̂ [xf(x)]

iλF̂ [f(x)] = −2i
d

dλ
F̂ [f(x)]
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Therefore, we’ve built a differential equation in the Fourier domain, where the searched function is
actually the Fourier transform of the initial equation. Solving, we get

d log

dλ
F̂ [f(x)] = −λ

2

Therefore, imposing the condition of integration on all R and remembering that
´
R e

−x2

dx =
√
π, we

have

F̂ [f(x)] =
√
πe−

λ2

4 = F̂ [e−x
2

]

§§ 10.3.2 Behavior of Fourier Transforms

Theorem 10.14. Let f ∈ L1(R) be some function. Taken f̂(λ) = F̂ [f ](λ), we have that f̂ ∈ C0(R)

Proof. Firstly, we need to demonstrate that f̂ ∈ C(R). Therefore, by definition of continuity we have∣∣∣f̂(λ+ ε)− f̂(λ)
∣∣∣ = ∣∣∣∣ˆ

R
f(x)e−iλx(e−iεx − 1)dx

∣∣∣∣
Using the properties of the modulus operator, we have that∣∣∣f̂(λ+ ε)− f̂(λ)

∣∣∣ ≤ ˆ
R
|f(x)|

∣∣e−iεx − 1
∣∣dx

For some a ∈ R, we also have that
ˆ
R
|f(x)|

∣∣e−iεx − 1
∣∣dx ≤

ˆ
|x|≤a

|f(x)|
∣∣e−iεx − 1

∣∣dx+ 2

ˆ
|x|>a

|f(x)|
∣∣e−iεx − 1

∣∣dx
And for x ≤ a we can also say∣∣e−iεx − 1

∣∣ = (1− cos(εx))
2 − sin2(εx) = 4 sin2

(εx
2

)
≤ (εx)2 ≤ (εa)2

Letting ‖f‖1 be the usual p integral norm on L1(R), we have therefore

ˆ
|x|≤a

|f(x)|
∣∣e−iεx − 1

∣∣dx+ 2

ˆ
|x|>a

|f(x)|
∣∣e−iεx − 1

∣∣dx ≤ ε|a|‖f‖1 + 2

ˆ
|x|>a

|f(x)|
∣∣e−iεx − 1

∣∣dx
The last integral goes to 0 for a = ε−1/2, therefore∣∣∣f̂(λ+ ε)− f̂(λ)

∣∣∣ ≤ ε|a|‖f‖1

Proving that f̂ ∈ C(R).
Instead, for proving that f̂(λ) → 0 for λ→ ∞, we have

∣∣∣f̂(λ)∣∣∣ ≤ ∣∣∣∣∣
ˆ
|x|≤a

f(x)e−iλx dx

∣∣∣∣∣+ 2

∣∣∣∣∣
ˆ
|x|>a

f(x)e−iλx dx

∣∣∣∣∣
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We have then ∣∣∣f̂(λ)∣∣∣ ≤ ∣∣∣∣∣
ˆ
|x|≤a

f(x)e−iλx dx

∣∣∣∣∣+ ε

For the Riemann-Lebesgue lemma we therefore have

lim
λ→∞

∣∣∣f̂(λ)∣∣∣ = lim
λ→∞

∣∣∣∣∣
ˆ
|x|≤a

f(x)e−iλx dx

∣∣∣∣∣ = 0

Theorem 10.15. Given f ∈ Cp−1(R) a function, such that ∂pf(x) is piecewise continuous, and
∂kf(x) ∈ L1(R) for k = 1, · · · , p. If this holds, we have that

1. F̂ [∂kf ](λ) = (iλ)kF̂ [f ], for k = 1, · · · , p

2. limλ→±∞ λpF̂ [f ](λ) = 0

Proof. Through integration by parts of the definition of the Fourier transform we have

F̂ [f ′](λ) = [f(x)e−iλx]R + iλF̂ [f ](λ)

If the evaluation of f(x)e−iλx on all R gives back 0 we have that the first part of the theorem is
demonstrated through iteration.
Using that f ′ ∈ L1(R) tho, we can define using the fundamental theorem of calculus

f(x) = f(0) +

ˆ x

0

f ′(s)ds

Also, since f ′ ∈ L1(R) we must have that the limits at ±∞ of f(x) must be finite, therefore

lim
x→±∞

f(x)e−iλx = 0

And
F̂ [f ′](λ) = iλF̂ [f ](λ)

Through this, we therefore have by iteration that

λpF̂ [f ](λ) =
1

ip
F̂ [f (p)](λ)

Which, thanks to Riemann-Lebesgue, gives

lim
λ→∞

λpF̂ [f ](λ) =
1

ip
lim
λ→∞

F̂ [f ](λ) = 0

Theorem 10.16. Given f ∈ L1(R) such that xkf ∈ L1(R) for k = 1, · · · , p, we have that F̂ [f ] ∈
Cp(R), and

∂kF̂ [f ](λ) = F̂ [(−ix)kf(x)](λ)
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Proof. In order to see if it’s true, we start for the first derivative and apply the definition. Therefore,
given f̂(λ) = F̂ [f ](λ) ∣∣∣∣1ε (f̂(λ+ ε)− f̂(λ))−

ˆ
R
(−ix)f(x)e−iλx dx

∣∣∣∣
Using the triangle inequality and the definition of f̂(λ) we have

ˆ
R
|f(x)|

∣∣∣∣e−iεx − 1

ε
+ ix

∣∣∣∣dx =

ˆ
R
|xf(x)|

∣∣∣∣e−iεx − 1

εx
+ i

∣∣∣∣dx
Dividing the improper integral around a point a ∈ R we have that everything is lesser or equal to the
following quantity

ˆ
|x|≤a

|xf(x)|
∣∣∣∣e−iεx − 1

εx
+ i

∣∣∣∣dx+ 2

ˆ
|x|>a

|xf(x)|
∣∣∣∣e−iεx − 1

εx
+ i

∣∣∣∣dx
We also have that∣∣∣∣e−iεx − 1

εx
+ i

∣∣∣∣ ≤ ∣∣∣∣cos(εx)− 1

εx
+ i

εx sin(εx)

εx

∣∣∣∣ ≤ |cos(εx)− 1|
|εx|

+
|εx− sin(εx)|

|εx|

Using the Taylor expansions for the cosine and the sine we get, approximating, that

|cos θ − 1| ≤ 1

2
θ2

|sin(θ)− θ| = 1

3!
|θ|3

Therefore ∣∣∣∣e−iεx − 1

εx
+ i

∣∣∣∣ ≤ 1

2
|εx|2 + 1

6
|εx|3

Putting that back into the integral, we have that it must be smaller or equal to the following quantity

ˆ
|x|≤a

|xf(x)|

(
|εx|
2

+
|εx|2

6

)
dx+ 2

ˆ
|x|>a

|xf(x)|

(
εx

2
+

|εx|2

6

)
dx

Using in the first integral that |εx| ≤ ε|a| we get, that all the quantity will be surely less than the
supremum of such, and therefore(

|εa|
2

+
|εa|
6

)
‖xf(x)‖1 + 2

ˆ
|x|>a

|xf(x)|dx

Therefore, imposing as before a = ε−1/2, we get

lim
ε→0

∣∣∣∣∣ f̂(λ+ ε)− f̂(λ)

ε
−
ˆ
R
(−ix)f(x)e−iλx dx

∣∣∣∣∣ = 0

Proving the thesis of the theorem
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Theorem 10.17 (Invariance of the Schwartz Space under Fourier Transforms). Given f ∈ S(R) ⊂ L1(R),
then F̂ [f ] ∈ S(R).

Proof. We will prove a weaker assumption. Since S(R) =
(
C∞(R), ‖·‖j,k

)
where the seminorm

‖·‖j,k is defined as follows

‖f‖j,k =
∥∥xj∂kf∥∥

u
<∞ j, k ∈ N

We have, ∀f ∈ S(R) that for a given constant Ca,k ∈ R

∣∣∂kf ∣∣ ≤ Ca,k
(x2 + 1)

a
2

a, k ∈ N, x ∈ R

Therefore, taken a = j + 2

ˆ
R

∣∣xj∂kf(x)∣∣dx ≤ Cj+2,k

ˆ
R

|x|j

(x2 + 1)
j
2+1

dx ≤ Cj+2,k

ˆ
R

1

x2 + 1
dx <∞

Therefore, we have that xj∂kf ∈ L1(R) ∀j, k ∈ N. But we can also write the following result using
Leibniz’s rule

∂j
(
xkf(x)

)
=

j∑
m=0

(
j

m

)
∂mxj∂j−mf(x) ∈ L1(R)

Therefore, applying the Fourier transform and using the previous property, we have

(iλ)j(∂kf̂(λ)) = (iλ)j(−i)kF̂ [xkf ](λ) = (−i)kF̂ [∂j(xkf)](λ) ∈ C0(R)

Which finally gives ∥∥∥f̂∥∥∥
j,k

=
∥∥∥F̂ [∂j(xkf)](λ)

∥∥∥
j,k

<∞ ∀j, k ∈ N

Which finally gives

f ∈ S(R) =⇒ F̂ [f ] ∈ S(R)

§§ 10.3.3 Inverse Fourier Transform

Definition 10.3.3 (Fourier Antitransform). Let f ∈ L1(R), we define the Fourier Antitransform as
F̂a[f ](x) the following computation

F̂a[f ](x) =
1

2π

ˆ
R
f(λ)eiλx dλ (10.14)

Note that, taken the transformation λ = −u we get

F̂a[f ](x) =
1

2π

ˆ
R
f(−u)e−iux du =

1

2π
F̂ ◦ P̂ [f ]

This brings to the definition of the following theorem
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Theorem 10.18 (Inversion Formula). Given f ∈ S(R), we have that F̂aF̂ [f ] = F̂F̂a[f ] = 1̂[f ] = f ,
therefore F̂a = F̂−1 and the Fourier transform is a bijective map in S(R)

F̂ : S(R) ∼−→ S(R)

Proof. Weakening the statement, we can say that taken f ∈ K such that f(x) = 0 for |x| > a ∈ R,
and taken ε ∈ (0, 1/a), we have that, Fourier expanding the function in [−ε−1, ε], we get

f(x) =
∑
k∈Z

cke
ikπεx, ck =

2

ε

ˆ 1
ε

− 1
ε

f(x)e−ikπεx dx→ ε

2
F̂ [f ](kπε)

Therefore, we can immediately write

f(x) =
∑
k∈Z

F̂ [f ](kπε)eikπεx

Letting λk,ε = kπε we have

f(x) =
1

2π

∑
k∈Z

F̂ [f ](λk,ε)e
iλk,ε∆λk,ε →

1

2π

ˆ
R
F̂ [f ](λ)eiλx dx = F̂aF̂ [f ]

Where we let ε→ 0+ in the Fourier series, which written in that way gives a Riemann-Lebesgue sum
converging to the integral of the antitransform, therefore proving that in S(R) F̂a = F̂−1

Theorem 10.19 (Plancherel). Given f, g ∈ S(R), and let 〈·, ·〉 be the usual scalar product defined
as follows

〈f, g〉 =
ˆ
R
f(x)g(x)dx

Then, we have ∥∥∥F̂ [f ]
∥∥∥
2
=

√
2π‖f‖2

〈F̂ [f ], F̂ [g]〉 = 2π〈f, g〉
(10.15)

Proof. For Parseval we have
ˆ
R
‖f(x)‖2 dx =

ε

2

∑
k∈Z

|ck|2 =
1

2π

∑
k∈Z

∣∣∣F̂ [f ](λk,ε)
∣∣∣∆λk,ε

Taking the limit ε→ 0+ the sum on the right converges to the following value

ˆ
R
|f(x)|2 dx =

1

2π

ˆ
R

∣∣∣F̂ [f ]
∣∣∣2 dλ =⇒ ‖f‖2 =

√
2π‖f‖2

Then for the polarization identity, and this result, we get the final proof of the theorem
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Theorem 10.20 (Continuity Expansion). Let p, q ∈ C(R), then if p(x) = q(x) ∀x ∈ Q we have that

p(x) = q(x) ∀x ∈ R

This holds for any dense subset of R

Proof. Since Q is dense in R we can take a sequence (xn)n∈N ∈ Q such that xn → x ∈ R. Therefore,
using the continuity of p, q we have

p(x) = p
(
lim
n→∞

xn

)
= lim
n→∞

p(xn) = lim
n→∞

q(xn) = q
(
lim
n→∞

xn

)
= q(x)

Theorem 10.21 (Extension of the Inversion Formula). Let f, g ∈ S(R). Taken a metric dS(·, ·) :
S(R)× S(R) → R defined as follows

dS(f, g) =

∞∑
j=0

∞∑
k=0

1

2j+k
‖f − g‖j,k

1 + ‖f − g‖j,k
j, k ∈ N

Where ‖·‖j,k is the Schwartz seminorm.
Since K ⊂ S(R) is dense with this norm, we have that we can extend continuously the Fourier
inversion formula ∀f ∈ S(R), we have

F̂aF̂ = F̂F̂a = 1̂ =⇒ F̂a = F̂−1 ∀f ∈ S(R)

Theorem 10.22. Given f ∈ L1(R), then, since we might have that F̂ [f ] /∈ L1(R), using the
Cauchy principal value

1

2π
PV

ˆ
R
F̂ [f ](λ)eiλx dλ =

1

2

(
f(x−) + f(x+)

)
∀x ∈ R (10.16)

And, if f is continuous in x, we have that

1

2π
PV

ˆ
R
F̂ [f ](λ)eiλx dλ = F̂−1F̂ [f ] = 1̂[f(x)] = f(x)

Theorem 10.23 (New Calculation Rules). With what we added so far, in operatorial form, we can
write down two new calculation rules. Supposing the inversion formula holds, and therefore
F̂a = F̂−1

F̂−1 =
1

2π

(
F̂ P̂

)
F̂−1F̂ = 2π1̂

(10.17)
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Example 10.3.5. Let’s calculate the Fourier transform of the following function f : R −→ C

f(x) =
1

(x+ i)3

Acting symbolically on this we know already that F̂ [H(x)e−x] = (1 + iλ)−1, therefore

F̂−1

[
1

1 + ix

]
(λ) = 2πH(−λ)eλ

Applying the parity operator and multiplying the inverse-transformed function by −i we obtain

F̂−1

[
1

x+ i

]
= −2iπH(λ)e−λ

Lastly, we can derive it twice and divide the result by two, obtaining

F̂−1

[
1

(x+ i)3

]
= iπλ2H(λ)e−λ

§§ 10.3.4 Convolution Product

Definition 10.3.4 (Convolution Product). Given f, g ∈ L1 two bounded functions, we define the
convolution of these two functions as follows

(f ∗ g)(x) =
ˆ
R
f(y)g(x− y)dy (10.18)

Theorem 10.24. Defined the convolution product of two bounded functions, we have that

∗ : L1(R)× L1(R) −→ L1(R)

And
‖f ∗ g‖u ≤ ‖f‖u‖g‖1
‖f ∗ g‖1 ≤ ‖f‖1‖g‖1

Proof. The proof of the first result is direct∣∣∣∣ˆ
R
f(y)g(x− y)dx

∣∣∣∣ ≤ ‖f‖u
ˆ
R
|g(x− y)|dy = ‖f‖u‖g‖1

For the second proof, we begin taking a compact set [a, b] ⊂ R and we move forward sending a→ −∞
and b→ ∞. Thereforeˆ b

a

|(f ∗ g)(x)|dx ≤
ˆ
R
|f(y)|

ˆ b−y

a−y
|g(u)|du ≤

¨
R2

|f(y)||g(u)|dy du = ‖f‖1‖g‖1

Therefore we have that
∗ : L1(R)× L1(R) −→ L1(R)

And that the convolution product is bounded
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Theorem 10.25 (Properties of the Convolution Product). Given f, g, h ∈ L1(R) three bounded
functions, then

f ∗ g = g ∗ f
(f ∗ g) ∗ h = f ∗ (g ∗ h) = f ∗ g ∗ h

(10.19)

These properties are easily demonstrable using the properties of the integral

Theorem 10.26 (Derivation of a Convolution). Given f ∈ L1(R) a bounded function, and g ∈
L1(R) ∩ C1(R) a bounded function, we have that

df ∗ g
dx

= f ∗ dg

dx
= f ∗ g′ (10.20)

Proof. Written A(x, t) = f(t)g(x− t) we have that

(f ∗ g)(x) =
ˆ
R
A(x, t)dt

And therefore
df ∗ g
dx

=
∂

∂x

ˆ
R
A(x, t)dt

Since we also have that, due to the boundedness of g′, that∣∣∣∣∂A∂x
∣∣∣∣ = |f(t)g′(x− t)| ≤M |f(t)|

Due to the fact that f(t) ∈ L1(R) the integral is well defined, and using Leibniz’s derivation rule, we
have

df ∗ g
dx

=

ˆ
R

∂A

∂x
dt =

ˆ
R
f(t)g′(x− t)dt = (f ∗ g′)(x)

Theorem 10.27 (Fourier Transform of a Convolution). Given f, g ∈ L1(R) two bounded functions,
we have that

F̂ [f ∗ g] = F̂ [f ]F̂ [g] (10.21)

Proof. The proof of this is quite direct, we have that

F̂ [f ∗ g](λ) =
ˆ
R
(f ∗ g)(x)e−iλx dx =

ˆ
R
e−iλx

ˆ
R
f(y)g(x− y)dy dx =

=

ˆ
R
f(y)e−iλy

ˆ
R
g(x− y)e−iλ(x−y) dxdy = F̂ [f ]F̂ [g]

Where on the last equality we used the Fubini-Tonelli theorem
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Example 10.3.6 (Convolution of Two Set Functions). Given a set A = [−a, a] and a set B = [−b, b],
we know that

1A(x)1B(x) = 1A∩B(x)

1[−a,a](x+ y) = 1[−a+y,a+y](x)

Suppose we need to calculate the convolution product 1A ∗ 1A. The calculation is quite easy with
those properties

(1A ∗ 1A)(x) =
ˆ
R
1A(y)1A(x− y)dy

Taken C = [−a+ x, a+ x], we have

(1A ∗ 1A)(x) =
ˆ
R
1A∩C(y)dy = µ (A ∩ C)

Where, we know already that

µ (A ∩ C) =


0 x < 2a, x > 2a

2a− x x ∈ [0, 2a]

2a+ x x ∈ [2a, 0]

Summarized
µ (A ∩ C) = max {2a− |x|, 0} = (1A ∗ 1A)(x)

Remembering the definition of the rect(x), tri(x) functions, we get that

(rect ∗ rect)(x) = max {1− |x|, 0} = tri(x)

Example 10.3.7 (Two Gaussians). Taken α, β ∈ Rwemight want to calculate the following convolution
product

e−αx
2

∗ e−βx
2

=

ˆ
R
e−αy

2

e−β(x−y)
2

dx

The direct calculation of the integral is immediate, but we might want to test here the power of the
last theorem that was stated. Hence we have

F̂−1
[
F̂ [e−αx

2

∗ e−βx
2

]
]
= F̂−1

[
F̂ [e−αx

2

]F̂ [e−βx
2

]
]

Using that

F̂ [eax
2

](λ) =

√
π

a
e−

λ2

4a

We have immediately that the searched convolution will be

e−αx
2

∗ e−βx
2

=
π√
αβ

F̂−1

[
e
−λ4

4

(
α+β
αβ

)]
(x)

Which gives

π√
αβ

F̂−1

[
e
−λ2

4

(
α+β
αβ

)]
(x) =

π√
αβ

1√
π

√
αβ

α+ β
e
−
(

αβ
α+β

)
x2
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With some rearrangement of the constant terms, we get finally the expected result

e−αx
2

∗ e−βx
2

=

√
π

α+ β
e
−
(

αβ
α+β

)
x2

§§ 10.3.5 Solving the Heat Equation with Fourier Transforms

The power of Fourier Calculus, as we seen in the Fourier series section, also comes when dealing with
differential equations. In this section, we will consider once again the heat equation, but instead of
considering a finite rod, we will suppose that the rod is actually infinite. We therefore get the following
partial differential equation 

∂u

∂t
= k

∂2u

∂x2
x ∈ R, t ∈ R+ \ {0}

u(x, 0) = u0(x) x ∈ R

We begin by applying the Fourier transform on the solution as follows. The transformed variable will
be indicated as an index

v(λ, t) = F̂x[u(x, t)](λ) =
ˆ
R
u(x, t)e−iλx dx (10.22)

Using the properties of the Fourier transform, we have

F̂x[∂2xu](λ) = (iλ)2F̂x[u(x, t)](λ) = −λ2v(λ, t)

Supposing also that v(x, t) is derivable with respect to t (i.e. Leibniz’s rule holds), we have

∂v

∂t
= F̂ [∂tu(x, t)](λ) =

ˆ
R

∂u

∂t
e−iλx dx

And the heat equation, becomes after the Fourier transformation
∂v

∂t
= −kλ2v(λ, t) λ ∈ R, t ∈ R+ \ {0}

v(λ, 0) = F̂ [u0(x)](λ) λ ∈ R
(10.23)

The solution is almost immediate, and we therefore get

v(λ, t) = v(λ, 0)e−kλ
2t = F̂ [u0(x)](λ)e

−kλ2t

Note that

e−kλ
2t =

1

2
√
πkt

F̂x
[
e−

x2

4kt

]
(λ)

Therefore, remembering that the product of transforms gives the transform of the convolution

v(λ, t) = F̂x[u(x, t)] =
1

2
√
πkt

F̂x
[
u0 ∗ e−

x2

4kt

]
(λ)

And, the searched solution will therefore be the following

u(x, t) =
1

2
√
πkt

u0 ∗ e−
x2

4kt
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A Useful Concepts

§ A.1 Multi-Index Notation

In order to ease various calculations one can utilize more abstract index constructions. One of these is
the multi-index notation, where instead of having an index i ∈ N or j ∈ Z, one constructs a “vector”
of indices, like α = (a1, · · · , an) ∈ Nn or β = (b1, · · · , bn) ∈ Zn.
This notation includes a set of operations on such multi-indexes, defined as follows

Theorem A.1 (Operations on Multi-indexes). Given a multi-index α ∈ Nn, one can define the
following operations on them

|α| =
n∑
i=1

ai

α! =

n∏
i=1

ai!

(A.1)

Given x ∈ Rn and the del operator ∂ one can also write

xα =

n∏
i=1

xaii

∂α =

n∏
i=1

∂aii =
∂|α|

∂xa11 · · · ∂xann
=
∂|α|

∂xα

(A.2)

207
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§ A.2 Properties of the Fourier Transform

Here’s a list of the properties of the Fourier transform, useful for dealing with calculations in operatorial
form

F̂ P̂ = P̂ F̂
F̂ T̂a = e−iλaF̂
T̂aF̂ = F̂

[
e−iaxf(x)

]
a ∈ R, f ∈ L1(R)

F̂Φ̂a =
1

|a|
Φ̂ 1

a
F̂ a ∈ R \ {0}

F̂Φ̂aT̂b =
e−iλb

|a|
Φ̂ 1

a
F̂ a ∈ R \ {0}, b ∈ R

F̂ T̂bΦ̂a =
e−iλ

b
a

|a|
Φ̂ 1

a
F̂ a ∈ R \ {0}, b ∈ R

F̂ ∂̂ = iλF̂

∂̂F̂ = F̂ [−ixf(x)] f ∈ L1(R)

F̂−1 =
1

2π
F̂ P̂ =

1

2π
P̂ F̂

F̂−1F̂ = F̂F̂−1 = 2π1̂

(A.3)



B Common Fourier Transforms

§ B.1 Common Fourier Transforms

In this appendix, you’ll find a table of some particular Fourier transforms that might pop up in Fourier
calculus, and might also be helpful for calculating more complex transforms.
Note that

F̂ [f ](λ) =

ˆ
R
f(x)e−iλx dx (B.1)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

f(x) Conditions F̂ [f ](λ)

1[−a,a](x)
2 sin(λa)

λ

rect(x) sinc(λ/2π)

tri(x) sinc2(λ/2π)

sinc(x) rect(λ/2π)

cos(x)1[−a,a]
sin[(λ+ 1)a]

λ+ 1
+

sin[(λ− 1)a]

λ− 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

f(x) Conditions F̂ [f ](λ)

e−|x| 2a

λ2 + a2

H(x)e−ax a > 0
1

a+ iλ

H(ax)e−ax
sgn(a)

a+ iλ

1

a2 + x2
π

a
e−a|λ|

1

a2x2 + bx+ c
β =

√
4ac− b2

2|a|
> 0

π

βa
e−β|λ|+i

λ
2a

1

(x2 + 1)2
π

2
e−|λ|(|λ|+ 1)

1

1 + x4
πe

− |λ|√
2 sin

(
λ
2 + π

4

)

e−ax
2

√
π

a
e−

λ2

4a

eix
2

√
π

2
(1 + i)e−

iλ2

4

e−ix
2

√
π

2
(1− i)e

iλ2

4

cos
(
x2
) √

π cos
[
λ2−π

4

]

sin
(
x2
)

−
√
π sin

[
λ2−π

4

]

sech(x) π sech

(
πλ

2

)

e−
x2

2√√
π2nn!

Hn(x)
(−i)n

√
2πe

λ2

2√√
π2nn!

Hn(λ)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
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Remember that: 

sinc
( x
2π

)
=

2

x
sin
(x
2

)
rect(x) = 1[− 1

2 ,
1
2 ]
(x)

tri(x) = max {1− |x|, 0}

sech(x) =
1

cosh(x)

(B.2)
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