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Introduction

The idea of writing this came from a mix of pure laziness and despair in preparing two exams, Analisi
Vettoriale (Vector Analysis) and Metodi e Modelli Matematici per la Fisica (Mathematical Models and
Methods for Physics, basically just pure Complex Analysis and Functional Analysis), that | have to sustain
in my BSc course in Physics here at Sapienza University of Rome.

These two courses are deeply intertwined and it's really difficult to study them apart due to the sheer
volume of things that either are done for half in one course and half in the other one, or they simply
get generalized in the second, breaking up the logical flow one might get from studying these two
seemingly completely different subjects.

There will surely be errors in grammar, typing and probably some mathematical inaccuracies so for
any question, inquiry or you just want to say hi to me, don't wait in sending me an email here
cheri.1686219@studenti.uniromal.it.

A huge thanks to anyone of you that'll read this, | hope it will be useful for you as it is to me.


mailto:cheri.1686219@studenti.uniroma1.it
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Notation

F Ordered scalar field, R or C when not specified
an, (a), Sequence

((a),),, Sequence of sequences

X, z* Vector

XAy, el x"y? Cross product of x,y

Vf, 0.f, 2L Gradient of f

(v, ), div(f), 8,1, 2L Divergence of f

e

V AT, rot(f), e,0” f7 Rotor of f

M(x), 0, f", 2L Jacobian matrix of f

Hy(x), 0,0, f, 92,1, a;’f# Hessian matrix of the function f

v! For almost all

C°(R) = K Space of test functions, (smooth with compact support)

Zy, Sy, P7* Sets of zeros of order m, singularities or poles of order m of a function f

an, — a Simple convergence

a, = a Uniform convergence
an A, 4 Absolute convergence
an T\ 4 Total convergence

a, —w a Weak convergence

an, —x a K—convergence

an = a K*—convergence
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1 Complex Numbers and Functions

§ 1.1 Complex Numbers

Definition 1.1.1 (Complex Numbers). Define with C the set of complex numbers, i.e. the set of
numbers z € C : z = (z,y) and z,y € R.
We define the real and imaginary parts of z as follows

(1.1)

Definition 1.1.2 (Operations in C). Take z1, 23 € C, then we define

21 = 29 < %6(2’1) = 9%(22), Jm(zl) = TJm(zQ)
21 + 20 = (Re(21) + Re(22),Im(z1) + Im(z2))
2122 = (Re(z1)Re(22) — Im(z1)Tm(22), Re(21)Im(z2) + Im(z1)NRe(22))

Theorem 1.1. With the previous definitions the set C forms a field.

Definition 1.1.3 (Imaginary Unit). We define the imaginary unit i = (0,1) € C. From this definition
and the definition of product of two complex numbers, we have that i2 = —1
With this definition, we have

Vze C z=%Re(z)+iJm(z) (1.2)

Definition 1.1.4 (Complex Conjugate). Taken z € C, we call the complex conjugate of = the number
w such that
w = MRe(z) — iJm(z) (1.3)

This number is denoted as z

Definition 1.1.5 (Complex Module). We define the module or norm of a complex number, the
following operator.

2]l = V3Z = /%R (2) + Tm(2) (1.4)
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Definition 1.1.6 (Complex Inverse). The inverse of a complex number z € C is defined as z=* and it’s
calculated as follows

1 z

- T (1.5)

Definition 1.1.7 (Polar Form). Taken a complex number z € C one can define it in polar form with its
modulus r and its argument 0. We have that, if 2 = z + iy

r=v/12+12 = ||
tan(9) = 2 1.6
o X

Definition 1.1.8 (Principal Argument). Taken arg(z) = 6 we can define two different arguments, due
to the periodicity of the tan function.

1. Arg(z) € (—m,n] called the principal argument
2. arg(z) = Arg(z) + 2k, k € Z called the argument

As a rule of thumb, using the previous definition of argument of a complex number z = z + iy, we
have
arctan(y/z) —m x <0,y <0
Arg(z) = | arctan(y/x) x>0,2#0 (1.7)
arctan(y/z)+7 x<0,y>0

Definition 1.1.9 (arg, ). Given z € C we define the arg_ (z) as the only value of arg(z) such that
0<0<2m.

In case we have a polydromic function, in order to specify we're using this argument, there will be a +
as index.

le. log, (2),[2%]T, vz .-+~ andsoon.

Theorem 1.2 (De Moivre Formula). A complex number z € C in polar form can be written with
complex exponential and sine and cosine function as follows.

z = ||z]|%€’®9% = ||z||* (cos(arg z) + isin(arg z)) (1.8)

This formula easily generalizes the calculus of exponentials of complex numbers. With this
definition, it’s obvious that the n—th root of a complex number /= has actually n — 1 results,
given the 2r—periodicity of the arg(z) function.

§ 1.2 Regions in C

Definition 1.2.1 (Line). A line X in C, from z1, 29 can be written as follows

)\(t) =2z + t(ZQ — 21) te [0, 1} (1 9)
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If ¢t € R this defines the line lying between z1, z3. Its non-parametric representation is the following

o :{ze«sjm(;_ill) 0} (1.10)

Where z = A(%).

Definition 1.2.2 (Circumference). A circumference ~y centered in a point 2 € C with radius R is defined
as follows 4
v(0) = 20 + Re® 6 € [0,2n] (1.11)

Non parametrically, it can be defined as follows

{7} =1z Clllz =2l = R} (1.12)

§§ 1.2.1 Extended Complex Plane C

Definition 1.2.3 (Extended Complex Plane). We define the extended complex plane C as follows
C=CuU{x} (1.13)

This can be imagined by projecting C into the Riemann sphere centered in the origin.

Definition 1.2.4 (Points in C). Given a point z € C, z = x + iy we can find its coordinates with the
following transformation X
z = (zt,yt,1 —t) e C (1.14)

Where the condition ||2|| = 1 must hold, defining the value of ¢ € R Inversely, given 2 = (z1, x4, 23) € C

one finds )
xr1 +1x2

1.15
T (1.15)

z =

§ 1.3 Elementary Functions

Definition 1.3.1 (Exponential). The exponential function z — e* with z € C is defined as follows
e* = N FIME) — Rz (co5(Tm(z)) + isin(Tm(z))) (1.16)

This gives

Re(z)

Il =e

e
(1.17)
arg(e®) =JIm(z) + 27k keZ

We have therefore, for z,w € C

z (1.18)
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Definition 1.3.2 (Logarithm). We define the logarithm function z — log z as follows
log(z) = log ||z|| + ¢ arg(z) (1.19)

It's evident how this function has multiple values for the same z value, and therefore is known as a
polydromic function, like the square root. We also define the principal branch of the logarithm as

Log(z)
Log(z) = log ||z|| + i Arg(z) (1.20)

Lastly we define the log  (z) as follows

log, () = log(||z||) +iarg, (2) (1.21)

Definition 1.3.3 (Branch of the Logarithm). A general branch of the log function is defined as the
function f(z) : D ¢ C — C such that
ef@) = (1.22)

§§ 1.3.1 Complex Exponentiation

Definition 1.3.4 (Complex Exponential). Taken s,z € C, we define the complex exponential a follows,
taken z a variable

25 — eslog(z) #£0 (1.23)
Its derivative has the following value
d | (s—1)log(z) —1
— 2% = gel® 92) — 528 (1.24)
dz
Alternatively, we define
5% — ¢#109(s) (1.25)

§§ 1.3.2 Properties of Trigonometric Functions
Definition 1.3.5 (Trigonometric Functions). Using De Moivre’s formula, we define
sin(z) =

(1.26)
cos(z) =

Definition 1.3.6 (Hyperbolic Functions). We define the hyperbolic functions as follows, given z = iy

sinh(y) = —isin(iy)

cosh(y) = cos(iy) (1.27)
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For a general value of z, we define
. 1 _
sinh(z) = 3 (e* —e7?)

cosh(z) = % (" +e77)

Theorem 1.3 (Trigonometric Identities). Given z, z1, z3 € C we have

sin?(z) 4 cos?(z) = 1
sin(z1 £ 2z2) = sin(z1) cos(zz) + cos
€0S(z1 + 2z9) = COs(z1) COS(z2) F sin
sin(z) = sin (Re(z)) cosh (Im(z)) + i cos (MRe(z)) sinh (
cos(z) = cos (Re(z)) cosh (Tm(z)) — isin (Re(z)) sinh (Tm(y))
Isinz)[* = sin* (Re(x)) + sinh* (Im(y))
[cos(2)||” = cos? (Re(x)) + sinh? (Jm(y))

Zl) Siﬂ(ZQ)
Zl) Slﬂ(ZQ)

(
(

cosh?(z) — sinh*(z) = 1
sinh(zy & z2) = sinh(z1) cosh(zz) + cosh(z1) sinh(z2)
€os(z1 £ z2) = cosh(z1) cosh(zz) = sinh(z1) sinh(z2)
sinh(z) = sinh (PRe(z)) cos (Im(z)) + i cosh (Re(z)) sin (Im(y))
cos(z) = cosh (Pe(z)) cos (Jm(z)) + isinh (PRe(z)) sin (Im(y))
Isin(2)[|* = sinh? (Re(x)) + sin* (Im(y))
[cos(z)||* = cosh? (Re(x)) + sin? (Im(y))

Definition 1.3.7 (Inverse Trigonometric Functions). Given z € C we define
arcsin(z) = —ilog (zz +v1- z2>

arccos(z) = —ilog (z +iv1-— z2>

1 1—z
arctan(z) = 3 log <,+ z>
2

Definition 1.3.8 (Inverse Hyperbolic Functions). Given z € C we define

asinh(z) = log (z + V22 + 1)
arccos(z) = log (z + V22— 1)
atanh(z) = % log (1 + Z)

1—=z2

(1.28)

(1.29)

(1.30)

(1.31)
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2 Abstract Spaces

§ 2.1 Metric Spaces

§§ 2.1.1 Topology

Definition 2.1.1 (Metric Space). Let X be a non-empty set equipped with an application d, defined as

follows
d: XxX—TF

(z,y) — d(z,v) 2.1

Where F is an ordered field.
The couple (X, d) is said to be a metric space, if and only if Vz,y, 2 € X the application d satisfies the

following properties
1. d(z,y) >0

2. d(z

)

8
NN

0
3. d(z,y) = d(y, x)

d(
4. d(z,y) < d(z,z) +d(z,y)

Definition 2.1.2 (Ball). Let (X,d) be a metric space. We then define the open ball of radius r,

centered in z in X (BX), and the closed ball of radius r centered in x (B;X) as follows

BX(x):={ue X|d(u,z) <1}

r

BX(z):={ue X|d(u,z) <r}

T

(2.2)
When there won't be doubts on on where the ball is defined, the superscript indicating the set of
reference will be omitted.

We're now ready to define the topology on a metric space

Definition 2.1.3 (Open Set). Let (X, d) be a metric space, and A C X a subset. A is said to be an
open set if and only if
Vre X 3IBX(x)C A (2.3)

15
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Definition 2.1.4 (Complementary Set). Let A be a generic set, then the set A¢ is defined as follows
A= {a ¢ A} (2.4)

This set is said to be the complementary set of A.
It's also obvious that AN A° = {}

Definition 2.1.5 (Closed Set). Alternatively to the notion of open set, we can say that £ C X is a
closed set, if and only if
Vr € E°NX 3BX(z) C E°NX (2.5)

Remark. A setisn't necessarily open nor closed!

Proposition 1. 1. The set BX () is open

2. The set BX(x) is closed

Proof. Let A = BX(z). If Ais open, we have therefore, applying the definition of open set, that
Vee AJe>0: BX(x)C A

So
xg € A = d(z,z0) <T

.'.e:r—d(x,q;o) >0
Then, by definition of open ball we have
y € BX(z) = d(z,y) <e
Then, we can say that
d(y, o) < d(y,z) + d(z,z0) < € +d(z,30) =7
yeBX(z) = yeBX(z)C A

The demonstration of the second point is exactly the same, whereby we take E as our closed ball and
A=E° O

Proposition 2. Let (X, d)

—_

. The sets {}, X are open

2. The sets {}, X are closed

3. If {A;}1 is a collection of open sets, then A = (!'_, A; is open
4. If {C;}7, is a collection of closed sets, then C' = |J!'_, C; is closed
5. Let I € N be an index set, then

(@) If {Aa}aer is a collection of open sets, then B = J,,.; Aq IS Open
(b) If {Cqa}aer is a collection of closed sets, then D = (1, ; Cq is closed
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Proof. The first two statements are of easy proof. Let BX C {}. This means that BX is empty and
therefore BX = {}, which makes it open by definition. Therefore we have that {}¢ = X, and X must
be closed, but if we reason a bit, we can say that Vo € X BX(z) C X, which means that X is open,
thus X¢ = {} must be closed.

Since we gave a proof for {} and X being open, we have that these two sets are both open and closed.
These two sets are said to be clopen.

For the other statements we use the De Morgan laws on set calculus, therefore we have

n
xeﬂAi = x €A
i=1

-3¢+ BX(z) C 4

Taking e = min;cs €; we have

BX(z) c BX(z) = BX(z) C ﬁAi:A

i=1

And A is open
If we let C = A we have that

n c n
C=A = <ﬂAZ—> =[J 4
1=1 1=1
. Cis closed
For the last two we proceed as follows
rx€A, = Jagel :xeA,,

~3e>0:BXx)Cc A, C | =B
ael

For the last one, we use the De Morgan laws and the proposition is demonstrated O

Definition 2.1.6 (Internal Points, Closure, Border). Let (X, d) be a metric space and A C X a subset.
We define the following sets from A

1. A° = U,e; Ga is the set of internal points of A, where I is an index set and G, C A are open
2. A={\e, Fsis the closure of A, where J is another index set and Fjs C A are closed
3. 0A = A\ A° = AU (A°)" is the border of A
Proposition 3. 1. Aisan open setiff A = A°
2. Aisclosediff A=A
3. A° = (A°)
4. A= [
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5 (ANB)°=A°NB°
6. ANB=AUB
Proof. Let O(A) be a collection of open sets, such that VG € O(A) = G C A, then

A=A = A= |J ¢
GeO(A)

Therefore, being a union of a finite number of open sets, A is open. B
For the same reason as before and the previous proposition, we have that A is closed
For the third proposition, we have

c
@ -(Nr)-yUr- Uy e-x
ACF ASCF GeO(A)

The others are easily demonstrated throw this process, iteratively O
Proposition 4. Let (X, d) be a metricspace,and A C X,z € X

1.2€A < Fe>0: B(zr)CA

2.1€A &= Ye>0B(r)NA#{}

3. €0A = Ve>0B(x)NA# {} AB(zx)NA#{}

Proof. |1|Let I(A) := {z € X|3e >0 : B.(x) C A}

xe€l(A) = 3e>0: B(z)CA ~xe |G
GCA

But
x€e€A° = IGCXopen: z€G = Fe>0: B(r)CGCA

SLA° CI(A) 3 a, I(A) C A by definition, . I(A) = A°
For the second proposition, we have
A=[(A)]" = 2€ A + z€(A)° = Ve>0B(z) ¢ A
S Ve>0DB(x)NA#{}

For the last one, we have, taking into account the first two proofs

r€0A = w€A\A° = ze AN ¢gA°

[1A[2] = 2€d <= Ve>0B.(x)NA#{}
¢ A% = Ve>0B.(r)N A #{}
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Definition 2.1.7 (Isometry). Let (X, d), (Y, p) be two metric spaces and f an application, defined as
follows
[ (X,d) = (Y,d)

f is said to be an isometry iff

Yoy, 20 € X, p(f(x1), f(22)) = d(z1, 22)

Remark. If fis anisometry, then f is injective, but it's not necessarily surjective
Example 2.1.1. Let X =[0,1] and Y = [0, 2], therefore

f:00,1] — [0,2]
x— f(z)==

f is obviously an isometry, since, for z,y € [0, 1]

d(f (), f(y)) = d(z,y)
But it's obviously not surjective.

Definition 2.1.8 (Diameter of a Set). Let A be a set and the couple (A, d) be a metric space. We define
the diameter of A as follows
diam (A) = sup (d(z,y))

z,yeA

§ 2.2 Convergence and Compactness

Definition 2.2.1 (Convergence). Let (X, d) be a metric space and = € X. A sequence (xy)k>0 in X is
said to converge in X and it's indicated as z, — z € X, iff

Ve >03dN >0 : Vk >N, d(axg,z) <e .. lim z, ==

k—o00

Theorem 2.1 (Unicity of the Limit). Let (X, d) be a metric space and (zj)r>0 @ sequence in X. If
T, —> TNz =y thenz =y

Definition 2.2.2 (Adherent point). Let (X, d) be a metric space and A C X. z € X is said to be an
adherent point of A if 3(zk)k>0 € A : z, — x € X. The set of all adherent points of A is called
ad(A)

Definition 2.2.3 (Accumulation point). Let (X, d) be a metric space and A € X. =z € X is an
accumulation point of A, or also limit point of A if (xy)k>0 : zx # Az — = € ad(A)

Proposition 5. Let (X, d) be a metric space and A C X, then A = ad(A)
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Proof. LetY = ad(A), then

r€A = Ve>0DB(x)NA#{}
~VneNBi(z)NA#{} = VneNdz, € Bi(z)

But d(z,z,) < n~!, therefore z € Y = x € ad(A), and by definition
A(xp)n>0 : Ve >03IN €N : Vk > Nd(zg,z) <e = xny € Be(x) -.any € A
s Ve>0xny €EB(r)NA#{} = €A = YCA - Y=ad4d) =4
O

Proposition 6. Let (X, d) be a metric space and A C X. Then A is closed iff 3(xk)k>0 € A : x —
re€A = ad(A)C A

Definition 2.2.4 (Dense Set). Let (X, d) be a metric space and A, B C X. As said to be dense in
B iff B C A, therefore Ve > 03y € A : d(z,y) < e. One example for this is Q C R, with the usual
euclidean distance defined through the modulus.

Definition 2.2.5. Let (X, d) be a metric space and (zx)r>0 € X. The sequence z; is said to be a
Cauchy sequence iff
Ve >03dN >0 : Vk,n > N d(zg,x,) <€

Proposition 7. Let (X, d) be a metric space and (x1)r>0 € X a sequence. Then, if 2, — =, 2 is a
Cauchy sequence

Definition 2.2.6 (Complete Space). Let (X, d) be a metric space. (X,d) is said to be complete iff
V(zk)r>0 € X Cauchy sequences, we have z, —» z € X

Theorem 2.2 (Completeness). Let (X, d) be a metric space andY C X. (Y,d) is complete iff
Y=YinX

Proof. Let (Y, d) be a complete space, then
(zx) € Y Cauchy sequence = Jy €Y :ap —vy
Let z € ad(A) and 7 a subsequence of zy, then
)€Y iy — 2z = yeY 1 —y sz=y = ad(Y)CY
Going the opposite way we have that ad(Y) = Y and therefore Y =Y O

Definition 2.2.7 (Compact Space). A metric space (X,d) is said to be compact or sequentially
compact if
V(zg) € X ap w2 € X, H{(xp,)} : 2p, 22 € X

Theorem 2.3 (Heine-Borel). Let K C R", then K is compact if and only if K is closed and
bounded
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<++>
Theorem 2.4. Let (X,d) be a compact space. Then (X,d) is also complete

Proof. (X,d) is compact, therefore
V(xp) € X Cauchy sequence = xzp w2z € X
Taken (z,,)r € X a subsequence, we have

Tp =T = Tp, T E€X

Definition 2.2.8 (Completely Bounded). Let (X, d) be a metric space. X is totally bounded iff

Y CX :Ve>0VoeY X = Be(z)

i=1
Definition 2.2.9 (Poligonal Chain). Let z,w € C. We define a polygonal [z, w] as follows
[z,w] :={z,weC|lz+tlw—=z), t€[0,1] CR}

A polygonal chain will be indicated as follows P, ,, and it's defined as follows

n—1

Pz,’zu - U [Zk:7 Zk:+1] = [27 21y 5y Rn—1, “)]
k=1

It can also be defined analoguously for every metric space (X, d) # (C, ||
usual complex norm ||z|| = v2Z = /Re(2)2 + Im(2)2

Definition 2.2.10 (Connected Space). Let (G, d) be a metric space, G is connected if

), where ||| : C — R is the

Vz,we G3AP,,, C G

Definition 2.2.11 (Contraction Mapping). Let (X, d) be a complete metric space. LetT: X — X. T
is said to be a contraction mapping or contractor if

Vo,y € X 3q€[0,1) : d(T(2),T(y)) < qd(z,y) (2.6)
Note that a contractor is necessarily continuous.

Theorem 2.5 (Banach Fixed Point). Let (X,d) be a complete metric space, with X # {} and
equipped with a contractor T : X — X. Then

Ma* e X : T(a) =a" (2.7)
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Proof. Take xzy € X and a sequence z,, : N — X, where
xp =T(xp-1), VneN
It's obvious that
d(@n+1,2n) = d(T(2n), T(xn-1)) < qd(xp, 2n-1) < ¢"d(21, 20)
We need to prove that z,, is a Cauchy sequence. Let m,n € N : m > n, then
(T, Tn) < d( @y Tm—1) + -+ d(@py1, 20) < g™ Vd(zy, 0) + -+ ¢"d(21, 20)

Regrouping, we have
m—n—1 o) 1
d(Tm; zn) < q"d(w1,70) Z ¢" < q"d(x1,x0) qu = ¢"d(z1,x0) (1(])
k=0 k=0
By definition of convergence, we have then
Ve>0,IN e N : Vn> Nd(s,,s) <e
Then

"d(xq, 1-—
q (xl,xo)<€:>qn< 6( q)}

Vn > N
1_(] d(l’l,[EU)

Therefore, after taking m > n > N, we have
AT, xn) < €

Therefore z,, is a Cauchy sequence. Since (X, d) is a complete metric space, this sequence must have a
limit z,, — «* € X, but, by definition of convergence and limit, we have that by continuity

o = lim zn = lim T(zn_1) :T( lim .r,,,,_l) = T(a¥)
n— 00

n— oo n—roo

This point is unique. Take y* € X such that T'(y*) = y* # «*, then
0 <d(T(x%),T(y")) = d(z",y") > qd(z*,y") 4

Therefore
M*e X : T(z*) =a"

And z* is the fixed point of the contractor T O

§ 2.3 Vector Spaces

Definition 2.3.1 (Vector Space). A vector space V over a field F is a set, where V # {} and it satisfies
the following properties, Vu,v,w € V and a,b € F

1. u+v €V sum closure
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2. av € V scalar closure

3. utv=v+u

4. (u4+v)+w=u+ (v+w)

5 30eV:ut+0=0+u=u

6. eV :iutv=0 = v=—u
7.31eV:1-u=u

8. (ab)u = a(bu) = blau) = abu

9. (a+b)u = au-+bu

10. a(u+v) = au+ av

Definition 2.3.2 (Norm). Let V be a vector space over a field F, then the norm is an application defined
as follows

Il :V —F

Where it satisfies the following properties

—_

Nlull > 0Vu eV

N

Null =0 <= u=0
3. |leul|l = le|||u|| Vu € V c € F
4 Nutoll < lull + o]l Vu, 0 €V

Definition 2.3.3 (Normed Vector Space). A normed vector space is defined as a couple (V, ||-
where V is a vector space over a field F.

).

Proposition 8. A normed vector space (NVS), is also a metric vector space (MVS) if we define our
distance as follows

d(u,v) = [lu — v|| Yu,v € V

Definition 2.3.4 (Vector Subspace). Let V be a vector space and U4 C V. U is a vector subspace of V
iff

1. uyveld = u+veld
2. uelU,a€eF = aucld

Proposition 9. If (V,|-||) is an normed vector space and W C V is a subspace of V, then (W, ||-]|) is a
normed vector space
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Definition 2.3.5 (p-norm). Let (V,|[-||,) be a normed vector space. The norm [|-[|,, is said to be a
p-norm if it's defined as follows

dim(V) %
loll, == Y. ()| ,VveV, VpeN*:=NU{xoo} (2.8)
i=1
Setting p = oo we have that
[olloe = _max o (2.9)

i<dim(V)

Definition 2.3.6 (Dual Space). Let V be a vector space over the field F, we define a linear functional
as an application ¢ : V — F such that Vu,v € Vandc e F
e(u+v) =7(u) + ¢(v)
p(Au) = Ap(u)

Defining the sum of two linear functionals as (p1 + ¢2)(v) = ¢1(v) + @2(v) we immediately see that
the set of all linear functionals forms a vector space over V, which will be called the dual space V*.

(2.10)

§§ 2.3.1 Holder and Minkowski Inequalities

Having defined p-norms, we can prove two inequalities that work with these norms, the Minkowski
inequality and the Hélder Inequality

Theorem 2.6 (Holder Inequality). Let p, € N*, where

1 1
—+-=1
P q
Then .
Va,y € R ||zl llyll, = D lwwysl (2.11)
k=1

Proof. Taking p = 1, we have ¢ = oo, and the demonstration is obvious

n n
2, lylly = Izl 1Pl = maxyx| Dozl =) lwwysl
k=1 k=1

Else, if p > 1, we ave that

P pa
ab< L+ 2 Vab>0
P q
Let "
NI
I, yll,
We have

n

n 1 n 1 n
Z ”SHP - H-T”p Z ‘xk|p =1= Z |t|q = q Z |y‘p
k=1 g k=1

i 1yllq 7=
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Therefore

D lsutel < 23 sl 2D [hal”
pk‘:l qk:l

k=1

Substituting again the definitions of s, ¢ we have

n n
> lywaxl = Nzl lyll, D Iswtel < llzl,llyll,
i=1 k=1

Theorem 2.7 (Minkowski Inequality). Let p > 1, therefore Vz,y € R™ we have

1z +yll, < ll2ll, + [1yll, (2.12)

Proof. We begin by writing explicitly the p-norm

n

—1
lz+yl2 =" (wl + lue)” =D (el + yl) (zal + )

k=1 k=1

Letting u, = (|| + |yx|)” " we have, after imposing the condition on ¢ of the p-norm as ¢(p+1) = p
and using that the sum is Abelian, we have

Q=

n n
> lzwlur < llzll, lull, = I, (Z(wkl + ykl)”)
k=1

k=1

Q=

> lylur < llyll, lull, = Iy, (Z (o] + ykl)”)

k=1 k=1

Therefore, summing and imposing that 1 — ¢—! = p we have that

e +yll, < ll=l, + llyll,



CHAPTER 2. ABSTRACT SPACES

26




3 Differential Analysis

§ 3.1 Digression on the Notation Used

In this chapter (and from now on, mostly), we will use a notation which is called abstract index
notation with the Einstein summation convention. This is usually abbreviated in common literature
as the Einstein index notation. \We will give here a brief explanation of how this notation actually
works, and why it's so useful in shortening mathematical expressions. Let V be a vector space and V*
be the dual space associated with V. Then we can write the elements v € V, ¢ € V* with respect to
some basis as follows

U1

/U:(/Ulv/UQa'“ 7/Un): (31)
Uy,

99:(99]’9027""9071):(901 w2 9971,)

The first notation is the ordered tuple notation, meanwhile the second notation is the usual column/row
notation for vectors utilized in linear algebra. In Einstein notation we will have that

v — Ui
(3.2)
Y — ¥

Where the vector in the space will be indicated with a raised index (index, not power!) and the
covector with a lower index, where the index will span all the values ¢ = 1,--- ,dim(V).
Let’s represent the scalar product in Einstein notation. Let's say that we want to write the scalar product
(v, )
dim(V)
(v,v) = Z 00 — vV (3.3)
i=1

Note how we have omitted the sum over the repeated index. Now one might ask why it's not written
as v;v; (or viv?, since v € V), and this is easily explained introducing the matrix gij, Which is the matrix
of the scalar product.

Applying this matrix to v* we have g;;v*. Note how the low index j is free and i is being summed over,
hence is a dummy index, this means that the result must have a lower index j for consistency. So we
can write v; = g;;v*, and due to the lower index we already know that this is a covector, i.e. a linear

27
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functional V — T, hence it will “eat” a vector and “spew” a scalar (with no indices!). Feeding to this
covector the vector v we have finally

(v,v) = vj0 = giv'v? (3.4)

Where, algebraically we have “omitted” the definition of «(-) = (v, -), which is the canonical isomor-
phism between V and V*.

With this definition we have defined what mathematically are called musical isomorphisms, appli-
cations which raise and lower indexes. Ironically, this operation is called index gymnastics, since
we're raising and lowering indices. Thanks to these conventions operations with matrices (and ten-
sors) become much much easier. Let a’ and b be two n x n matrices over the ordered field F. The
multiplication of these two matrices will simply be

¢ = a};bl? (3.5)

J J

Note how the k index gets “eaten”. This mathematical cannibalism is called contraction of the index
k. So, the trace for a matrix a’ will be

tr(a) = a;} (3.6)

And now comes the tricky part. In order to write determinants we need to define a symbol, the so
called Levi-Civita symbol, ¢;, ;. In three dimensions it's €;;;, and follows the following rules

1 even permutation of the indices
€55 = 4 —1 uneven permutation of the indices (3.7)
0 i=jVji=kVk=i

In n dimensions, it becomes

1 even permutation of indices
€i,..i, = —1 uneven permutation of indices (3.8)
0 i; = 1; for some i, j

[t's obvious by definition that this weird entity is completely antysimmetrical and unitary, and there-
fore it's perfect for representing permutations (it's also known as permutation symbol for a reason).
Therefore, remembering the definition of the determinant we can write, for an n x n matrix a}l

det(a) = €;,..i,a'"a®? - a""" =€, i, 9" ajg" 2 a} - gl al, (3.9
If dim(V) = 3, we can therefore immediately define the cross product of two vectors as follows

c=vxw-—c = gijejk,lvkwl (3.10)

(Note how we had to raise the index i).

From now on, we will start to use Greek letters for indices and Latin letters for labels, in order to avoid
confusions, simply look again at the formula for the determinant, it's much clearer this way. In fact,
letting w, v, - -- be our indices and i, j, k, - - - our labels, we can write, for a matrix A#

det(A) = A=e,, . g"g7" - .gcl"'nA’l/Ag AR (3.11)
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See? Much clearer, at least in my opinion.
Now we might want to understand how to write norms with this notation. For the usual Euclidean
norm it's quite easy. So we can easily write

V]| = V(v,v) — /v, 0 (3.12)

In case we have a vector function f#(z"), the following notation will be used

[FOON — / fufr(x") (3.13)

Or, for the sum of two functions g (z¥) + f*(y")

1900 £ W) | —> /9097 (@*) + Fuf () % 20, (%) f(3) (3.14)

Or

l9(x) £f(y)|| —= \/gw(g“'(ﬁ) + fry)(gr (@) £ £ (y7))

A shorthand notation can be created by directly using the norm symbol, but with the contracted index
in the upper or lower position as follows

l9(¢) =F(y) || — [lg"(«") = f* ("), (3.15)
For p-norms we have to watch out for a little detail. We have to add a square root in order to “fix" the

squaring of every element. So we get

Ivll, — §/@aE e = (w)Ee)?)” (3.16)
Theorem 3.1. ((vuv“)p“)l/p is wrong
Proof. It's easy to see why it doesn’t work by expanding the sum on g

(v, 0H)P = (1)1111 + v 44 v,,,v")p

e . , (3.17)
(v)2(v")2 = ((vlv P+ (vv)? + -+ (U,ﬂ)n)p)
Moreover, it's time to bring down some formal rules for the usage of this notation

Theorem 3.2 (Rules for Index Calculus in Einstein Notation). 1. Free indices must be consistent
in both sides of the equation. l.e. alb, 5 = cyys. albyys # Cls, albuns # Como

2. An index can be repeated only two times per factor and must be contracted diagonally. /.e.
akb, fS = ¢ is defined correctly, a,b,, a*b" or a'b, f* are ill defined

3. Dummy indices can be replaced at will, since they don‘t contribute to the “index
equation”
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§§ 3.1.1 Differential Operators

Differential operators will be defined formally in the next sections, but for now we will simply explain
how they actually work with this notation (and what are the advantages of such), alongside the usual
boldface notation.

We will begin by defining the derivative along the coordinate vectors (usually indicated with z#). We
will use the differential operator del (9).

This operator will be used as follows

1. If there is no ambiguity for the coordinate system, the derivative alongside the coordinates z*
will be indicated as 9,

2. In case of ambiguity, something will be added in order to distinguish the operators. l.e. let
(x*,y") be our coordinate system, then we will have 9, or 9,

3. In every single case, even the differential operator must follow the index calculus rules

Now let f(z*) be some (scalar, there are no free indices) function of the coordinates. The derivative
(or gradient, it will soon be defined properly) can be written in various ways. In boldface notation it's
usual to indicate this as V f, which can be translated as follows

af
OxH

Note how in the RHS it's obvious that this quantity must be a vector due to the free index. The last one
is the comma notation for derivation, used for compacting (even more) the notation (Also check how
in the second notation, even if the index is raised, it behaves as a lower index, we will check deeply this
part in the section on differential forms).

Now comes the fun part. Higher order derivatives.

For the same function, we can define the Hessian matrix (the matrix of second derivatives) Hf, simply
applying two times the @ operator

Vf—0.f = = fu (3.18)

0*f
oxroxY

Hf — ayauf = 8/211/ = 6/11/f = = f,/u/ (319)
Derivatives of order > 2 can then be defined recursively.

Now we might ask, what if we have a vector field F#? Nothing changes. We simply have to remember
to not repeat indices in order not to represent scalar products.

We have JF as the Jacobian matrix of F*, basically the derivative matrix which in Einstein notation, as
before, has a quite obvious nature

P
o= pu (3.20)

- ox? -t

And so on, and so on..."
Let's now define the divergence and curl operators. Take now a vector field g#. We then have

5 dg"
V9 — 9wy 059" = 0ug" = 5 0 = gl
T )
3.21)
v v 9g° v (
V X g €uvod 68590 = Epuo'a gU = €uvo O = E,uuag(77
T,

"It's quite fun to dive into the dumpster of Einstein notation, isnt it?
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And therefore, defining the Laplacian as V2 = V - V, we will simply have, for whatever function A

. . . 0%h
Vih — g* 0,0,h = 0"0,h = W = ht, (3.22)

Note how the operator 9* appears. This can be seen as a derivation along the covector basis (z, =
g;wxy)-
Now, we can go back to our mathematical rigor.
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§ 3.2 Curves in R”

Definition 3.2.1 (Scalar Field). A scalar field is a function f: A C R™ — R where A is an open set

Definition 3.2.2 (Vector Field). A vector field is a function f#: A C R™® — R™ where A is an open
set

Definition 3.2.3 (Continuity). A scalar field f : A — R is said to be continuous in a point p* € A if
Ve> 035, ¢ [l — 'l <8 = [f(@") — f(p")] < e (3.23)
A vector field f# : A — R™ is said to be continuous instead if
Ve> 035, : [l —p'll, <6 = [f*(@") — S0V, <e (3.24)

If this function is continuous Vp# € A, then the vector field is said to be part of the space C(A), with
A C R”

Definition 3.2.4 (Canonical Scalar Product). Let z#,y* € R"™, the canonical scalar product is a
bilinear application (-, -) : R™ x R™ — R where, if the components of the two vectors are defined as
z#, y#, is defined as

n
xy) =Y 'y — zy" (3.25)
=1
It's easy to see that the canonical scalar product induces the euclidean norm as follows

Il = lIvlly = Vv, v) = Jour (3.26)

Definition 3.2.5 (Curves in R™). A curve is an application ¢ : [a,b] C R — R™.

The function ¢#(t) = p*, with ¢ € [a, b] is called the parametric representation of the curve.
Remembering how indexes work in this notation, we already know that this application can be
represented with an ordered n—tuple or a vector in R™

Definition 3.2.6 (Regular Curves). A curve ¢*(t) is said to be continuous if all its components are
continuous. A curve is said to be regular iff

¢H(t) € C'([a,b])

(3.27)
out)pt(t) #0 t € (a,b)

A curve is said to be piecewise regular if it's not regular in [a, b] but it's regular in a finite number of
subsets [an, by C [a, b]

Definition 3.2.7 (Homotopy of Curves). Let v#, n* be two curves from a set [a, b], [c, d] respectively.
These two curves are said to be homotopic to one another, and it's indicated as v# ~ n# iff

3h : [e,d] = [a,b], h € C([c,d]),h~ € C([a,b]), h(s) > h(t)fors >t : gt =~"oh  (3.28)
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Definition 3.2.8 (Tangent Vector). The tangent vector of a regular curve is defined as the following
vector.
A
(”Y.u’.Y“')

Where with 4#(¢) we indicate the derivative of v* with respect to the only variable ¢.

TH(t) = (3.29)

Definition 3.2.9 (Tangent Line). A curve * : [a,b] — R™ is said to have tangent line at a point
to € [a, b] if it's regular, therefore the line will have parametric equations

pH(t) = " (to) + " (to)(t — to) (3.30)

Definition 3.2.10 (Length of a Curve). The length of a curve v : [a,b] — R™ is defined as follows
b
L = / S5 (0) de (3.31)

Remark. In R?, if a curve is defined in polar coordinates, it will appear as follows
p=p(0), 0¢€][b,01] (3.32)

Its length will be given from the following integral

01
Ly= | V@7 7 o0 (3.33)

The graph of a function f : [a,b] — R, f € C'(a,b) can also be parametrized from a curve p*(t),
where

Gh(t) = (L, f()) (3.34)

Its length will be then calculated with the following integral

L= /ab J1+ (F)? de (3.35)

Theorem 3.3 (Length Invariance under Homotopy of Curves). Let {v1}, {72} C R™ be two curves,
such that v, ~ v, then
L’Yl = L’Yz

Proof. By definition we have that since the two curves are homotopic, the two domains of definition
of both are diffeomorphic to each other, and therefore

() =3 (p(1) (3.36)
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Where ¢ : I =+ J is our C*! diffeomorphism. Therefore

Lo = [ 1atet = [ |t @] ce= [ 1ogy e

Then, changing variables t — ¢(t) = s we get
L, = / NGRS (7 @)™ o)y = / 1G4, ds = Ly,
©

O

Definition 3.2.11 (Curviline Coordinate). Let ¢ : [a,b] — R™, we can define a function s(¢) as follows
t
)= [ \foueundr 337)

ds = /@, (t) @ (t) dt (3.38)

Then

And the length of a curve can also be indicated as follows

L,= / ds (3.39)
©

Definition 3.2.12 (Curvature, Normal Vector). The curvature of a curve is defined as follows

5(5) = \/Tu(5)Tr(s) = \/Bu()(s) (3.40)

(Note that ||¢(s)|| = 1) The normal vector is similarly defined as

)
K(s)

N*(s) (3.41)

Definition 3.2.13 (Simple Curve, Closed Curve). A simple curve is an injective application v : [a, b] —
R™. A curve is said to be closed iff v*(a) = v*(b)

Theorem 3.4 (Jordan Curve). Let " be a simple and closed curve in R? or C (note that C ~ R?),
then the set {~}¢ is defined as follows

{1} = {1 uextr({7}) (3.42)

Note that {v} C R? is the image of the application v and extr ({v}) is the set of points that
lay outside of the closed curve.

In C everything that was said about curves holds, however one must watch out for the definition of
modulus, for a curve v* € C we will have

(1)) = /(3 (7))2 + (3 (1))2 = VADA (D) (3.43)
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§ 3.3 Differentiability in R"

Definition 3.3.1 (Directional Derivative). Let A C R™ be an open set, and f : A — R. The function is
said to be derivable with respect to the direction v* € A at a point p* € A, if the following limit is

finite Fo 4 hot) o)
. y - J + hot) = F(p”
Don f(P") = }ll,lino : 7)h -

(3.44)

If v# = z# then this is called a partial derivative, and it will be indicated in the following ways

of

oxH

= auf = 8:1:*‘]0 (345>

Definition 3.3.2 (Differentiability). A scalar field f : A € R® — R, with A open, is said to be
differentiable in a point p# € A if and only if there exists a linear application a,(p”) = a,, such that

the following limit is finite

im B@ADY (3.46)

N W

Where we define the function R as follows

R(p" + 1) = f(p + W) = (F(p") + ah) (3.47)
This means that
F" + M) = F(p") + auh® + (9<\ /h,,,hu) (3.48)

Theorem 3.5 (Consequences of Differentiability). Let f: A C R™ — R be a differentiable scalar
field in every point of A, then

1. f € C(A)

2. fisdifferentiable in A, and a, = 0,, where is the vector differential operator, composed
by the partial derivatives

3. f has directional derivatives in A and the following equation holds

v f(P”) = O f (p” )"

4. 0, f indicates the maximum and minimum growth of the function f

5. There exist a tangent hyperplane to the graphic of the function at the point (p*, f(p*)) €
R"*! and has the following equation

2" = F) + 0uf () (2 = )
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Proof. 1. f differentiable in A implies f € C(A)

S Ll 07+ + (V) = 1

2. f differentiable in A implies f derivable in A

f" +he') = f*) _ o ath+ Oh)

i
=a'eR
h—0 h h—0 h

Then
R(p + 1) = f(p" + 1) = F(p") + 0 f (0 ) = O (/B

3. 8vuf = 6uf?]'u

o S+ hwt) — f(pF)
O f(P") = }!,Lno h h—0 h

4. 0, f indicates the direction of maximum growth.
For Cauchy-Schwartz, we have

VO fOV f = /0, forD, f¥ < /O, for fy/v,u”

O

Theorem 3.6 (Total Differential). Let f : A ¢ R* — R, with A open. If f € C'(A) (i.e. the
derivatives of f are continuous), then f is differentiable in A, the vice versa is also true

Proof. We can write the following equation
FW'+hk) = ft Rt ") = f0h ) e f 0 R = (Pt p") (3.49)

For Lagrange, we will have

f@ +h) =00 f(pt,--- ¢’y p") = WO f(ci) (3.50)
Therefore
- [f(p" + ) = fla") = 8ufhH] _ ||
lim < lim 0if(c;) =0 f(p")]|—=—=—= =0 3.51
Ry =0 V N hHOZ; 9:f(c1) SRl \/ huhH 351
Therefore 9; f(p*) is continuous and the function is differentiable. O

Theorem 3.7. Given f : A — R with f € C'(A). Then §,f = 0 Va* € A implies that f is
constant in A
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Proof. Define A as A; U A; where

Ay ={at € A: f(a¥) = f(zg)}. Ax={a" € A: f(a¥) # f(2()}

Since A is open, both A, A; must be open. Define a path ~ from z* to z and define the composite
function
p(t) = f (x5 + " —ap)), tel01]

Since f is differentiable and 9, f = 0 by definition ¢ is constant and therefore continuous, which
confirms that Ay is open.
Since A1 N Ag O

Theorem 3.8 (Differentiability of Vector Fields, Jacobian Matrix). Let f#: A C R® — R™ be a vector
field and A an open set, then the function f* is differentiable iff exists a matrix J* € M,,(R)

such that 127 + b — fr() — T
lim vk (3.52)
Vhuh*—0 \/hu,h/"
Or, equivalently
Fu@” +hY) = fr(pY) + JERY + o(,/h#hu) (3.53)

The then J! is the matrix of partial derivatives of the vector field, called the Jacobian matrix
of the vector field f*, and can be calculated as follows

JE(®7) =0, f*(p7) (3.54)

Theorem 3.9 (Composite Derivation). Let f* : A C R* — R¥ and ¢* : B C RF — RP be
two differentiable functions in p° € A, f*(p°) € B and A, B open sets, then h¥ = g” o ft is
differentiable, and

Ooh” = 0,9" (f*)0y f* (3.55)

Since p = 1,--- Jk, v =1,---,p, ¢ = 1,--- ,n it’s obvious that 9,h" € M, ,(R), 0,.9" €
Mp’k(R), aof“ S Mk’n(R)

Proof. We have that (g” o f#) = g*(f*(p®)). Then ¢” is differentiable at f#(p?) if
g (107 +57)) = 9" (7)) +0s (g7 0 F7) (£ +57) = fA )+ O (107 +57) = F* 07, )
Since f# is differentiable, we have
9 (" (07 +57) = " (f* (7)) + 05 (9" © [*) Do [+
+0, (9" 0 ) O(/5u5) + O (17007 +57) = (7))

Then, we must prove that

0o O(If0 +57) — 1400,
\/s,ulisrgao e =0
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But
95 (9" 0 f“)) ﬁ(W) 0
é#b
And
||fl1«(p0+5 ) f“ /L< \/8 f[La f‘ \/S 6“‘1‘0(\/6#8“) <C\/éus“
Therefore
O +57) =1 0),) _ O(I50” +57) = 10N 17407 +50) = 1),
Noed TR+ s — o), Vst
m

§ 3.4 Differentiability in C

Definition 3.4.1 (Differentiability). A function f: G ¢ C — C with G open, is said to be differen-
tiable or derivable at a point a € G if exists finite the following limit

df | _ f'(a) = lim f(z) = f(a) (3.56)

dZ a zZ—ra zZ—Qa

As usual, if this holds Va € G, the function is derivable in G
Theorem 3.10. /f f : G ¢ C — C is derivable in a € G, then f is continuous in a

Proof.

lim (f(z) — f(a)) = lim (z — a) lim &)=

z—a z—a z—a zZ—a

Theorem 3.11 (Some Simple Rules). Let f,g: G Cc C — C
1. (f+9)(2) = f'(2) £4'(2)
2. (19)'(2) = f'(2)9(2) + f(2)g'(2)
3. (f/9)(2) = f'(2)/9(2) = f(2)g'(2)/9°(2) Vz€G : g(2) #0
4 f(z)=c = f(2)=0
5 f(z) =2" = f(z) =nz""!

Theorem 3.12 (Composite Function Derivation). Let f : G c C — Cand g: F ¢ C — C, where
f(G) C F. If f is derivable in a € G and g is derivable in f(a) € F, then go f is derivable, and
its derivative is calculated as follows
d dg df
Son| -

a| =IU@r@ 3.57)

f(a)
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Proof. Since G is open, 3B,.(a) C G. Therefore, taking a sequence (z),, € By(a) : liMp—o0(2)n = a.
Letting f(zn) # a, we can directly write in the definition of derivative

im (9°./)(z) = (90 f)(a)

n—00 Zn — @

= (g0 f)(a) =g'(f(a))f'(a)

Thus, rewriting the function inside the limit

(g0 f)(zn) = (gof)la) _ (g0 f)(z) = (90 f)a) f(za) = fla)
Zn —a j(zn) - f(a) Zp —a
Since f is continuous ina € G O

Theorem 3.13 (Inverse Function Derivation). Let f : G ¢ C — C be a bijective continuous map,
with f~1(w) = 2. If f(a) # 0 and it’s derivable at that same point, we have

df! 1

= = (3.58)
dw |, ['(a)
Proof. Since f is bijective and continuous we can write
TR e ) B L £1(0) N T S
dw f(a) w— f(a) w — f(a) z—a f(Z) - f(a’) f/(a’)
O

§§ 3.4.1 Holomorphic Functions

Definition 3.4.2 (Holomorphic Function). A function f : G ¢ C — C is said to be holomorphic in its
domain G if G is open, and

Vz e G 33—5 = f'(2) (3.59)
It is indicated as f € H(G). It's easy to demonstrate that this set is a vector space.

Theorem 3.14 (Cauchy-Riemann Equation). Let f : G ¢ C — C, where G is open and f € H(G).
Then, if we write z = x + iy

?%(f(Z)) = u(z,y) (3.60)
Jm(f(2)) = v(z,y)
We have that the function is holomorphic if and only if
ou o0 _
dr Oy (3.61)
@ + % =0
or  dy
Alternatively, it can be written as follows
ﬁ + ﬁ =0 (3.62)

Ox Zay N
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Definition 3.4.3 (Wirtinger Derivatives). Before demonstrating the previous theorem, we define the
Wirtinger derivatives as follows.
letzeC,z=x+iyand f: GCc C—C.

0 0 0
For=3 (5 -ig) 16

(3.63)
of =, 1[0 0\,
o =01() =5 (50 + i) £
Then, the Cauchy-Riemann equations will be equivalent to the following equation
of = B
g—af(z)—O (3.64)

Proof. Let f(z) = u(z,y) + w(z,y) : G C C — C be a differentiable function in a point zg, then as
we defined, we have that f € H(Bc(z0)), and therefore

df | _ lim flz0 + h})L — f(20)

dz . 0

And, therefore, along the imaginary axis and the real axis, we have

Lo el — ) 0
Re(h)—0 Re(h) - ox|,,

im [ (20 +0m(h)) — f(20) _ 1 Of| _ _; of
Im(h)—0 iJm(h) Cddyl, Oyl

Due to the continuity of the derivative (f € H(B.(z0))) we must have an equality between these limits

of .of .of . of _
£+10—y72£f0,..f6H(Be(Zo)) = 5*0

But, since f(z) = u(x,y) + iv(x,y), we will have that

or_ o e (00 -

5 = o o) +ivto) = 5 (55 + i ) () + iv(e.)
(o e o
2\ 0z Z@y Z01’ oy)

_@_@_,01} Ou

" ox 8y_2$+287y

Rewriting the previous equation in a system, we immediately get back the Cauchy-Riemann equations

ou_ow _
or Or
@+@—0
ox Oy
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Definition 3.4.4 (Whole Function). A function f : C — C is said to be whole iff f € H(C)

Definition 3.4.5 (Singular Point). Let f : G ¢ C — C be function such that if D = B.(z0) \ {20} and
f € H(D), then z is said to be a singular point of f

For functions f : [a,b] € R — C every theorem already stated for curves in R™ with n = 2 holds,
since C ~ R2. The only thing that should be checked thoroughly is that

Re(7 (1)
10 (Gmiri) ©

Is written as

f() =Re(f (1) +iTm(f(1)) € C

§ 3.5 Surfaces

Definition 3.5.1 (Regular Surface). Let K C R?, K = E where E is an open and connected subset. A
regular surface in R? is an application

K — R3
Such that
1. r* € CH(K), i.e. 30,r* € C(K)
2. rtisinjective in K
3. rank (O,1*) =2
The image Im(r#*) = ¥ C R? is then defined by the following parametric equations

z(u,v) = ' (u,v)

rH(u,v) = { ylu,v) = r%(u,v) (3.65)
2(u,v) = r3(u,v)
The third condition can be rewritten as follows
el Ot Oor? =€, 0P 0ar” #0 VY(u,v) € K° (3.66)

Remark. A function f € C'(K) defines automatically a surface with parametric equations r#(u, v) =
(u,v, f(u,v)). This surface is always regular since €,,,o 017" 0or? = (—2u, —2v,1) # 0 Y(u,v) € K

Definition 3.5.2 (Coordinate Lines). The curves obtained fixing one of the two variables are called
coordinate lines in the surface 3. We have therefore, for a parametric surface r*(u,v) and two fixed
values u,v € I C R

i (t) = r*(t,0)

(3.67)
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Example 3.5.1. The sphere centered in a point ph € R?, pi = (z0, yo, 20) With radius R > 0 has the
following parametric equations
x = xo + Rsin(u) cos(v)

y = yo + Rsin(u)sin(v) (3.68)
z = 29 + Rcos(v)
With (u,v) € [0, 7] x [0,27]. It's a regular surface, since

€550 0o || , = R?sin(u) >0 Y(u,v) € [0,7] x [0, 27]

Definition 3.5.3 (Curve on a Surface). Let v : [a,b)] C R — K C R3 be a regular curve, and
r: K — X, with the following parametric equations

u=u(t)
(t) = 3.69
() {1) = v(t) ( )

The regular curve p#(t) = r#(u(t),v(t)) has Imp* C 3. If it passes for a point pfj = (ug,vo) it has
tangent line

pH(t) = ply + i (8)(t — to) = ph + Ourt (u(t), v(t))u(t) + Ot (u(t), v(t)) () (3.70)
The line is contained inside the following plane
(x—20) (y—vo) (2—20)
det 817"1 817"2 837’1 (371)
827'1 827'2 637'3

For a cartesian surface, i.e. the surface generated from the graph of a function f(z,y), the tangent
plane will be
o= f(al) + 0, f (ah) (@t — xlt) (3.72)

Definition 3.5.4 (Normal Vector). The normal vector to a surface X, n*(u,v) is the vector
1

&
\/6“1,0 € 01TV Oar? 01150,

nt(u,v) = " Dur” Oyr® (3.73)

For a cartesian surface we have

—0af (3.74)
1

1 _Olf g
H —
n (.’L',y) - 1+3“f3#f

Definition 3.5.5 (Implicit Surface). Let F: A ¢ R? — R be a function such that F € C1(A), letting
Y= {at € R} F(zt) = 0}. If af € ¥ and 0, F(af) # 0, ¥ coincides locally to a cartesian surface,
and the equation of the tangent plane at the point 2§ is the following

O F(zf)(x" —xf) =0 (3.75)
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Definition 3.5.6 (Metric Tensor). Let ds be the curviline coordinate of some curve v inside a regular
surface 3. Then we have that

st(t) = (u(t), v(t)) (3.76)
And therefore
ds? = dr,, drt = Oyr" 017, (da:l)2 + 201791, dzt da? + Oart Do, (d.7:2)2 (3.77)
In compact form, we can write
ds* = g,,, dz* dz” (3.78)

And, the metric tensor g, can defined as follows

Juv = Qﬂ"’@,,r,, (3.79)
Or, in matrix notation
o (917'#({)17"N 017'#827”#
G = ((()27““'(()1 Tu (()27““'627“” w <380>

In usual mathematical notation we have

E F
G = (F G) (3.81)
v

And it's called the first fundamental quadratic form in the language of differential geometry. Then,
we can write

ds? = F (dx1)2 +2Fdztdz? + G (dx2)2 (3.82)

§ 3.6 Optimization

§§ 3.6.1 Critical Points

Theorem 3.15 (Fermat). Let p” € A be a point of local minimal or maximal for the function
f: ACR™ — R with f € C1(A). If f is differentiable in p* we have

Ouf(@”) =0 (3.83)

The point p” satisfying this condition is then called a stationary point or a critical point for
the function f

Proof. Let v* € A be a direction. The function g(¢) = f(p* + tv*) has a point of local maximal or
minimal for ¢ = 0. Then

F/(O) - auﬂf(pu) - a/l,f(py)vy =0 = a/l,f(py) =0 (384)

O
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Definition 3.6.1 (Hessian Matrix). Let f : A C R® — R, and let f € C*(A), then we define the
Hessian matrix as the matrix of the second partial derivatives of the function f

allf e alnf
90,0 =0 i) |+ | @) (3.85)
anl.f e a’ml, f

%

Theorem 3.16 (Schwarz). Let f: ACR"® — R, f € C?(A), then
a/l,l/.f = au/l,f (386)

Definition 3.6.2 (Nature of Critical Points). Let p? be a critical point for a function f € C'(A).
Then

1. 0. f(p7) is definite positive, then p7 is a local minimum
2. J, f(p) is definite negative, then p” is a local maximum
3. 0, f(p?) is indefinite, then p™ is a saddle point

Theorem 3.17. Here is a list of some rules in order to determine the definition of the matrix

O f-
Let v* € A be a direction, and p” € A a critial point of the function f : A C R® — R then

1. If O f(p7)0H0” >0 Vo' € A = 0., f(p”) positive definite
If O, f(p7)vHv” <0 Yo' € A = 0., f(p?) negative definite
If O f(p7)vH0” >0 VYo' € A = 0, f(p”) semi-positive definite
( (

If O f(p7)0H0” <0 Vo' € A = 0, f(p”) semi-negative definite

LA WN

If v # wt are two directions, and 9,,, f (p7)vHv” > 0 A Oy f(pY)whw” <0 = 0 f(p?)
indefinite

Theorem 3.18 (Sylvester’s Criteria). Let A% € M,,(R), and (Ay)" be the reduced matrix with
order k < n, then

1. det,, ((Ax)¥) > 0 = A positive definite
2. (=1)*det,, ((Ax)*) > 0 = A" negative definite

3. Ifdet,, ((Aax)t) < 0 orifdet,, ((A2kt1)l) < 0Adet,, ((Azny1)l) > 0 for k # n, then AL s
indefinite

Theorem 3.19 (Compact Weierstrass). Let f : K CR" — R, f € C(K), with K a compact set,
then
g € K 1 min(f) = f(p") < fa*) < max(f) = f(") Va" € K (3.87)
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Proof. Being K a compact set, we have that every sequence (p*),, converges inside the set, therefore,
letting (p*),, being a minimizing sequence for f. Then there exist a converging subsequence (p*).,
such that

foh,) — f(p")

But, since (p*),, is a minimizing sequence, we have
I
F(p") = min(f)

By definition of minimizing sequence. Analogously, one can define a maximizing sequence and obtain
the same result for the maximum of the function in K O

Theorem 3.20 (Heine-Cantor). Given f : K — R with K a compact set, then if f € C(K), f is
uniformly continuous

<++>

Theorem 3.21 (Existence of Intermediate Values). Let f: A C R® — R, f € C(A), then, given
u € R such that
mAn(F) <u< m/?x(F)

Then
dteA: f(')=u

Theorem 3.22 (Squeeze). Let g(z*), f(z"), h(z") be three functions such that g < f < h for
z* € Bs(zl)), then

lim g(z*)= lim h(z*)=L = Ilim f(a"*)=1L

L H L m
T —xy T —xy TH—x

Proof. By definition of limit we can say, supposing that the affirmation is true, that

Ve>0,36>0: |[f(z") — Ll <e, |a"—ap| <6
Ve>0,30 >0 : [g(a") — L] <e, |Ja"—al|| <0,
Ve > 0,36 >0 : |h(z") — L] <e, |z* —ah| < d

Since we're working in R™ with the standard topology, the last condition on the right tells us that
we're working in Bs(xy ), for which g < f < h for some d3 > 0.
Taken § = min {41, 2,05} then

Ve>0 L—e<g(a")<f(z")<h(z!)<L+e z"e Bsh)

Therefore
|f(z) — L] <€

Which proves the theorem O

<++>
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Theorem 3.23 (Closed Weierstrass). Let f: LCR® — R. If L = L and f € C(L) is a coercitive
function, i.e.

” |||‘m flz") = 400 (3.88)
Then
Jaxt e L : mLin(f) = f(z*) (3.89)

Proof. Let (p“ be a minimizing sequence for f in L. If this sequence wasn't limited, we would have

that \/(pu)n(P*)n — oo, and therefore

inf(f) = lim f(pl) = +o0 4

n—oo
Therefore (p*),, must be limited, and the proof is the same as in the case of a compact set. O

Theorem 3.24 (Topology and Functions). Let f : R* — R, f € C(R"™). Then

{zt e R"| f(a") < a € R}

{z" e R"| f(a*) > b e R} (3.50)
Are open sets in R™ with the standard topology, and
z o f(at) <
o mn s
Are closed sets
§§ 3.6.2 Convexity and Implicit Functions
Definition 3.6.3 (Convex Set). A set A C R"™ is said to be convex if
Azt + (1 =Nyt e A Vat y' € A, VA € [0,1] (3.92)
Analogously, a function f: A ¢ R® — R is said to be convex, if
FOat 4+ (1 =Ny") < Af(z")+ (1 =N)f(y") Vat,y* € A, VA€ [0,1] (3.93)
The function f is also known as a sublinear function
Also, the set
Ep = {(«"\) € AxR| f(a") <y} (3.94)
Is convex

Theorem 3.25 (Convexity). Let f: A CR" — R.
1. fconvexin A = f e C(A)
2. f differentiable in A = f convex <= f(z*) > f(p") + (Vf(p"),z" — p")

3. feC*A) = fconvex < 0,,f(x") is positive semidefinite
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Definition 3.6.4 (Matrix Infinite Norm). Let A%(x7) € ¥V — M,,,,(F), where dim(V) = n. We can
define a norm for this space as follows

4% = x/ﬁ\/max sup A A (27) (3.95)

rooxrey

Theorem 3.26 (Average Value). Let f* : A C R* — R™, with f € C'(A), A an open set and
K C A a compact convex subset, then

177) = A < 100 2 oMl = 91, (3.96)

Proof. Let r”(t) = (1 — t)y” + tax¥ be a smooth parametrization of a segment connecting the two
points x”, 3, then

746 (1) = P OV, < 0 £, 00 (1)) < Sup(@” £,0. F ()l = o1

< mmaxsup (an(#)an(m (x’Y)) lz¥ — yu”lz/
By

Therefore

1F#(@") = f ), < vm, [maxsup (8 0, f0) |l —y” ||, =
I3 PRt
= ol llz” —y”ll, V2¥,y" € K
O

Theorem 3.27 (Implicit Functions, Dini). Let f*: A C R™ x R® — R", where f* € C1(A). Also
let (zf,yy) € A such that

f*(xh,yg) =0

oft
aet () #0

Then
dBc(z) =1 CR™, Be(yg) =J CR™ : f(a",y")=0V(z",y") eI x J

Has a unique solution y” = ¢g"(z¥) € J, with g” € C'(I), and

L -1 L
09" _ _ (af/ ) or (3.97)

oxV oy dxv

-1
Proof. let B = (8yowf“> , then we know that

fHa”,y") =0 <= B f'(a",y7) =0 < G"(a",y7) =y" — B f*(@",y7) =0
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We have therefore
G (x", g% (x")) = g7 (x") — B} f*(z", g7 (x")) = g7 (¢") Va¥ € By(zf) = I

o0G" afr
-5 - BY
aya a H ayn
o0G" afr
=67 - BY =07 —§ =
ayg o o 6y” o o 0

Now take (X, d) = (C(I,J),]|l.), with J = B.(yg), and define an application H : X — X such
that
HY (w”(2")) = G7 (2", w’ (2"))
We need to demonstrate that this application is a contraction, i.e. that 3lg7(z¥) : f* (2, g7 (a¥)) =
Ov(z",y")elIxJ
=Y (W (z%)) = ygll.,, = G (2", w”(z")) — ygll., <
<G (@ w (@) = G (2", yg), + 1167 (@, 95) — G (26, yo) I, <

aG’Y g v g v g v g
<15y || w7 @) gl + 167 @7 55) = G o, w), < €
Since [|G7(2”,yg) — GV (x5, y9) I, < €/2 and [[w? (z) — 5|, <€ V(2¥,y7) € I x J, we have
o0G" 1
< —
0y ||~ 2

Therefore
[ H (w(z")) — H (07 (2"))], < Sllw?(z") — o7 (2")]]

l.e. H is a contraction in C(1,J).
Due to the differentiability of f# we can write

Ve>03ne = W), k7N, < me = /(2,97 (&%) + k7) = fH(2", g7 (2")) = Oav fHRY = Oy fHE7|, <
< e(lr”ll, + 1&71,)
Letting k7 = g7 (z” + h*) — g7 (") we have by definition
FH@ 4 B, g7 (@) + K) = fA(a, g (@) = O
And therefore, putting 9,~ f# = d¥
97+ 0%) + 0 01, < € (IR, + @+ %) — g7 ), )

Letting e = 1/2 we have ||g7 (2" + h") — g7 (z¥)|| < n1/2, and we have

lg7(x” + ") — g7 (z")Il, < llg7"(@" + h") = g7 (2") = Do fYR"|| | Oav fHR7|[,

1 174 174 1% 1% 1%

<5 (IRl + 197 @ + 1) = g @), ) + 190 £ I

Which implies
g7 (z” + ") — g7 («")Il, < A7l (1 + 2[|0zv f*]| )

Which implies that g7 (") is continuously differentiable in 7. Whenever 9, f** # ¢% we can find a
transformed function f* such that Oy fr= o8 O
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§§ 3.6.3 Lagrange Multipliers

Definition 3.6.5 (Vinculated Critical Points). Let f: K € A C R? — R with A open and f € C'(A).

Let 0K = Uy<,, 7% With vk : [ak, by] — R2. The critical points of flox arefoundin Py, = v (t;) € 0K,

for which g
(P =
dt ( zk) 0

Definition 3.6.6 (Argmax, Argmin). Let f* : A — R™ a function which reach its maximum in
vy € Ai=1,--- ,mandits minimum aty? € Aj=1,---,k Then we can define

Arg max(f) : ={af, -, 2V}
4 3} ,, (3.98)
ArgAmln(f) = {y17' Yk

Theorem 3.28 (Lagrange Multipliers). Let f,g : A — R, f,g € C*(A), A C R" open, and
M = {zt € Al g(z) = 0} and let zff € M : O ug(zl)) # 0, then zfj € Arg max,, f V Argmin ,, f
if it’s a free critical point of the Lagrangian

L(xH X)) = f(a*) — Ag(z?) (¥, N) € AxR (3.99)
l.e. INg € R : (zf), \o) solves

{%f (2”) = Adug(”) (3.100)

g(@") =0
Or, that

rank (g“f($§)> =1

ug(xo)

Proof. Let 9,9 # 0, then we can see M as a graph of a regular implicit function of g, h : R* 1 — R,
where

g(x", h(z") =0 Va* € B.(ahg) C R*!
Letting ¢ : (—e,e) — B, (zfj) a smooth curve, such that ¢*(0) = xf, we have that " (t) =

(pH(t),h(t)) € M is the parameterization of a smooth curve that passes through zff € M. We
have

d . .
g7/ W7 (0)) = 8,.f¢M(0) + 8 fR($"(0)) = 8, f (20)s”
d
g7 9" (0) = dyg(ap)s”
With s* = 4¥(0), therefore 8, f|[ v (0)Ov g O

Theorem 3.29 (Generalized Lagrange Multiplier Method). Let f,g; : ACR" — R, 0 < i < n,
f,9: € C*(A) with A an open set, let M := {z¥ € A| g(z¥) = 0}. Take x¥ € M such that

rank 9, ¢"(z)) = k
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Then zj is a critical point for f|,,, and it’s a free critical point for the Lagrangian L
L(z7, M) = f(x7) = Avg”(27)
l.e. 3(z}, \y) € A x R solution of the system

O, f(z7) = Opg"(x?) N
9" (") =0

Alternatively, one can check that

rank(A4) = ((%jt(égw))) =k



4 Tensors and Differential Forms

§ 4.1 Tensors and k-forms

§§ 4.1.1 Basic Definitions, Tensor Product and Wedge Product

Definition 4.1.1 (Multilinear Functions, Tensors). Let V be a real vector space, and take V¥ = V' x---xV
k—times. A function T : V¥ — R is called multilinear ifVi=1,--- .k, Ya € R, Yo,w € V

T(/Ul7“' 7alui+wi7'“ 7vk‘) :aT(vlv"' IRLTR ,'Uk)+T(’U1,"' , Wiy et ',vk) (41)

A multilinear function of this kind is called k-tensor on V. The set of all k—tensors is denoted as 7% (V)
and is a real vector space.
The tensor T is usually denoted as follows

Tulu.uk (42>

Where each index indicates a slot of the multilinear application T'(—,--- ,—)

Definition 4.1.2 (Tensor Product). Let S € T*(V), T € T'(V), we define the tensor product S® T €
T++(V) as follows

(S@T)(v1, Uk, Vg1, 5 V) = S(v1, -+ )T (Vg1 5 Vktt) (4.3)
This product has the following properties

(Sl+52)®T151®T+52®T
S®(T1+T2):S®T1+S®TQ

4.4
(@S)RT=85® (aT)=a(S®T) “4)
ST)eU=S(TeU)=STeU
IfS =S8, . uandT =T, .., wehave
(S ® T)llrl»~<llrkllk+1<--,“'k+l - Smm/LkT/!rkﬂkaH (4.5)

Definition 4.1.3 (Dual Space). We define the dual space of a real vector space V as the space of all
linear functionals from the space to the field over it's defined, and it's indicated with V*. l.e. let
ot e V*, then o : YV — R.

It's easy to see how V* = T1(V).

51
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Theorem 4.1. Let B = {v,,,--- ,v,,} be a basis for the space V, and let B* := {¢H,--- ot~} be
the basis of the dual space, i.e. p'v, = 6! Vo' € B*, v, € B, then the set of all k-fold tensor
products has basis B, where

BT::{@#1®"'®§9'[%7vj:l'/"'an} (46)

Theorem 4.2 (Linear Transformations on Tensor Spaces). If f:V — W is a linear transformation,
[l € L(V,W), one can define a linear transformation f* : T*(W) — T*(V') as follows

f*T(q}/u s 77)/%) = T(.f#”/m s 7f57)/1,k)

Theorem 4.3. If g is an inner producton V (i.e. g : V x V — R, with the properties of an inner
product), there is a basis v,,,--- ,v,, of V such that g(v,,v,) = gu = Gop = 9(Vy,Vu) = Oy
This basis is called orthonormal with respect to T. Consequently there exists an isomorphism
fi R™ =5V such that

g(fy=”, fl'y") = zpy" = guaty” (4.7)

le.
f*g('a ) = 9uv (48>

Definition 4.1.4 (Alternating Tensor). Let V' be a real vector space, and w € T*(V). w is said to be
alternating if

w(vﬂl_/... 7/U;Ufi7.“ 7““]"... 7UNA-,) e —w(v“17... 7”/1]‘7"' 71}#7:_/... 7U}Lk) (49)
W(Uﬂl7'.’ 7/UIL1',7.'. ’,U;U'z’... 7/U,Ufk) :O
Or, compactly
Wyov.y..o = Wy .v..0 <4 ,IO>

Wy..v..v..y = 0

The space of all alternating k—tensors on V is indicated as A¥(V), and we obviously have that A¥(V)
TEW).
We can define an application Alt : 7#(V) — A¥(V) as follows

" " 1 L L
AR(T) (v}, - oty = o D san(o)T(vhy), - o) 4.11)
oceXy
With o = (4, ) a permutation and X, the set of all permutations of natural numbers 1, - - - | kK Compactly,

we define an operation on the indices, indicated in square brackets, called the antisymmetrization of
the indices inside the brackets.
This definition is much more general, since it lets us define a partially antisymmetric tensor, i.e. anti-

symmetric on only some indices.
1
HT[IHu-Nk]

ATy, ) = (4.12)
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As an example, for a 2—tensor a,,,, we can write

1 -
Aluv] = i (a‘/l,l/ - al//l,) = Quv S A2(V) (413)

This is valid for general tensors. If we define a k—tensor over the product repeated & times for V and k
for its dual space V x ---V x V* x --- x V*, we can define the space 7#(V x V*) = W. Let the basis
for this space be the following
By = {Uul Q- QU ®9‘9V1 ®"'®99Vk}
Then an element Y of the space W can be written as follows
y(UM! o ’Uuk’(royl )T 7901%) = yZiZ’Z

We can define a new element Y € A*(V x V*) using the antisymmetrization brackets

YY1V — y[l’l-u”k]

M1 [ ]

We can define also partially antisymmetric parts as follows

Rul...yk :yV1-~-[ViVi+1]---Vk — l yV1~~~ViVi+1~~~Vk 7:))1/1...1/#114...1/
4!

3 V1...ViViy1...Vg Vi...VilVig1...Vg
(RN pre (i) LTy Y

M- i1 Pk R ) S R ) [N T NS 1T T N RS YT 1

Note how the indexes in the expressions with the label i and I simply got switched, and in the new
definition, the tensor R is antisymmetric in both the covariant (lower) indexes p;, 41 and in the
contravariant (upper) indexes v;, v;11, where obviously 7,1 < k

Theorem 4.4. Let T € T*(V) and w € A¥(V). Then

Ty, o) € Ak(V)
W[ul...uk] = War o, (4-14)
T ceoil) = T i

Definition 4.1.5 (Wedge Product). Letw € A*(V), n € AL (V). In general w ® n ¢ AFTL(V), hence we
define a new product, called the wedge product, such that w A € A*+(V)

(k + 1)1
Wiy ANy, = WC‘)[;H...uknuLuw] <415)

With the following properties
Yw,wi,ws € AR(V), Vi, mi,me € AY(V), Va € RVf* € L:TFV) — THV) VO € A (V)
(Wi +w) An=wi An+ws A7
WA (M +m2)=wAn +wAne
wAN)AN=wA(nANEO
(wAn) (nA0) 4.16)
aw An=wAan=alwAn)
wAn=(-1)*pAw
frwAn) = f"(w) A f*(n)
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Theorem 4.5. The set
{@" A At k< n} C AR(V) (4.17)

Is a basis for the space A*(V), and therefore

dim(A*(V)) = (Z) - k'(nnlk)'

Where dim(V) = n.
Therefore, dim(A™(V)) = 1

Theorem 4.6. Letv,,,--- ,v,, be a basis forV, and take w € A"(V), then, if w, = a}v,
w(wy, - wy,) =det(ad)w(v,,, ..., vu,) (4.18)
%

Or using the basis representation of a vector t* = t'w,, = t"ajv, we have

Wy oo T+t = det(al)wy, o, £ - 0 (4.19)

%

Proof. Define n,, . ., € T"(R") as

K1 g2 | aBn — H1o o M
T/Hl--»ﬂn,“t/l ay2 a’z): - wlllu-lln ayl a“l/:

Hence n € A™(R™) so nn = Adet(-) for some ), and

= L e K1, gyHn
A= My © e = Wy, v b

§§ 4.1.2 Volume Elements and Orientation

Definition 4.1.6 (Orientation). The previous theorem shows that a w € A™(V), w # 0 splits the bases
of V in two disjoint sets.
Bases for which w(,) > 0 and for which w(B,,) < 0. Defining w* = a#v” we have that the two bases
belong to the same group iff det,, (a#) > 0. We call this the orientation of the basis of the space.
The usual orientation of R™ is

les]

Given another two basis of R we can define (taking the first two examples)
[Uﬂ]

—[w,]

Definition 4.1.7 (Volume Element). Take a vector space V such that dim(V) = n and it's equipped
with an inner product g, such that there are two bases (v#t,--- [ v#n), (wh?,---  whn) that satisfy the
orthonormality condition with respect to this scalar product

G = gew”iwY = 0y, (4.20)
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Then
Wy oy V0t = wy e wht e wht = Clig‘[(aff) =41
Where
wh = alv”
Therefore

ANw e A™(V) : Awhr, - Jwh] =0

Where O is the orientation of the vector space.

Definition 4.1.8 (Cross Product). Let vf',--- ,v# € R**! and define ¢, w” as follows
ph1
o w” = det
pHn
'U}V

Then ¢ € AY(R™*1), and
Iz e R . 2w, = p,w”

z# is called the cross product, and it's indicated as

no__ v Un _ b vy, v,
ZH =0 x x v = €h, v "

. .fl_)
1. Un

§ 4.2 Tangent Space and Differential Forms

Definition 4.2.1 (Tangent Space). Let p € R", then the set of all pairs { (p, v*)| v* € R™} is denoted
as T,R™ and it’s called the tangent space of R™ (at the point. This is a vector space defining the
following operations

(p, av?) + (p, aw") = (p, a(v" +w")) = a(p,v" + w") Yo', w' € R" a € R

Remark. If a vector v* € R™ can be seen as an arrow from 0 to the point v, a vector (p, v*) € T,R"
can be seen as an arrow from the point p to the point p + v. In concordance with the usual notation
for vectors in physics, we will write (p, v*) = v* directly, or vf when necessary to specify that we're
referring to the vector v € T,R™. The point p + v is called the end point of the vector v}.

Definition 4.2.2 (Inner Product in T, R™). The usual inner product of two vectors vt wh € T,R" is
defined as follows
(- p TpR™ x T,R® — R

ST R TS
vywy, = v wy, =k

Analogously, one can define the usual orientation of T,,R™ as follows

[(elh )p7 B (eun)p]

(4.21)
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Definition 4.2.3 (Vector Fields, Again). Although we already stated a definition for a vector field, we're
gonna now state the actual precise definition of vector field

Let p € R™ be a point, then a function f#(p) : R® — T,,R™ is called a vector field, if Vp € A C R™ we
can define

fH(p) = f*(p)(en)p (4.22)

Where (e,,), is the canonical basis of T,R"
All the previous (and already stated) considerations on vector fields hold with this definition.

Definition 4.2.4 (Differential Form). Analogously to vector fields, one can define k—forms on the
tangent space. These are called differential (k-)forms and “live” on the space A"“(TPR”).

Let .- @kt € (T,R™)" be a basis on such space, then the differential form w € A* (T,R") is
defined as follows

Wpreoiin (P) = Wy b0 = Y Wi ()90 (0) A A s (D) (4.23)
<. <ig

A function f : T,R™ — R is defined as f € A°(T,R™), or a 0—form. In general, so, we can write
without incurring in errors

f(p)w = f(p) Nw = f(p)wm bk (4.24)

§§ 4.2.1 External Differentiation, Closed and Exact Forms

Definition 4.2.5 (Differential). Now we will omit that we're working on a point p € R™ and we'll use
the usual notation.
Let f : T,R" — R be a smooth (i.e. continuously differentiable) function, where f € C*, then,
using operatorial notation we have that 9, f(v) € A*(R™), therefore, with a small modification, we
can define

df(vy) = 0uf(v") (4.25)
It's obvious how dz#(v}) = d,a#(v”) = v, therefore dz* is a basis for A'(T,R™), which we will
indicate as dz*, therefore Vw € A¥(T,R")

Whg oo = Wi oo dalr .. dagt] — Z Wiy i (D) dz®t A -+ A dzt (4.26)
< <in

Basically, the vectors dz#* are the dual basis with respect to the canonical basis (e,),

Theorem 4.7. Since df(vy) = 0, f(v") we have, expressing the differential of a function with
the basis vectors, 5
df = / dz# = 0, f da* (4.27)

= ur

Definition 4.2.6. Having defined a smooth linear transformation f# : R™ — R™, it induces another
linear transformation 9, f# : R"™ — R™, which with some modifications becomes the application
(f )l T,R™ — Ty, R™ defined such that

(FE@) = (dfl5) . 07) (4.28)
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Which, in turn, also induces a linear transformation f* : A*(Ty,)R™) — A*(T,R™), defined as
follows. Let w, € A*(R™), then we can define f*w € A*(Ty(,)R™) as follows

(Fwp)Wus - V) = W) (F)U v+ 5 (F)L V) (4.29)

(Just remember that in this way we are writing explicitly the chosen base, watch out for the indexes!)
Theorem 4.8. Let f : R® — R™ be a smooth function, then

1. (f)f(da”) =df = 8, f* dz”

2. ffwi +w2) = frfwi + frwe

3. fH(gw) = (go f)f*w

4. frwAn) = frwnfo

5. f* (hdzltr ... dziel) = ho fdet,, (0, f*) dzl - - - da#n]

Definition 4.2.7 (Exterior Derivative). We define the operator das an operator A*(T,,V) -4 ARYT,Y)
for some vector space V. For a differential form w it's defined as follows

(dw)wpy e = OpWpuy .y (4.30)
This, using the classical mathematical notation can be written as follows

dho = Z dwi, i Adz™ A A da®

1< .. <ig

"5 _ _ _ (4.31)
dw = Z Z %Wu,m daz? Ada™ A--- Ada
i1<...<ip j=1
Theorem 4.9 (Properties of d). 1. dw + 1) = dw + dn
2. dwAn) =dwAn+ (—=1)*w Adny forw e A¥(V), n € AL(V)
3 ddw=dfw=0
4. f*(dw) = df*w)
Definition 4.2.8 (Closed and Exact Forms). A form w is called closed iff
dw =0 (4.32)
[t's called exact iff
w=dn (4.33)

Theorem 4.10. Let w be an exact differential form. Then it’s closed
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Proof. The proof is quite straightforward. Since w is exact we can write w = dp for some differential
form p, therefore
do=ddp=dp=0

Hence dw = 0 and w is closed. O
Example 4.2.1. Take w € A'(R?), where it's defined as follows
w, =pdz +qdy (4.34)

The external derivative will be of easy calculus by remembering the mnemonic rule d— 9, A dz*, or
also as 9y, then we have
de = 8[1,0)/”

But
9 _ 01wy Orwo
v = Oowr  Oowr v
And
1 1 T
Opwy) = i(ayw# — Oywy) = 5(&u —Ow')
Therefore

1 0 0xq — Oyp
Qoo = = 24— 0y
W 2 (ayp — 02q 0 >W/

Which, expressed in terms of the basis vectors of A%(R?), dz A dy, we get
dw = %(&Cq — Oyp)dz A dy + %(pr — 0,q) dy Adz = (0,q — 9yp) dz A dy (4.35)
Therefore

dw=0 < 9,¢q—0yp=0 (4.36)

Definition 4.2.9 (Star Shaped Set). A set A is said to be star shaped with respect to a point a iff
Vz € A the line segment [a,z] C A

Lemma 4.2.1 (Poincaré’s). Let A C R™ be an open star shaped set, with respect to 0. Then every closed
form on A is exact

§ 4.3 Chain Complexes and Manifolds

§§ 4.3.1 Singular n—cubes and Chains

Definition 4.3.1 (Singular n—cube). A singular n-cube is an application ¢ : [0,1]" — A C R™. In
general. A singular 0-cube is a function f : {0} — A and a singular 1—cube is a curve.

Definition 4.3.2 (Standard n—cube). We define a standard n-cube as a function 1" : [0,1]" — R"
such that 1" (z#) = z*.
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Definition 4.3.3 (Face). Given a standard n—cube I"™ we define the (i, a)—face of the cube as

Iy = (2 hana!, 2™ ) a=0,1 (4.37)

Definition 4.3.4 (Chain). Given n k—cubes c;, we define a n-chain s as follows

s = Za7c7 a; €R (4.38)
i=1

Definition 4.3.5 (Boundary). Given an n—cube ¢; we define the boundary as dc;. For a standard
n—cube we have

or =" Y " (-1, (4.39)
i=1 a=0,1 '
For a k—chain s we define
0s = O(Z a;c;) = Z a;0c; (4.40)

Where 0s is a (k — 1)-chain

Theorem 4.11. For a chain ¢, we have that 90c = 9%c =0

§§ 4.3.2 Manifolds

Definition 4.3.6 (Manifold). Given a set M C R™", it is said to be a k-dimensional manifold if
Vz# € M we have that

1. 3U c R* open set z# € U and V C R™ and ¢ a diffeomorphism such that U ~ V and
e(UNM)=Vn(RFx{0}), ie UnM=~Rn{0}

2. 3U c R¥ open and W c RF open, z# € U and f : W — R™ a diffeomorphism

@ f(W)=MnU
(b) rank (f) = kVazt e W
© ftec(f(w))
The function f is said to be a coordinate system in M

Definition 4.3.7 (Half Space). We define the k-dimensional half space H* c R* as

H* := {2" € R¥| 2’ > 0} (4.41)

Definition 4.3.8 (Manifold with Boundary). A manifold with boundary (MWB) is a manifold M such
that, given a diffeomorphism h, an open set U > M and an open set V C R"

h(UNV)=Vn(HN{0}) (4.42)
The set of all points that satisfy this forms the set OM called the boundary of M
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Definition 4.3.9 (Tangent Space). Given a manifold M and a coordinate set f around z* € M, we
define the tangent space of M at x* € M as follows

fWCR —R" = f, (T,R") =T, M (4.43)

Definition 4.3.10 (Vector Field on a Manifold). Given a vector field f# we identify it as a vector field
on a manifold M if f#(z*) € T, M. Analogously we define a k—differential form



5 Integral Analysis

§ 5.1 Measure Theory

Definition 5.1.1 (Lower and Upper Sums). We define the upper and lower Riemann sums as follows.
Let f(x) be a function, then

n

Ufa):=> L ](f(t))
i=1 tEITk Tht1

L(f,z):= inf t
(f.2) g[](f( )
A function is said to be Riemann integrable if lim,, .. (L(f,z) —U(f,x)) =0
Definition 5.1.2 (Set Function). Let A be a set. We define the following function 1 4(z) as follows

| zcA
nA(x){O ;;A (5.2)

Theorem 5.1. The function 1g is not integrable over the set [0, 1] with the usual definition of
the integral (Riemann sums)

Proof. Indicating the integral I as usual

1
I:/ 1g(z)dx
0

We see immediately that

ULg,z) =1
,C(]IQ, 1) =0
Therefore 1g(z) is not integrable in [0, 1] (with the Riemann integral) O

Definition 5.1.3 (Measure). Let A C X be a subset of a metric space. We define the measure of the
set A, u(A) as follows

/L(A)z/X]IA(:L')dx (5.3)

61
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Basically, what we did before, was demonstrating that the set Q N [0, 1] is not measurable in the
Riemann integration theory. This is commonly indicated with saying that the set QN[0, 1] is not Jordan
measurable.

For clarity, let K be some measure theory. We will say that a set is K-measurable if the following
calculation exists

i (A) :/X 1 4(z)dx (5.4)

Definition 5.1.4 (Algebra). Let X # {} be a set. An algebra A over X is a collection of subsets of X
such that

1. {}ed

2. XeA

30.Ac A = A°c A

4 Ay, Ay e A = UL AN Aice A

Example 5.1.1 (Simple Set Algebra). Let X = R? and call R the set of all rectangles I; ¢ R* x R*,
where R* = R U {£o0}. It's easy to see that this is not an algebra, since, by taking [0,1] € R, we have
that [0, 1] ¢ R, hence it cannot be an algebra.

But, taken S as follows
S = {ACR2|AUL; L;ER}

i=1

We can see easily, using De Morgan law, that S is an algebra.

§§ 5.1.1 Jordan Measure

Definition 5.1.5 (Disjoint Union). Taken two sets A, B, we define their disjoint union the binary
operation A LI B as follows
AuB:=AUB\ANB (5.5)

Definition 5.1.6 (Simple Set). A set A is a simple set iff, for some R; € S, we have

Definition 5.1.7 (Measure of a Simple Set). Let A be a simple set, the Jordan measure of a simple set
is given by the sum of the measure of the rectangles, i.e. the “area” of A is given by the sum of the
area of each rectangle R;

pr(A) = ZNJ(Ri) (5.6)
=1
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Definition 5.1.8 (External and Internal Measure). We define the external measure 7 ; and the internal
measure 4, as follows.
Taken a limited set B and a simple set A we have

fi;(B) =inf{u;(A)| B C A}
p,(B) = sup{p;(A)| A C B}

A set is said to be Jordan measurable iff

fi;(B) = p,(B) = ps(B)

Remark (A Non Measurable Set). A good example for showing that the Jordan measure is the set we
were trying to measure, the set Q N [0, 1]. We can easily see that

my(QN [07 1]) =1
1, (@N[0.1) =0

Therefore it's not Jordan measurable.

From this we can jump to a new definition of measure, which is the Lebesgue measure where instead
of covering Q N [0, 1] with a finite number of simple sets, we use sets which are formed from the
union of countable infinite simple sets.

We can define

Qm [0/1] = {qth',"'}
We then take € > 0 and define the following set

€

€
|:qn — 5.:4n + =

A =
27L 2n

1C3

We have that
€

— = 2¢

WK

n(A) <

n=1

2",
But z(QN10,1]) < u(A) < 2e — 0, therefore Q N[0, 1] is measurable with x(Q N [0,1]) =0

§§ 5.1.2 Lebesgue Measure

Definition 5.1.9 (¢ —Algebras and Borel Spaces). Given a non empty set X a c—algebra on X is a
collection of subsets F such that

1.VAe F, ACcX
2. letA; e Fiel: |I| =X, then U2, A €F
The couple (X, F) is called a Borel space or also a measurable space
Definition 5.1.10 (Measure). Given a Borel space (X, F), we can define an application
po: F—[0,00] =R} (5.8)

Which satisfies the following properties
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1. o-additivity, given A; € Fwithi e I C N, |I| <N, such that A, N Ay, = {} forn # k

Iz <|_| Az‘) = u(A)
el el
2. 1fY; c X, withje JCN, pu(Y;) <oothen X =72, Y;

Definition 5.1.11 (Measure Space). A measure space is a triplet (X, F, u) with F a c—algebra and p
a measure.

Remark. The empty set has null measure.

Proof. Due to o—additivity we have that

p({d) = p({3 U {d) = p{}) +p{})
Therefore, u({}) = 0 necessarily. O

Definition 5.1.12 (Lebesgue Measure). Consider again X = R? and S the algebra of simple sets.
The external Lebesgue measure of a set B C R? is then defined as follows

7 (B) :=inf { iArea(R,,;)

R, €S, BC UR,,} (5.9)

=1
The set B is said to be Lebesgue measurable iff, VC c R?
i (C) =nL(CNB)+ L (C\ B) (5.10)

If it's measurable, then, 7, (B) = pur(B) and it's called the Lebesgue measure of the set.
In other words Je > 0 : 3A,C c R?, with A = A°, C' = C such that

CCBCAV A (A\C)<e (5.11)

Definition 5.1.13 (Borel Algebra). Let R be the set of all rectangles. The smallest o—algebra containing
R is called the Borel algebra and it's indicated as B

Definition 5.1.14 (Lebesgue Algebra). The set of (Lebesgue) measurable sets is a o—algebra, which we
will indicate as £. In particular, we have that, if I is a rectangle, I € L.

If we add the fact that in B there are null measure sets which have subsets which aren’t part of B, we
end up with the conclusion that B C £

Definition 5.1.15 (Null Measure Sets). A set with null measure is a set X C F such that
wX)=0 (5.12)

Where p is a measure function.
It's obvious that sets formed by a single point have null measure.
l.e take a set A = {a}, then it can be seen as a rectangle with 0 area, and therefore

p({a}) =0 (5.13)
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Theorem 5.2. Every set such that |A| = Xg has null measure
Corollary 5.1.1. Every line in R? has null measure

Proof. Take the set A = {aj,as,as,---}. Then, due to o—additivity, we have

i ({ar,az,a3,--}) = p <|_| {ak}> =Y n({a}) =0 (5.14)
k=1 k=1
For the corollary, it's obvious if the line is thought as a rectangle in R? with null area O

§ 5.2 Integration

Definition 5.2.1 (Measurable Function). Given a Borel space (X, F) a measurable function is a
function f : X — T such that, Vk € F the following set is measurable

Iy = {k €F| f(z) < k} (5.15)

Or, in other words Iy € F, with F the given oc—algebra of the Borel space.
The space of all measurable functions on X will be identified as M(X)

Theorem 5.3. Given a set A € F with F a o—algebra, the function 1 4(x) is measurable

A k>1
I, =

Proof. We have that

{} t<1
Therefore I, € F and 1 4(x) is measurable O

Definition 5.2.2 (Simple Measurable Function). Given a Borel space (X, F), a simple measurable
function is a function f : X — F which can be written as follows

fz) = chﬂAk (x) (5.16)
)

Where A, € F, e, € F 0<k<n

Definition 5.2.3 (Integral). Given a measure space (X, F, 1) and a simple function f(z), we can define
the integral of the function f with respect to the measure p over the set X as follows

n

| f@hn(da) =3 eun(an) 5.17)

k=1

For non negative functions we define the integral as follows

/X F(2)p () = sup {/X gl (da:)} (5.18)
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Where g(x) is a simple measurable function such that 0 < g < f.
If f assumes both negative and positive values we can write

f=fr—=f (5.19)
Where
-Jr _ g
{f_ﬁwX{LO} (5.20)
f~ =max{—f,0}
The integral, due to linearity, then will be
/ fx)p (dz) = / fH(x)u (dx) —/ f(z)p (dx) (5.21)
X X X

With the only constraint that the function f(z) must be misurable in the o-algebra F

§§ 5.2.1 Lebesgue Spaces

Definition 5.2.4 (L£? spaces). With the previous definitions, we can define an infinite dimensional
function space with the following properties
Given a measure space (X, F, 1) we have the following definition

LP (X, F,pn) = LP(u) :== {f X —TF| Iy e .7:/\/ |fIPu(dz) < oo} (5.22)
X

Defining the integral as an operator f(u[f] we can see easily that this is a vector spaces due to the
properties of K.

It's easy to note that if the chosen o—algebra and measure are the Lebesgue ones, then this integral is
simply an extension of the usual Riemann integral.

[t's important to note that a norm in £P(u) can't be defined as an usual integral p—norm, since there
are nonzero functions which have actually measure zero.

Definition 5.2.5 (Almost Everywhere Equality). Taken two functions f, g € £P(u) we say that these two
function are almost everywhere equal if, given a set A := {z € X| f(x) # g(x)} has null measure.
Therefore

frg = uA)=0 (5.23)

This equivalence relation creates equivalence classes of functions compatible with the vector space
properties of L7 ().

Definition 5.2.6 (LP-Spaces). With the definition of the almost everywhere equality we can then define
a quotient space as follows

LP () = LP(p)\ ~ (5.24)

This is a vector space, obviously, where the elements are the equivalence classes of functions f € £P(u),
indicated as [f].

If we define our o—algebra and measure as the Lebesgue ones, this space is called the Lebesgue
space LP(X), where an integral p—norm can be defined.
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§§ 5.2.2 Lebesgue Integration

Note:
In this section the differential dz will actually indicate the Lebesgue measure u (dz) used previously,
unless stated otherwise.

Theorem 5.4. Let f : E — F be a measurable function over E.
Given
Fiow=z€E|f(r)=+400 N F.u =z € E| f(x) = -

Assuming E C X, with (X, L, 1) a Lebesgue measure space, we have that

/JJ(FJroo):M(Ffoc):O

Proof. We can immediately say that

F+OO: ka€£
k>0

Letting » > 0 we will indicate with 1,.(z) the set function of the set F; ., N B,.(0), therefore we have
that
fH(z) > kl,(z) VkeN

Therefore
p(Froo N Br(0)) = /]l,(l) de < % / ff(z)dz —0

The proof is analogous for F_ O

Theorem 5.5. Let (X, L, 1) be a measure space, where L is the Lebesque c—algebra and p is
the Lebesgue measure. Given a function f € L'(X) we have that

/ F@)dz =0 <= f~0 (5.25)
X

Proof. let Fy = x € X[ f(x) > 0= y>0 Fi/k-
Since f(z) > 1/k, Va € Fy i, we have that, Vk € N

w(Fyy) < /X flz)dz=0

Through induction, we obtain that u(Fy) =0 O

Theorem 5.6 (Monotone Convergence (B. Levi)). Let (f), be a sequence of measurable functions
over a Borel space E, such that

0< file) << falx) <+ VeeFCE, u(F)=0
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If fi(x) = f(x), we have that

[Ef z)dz = lim /fk (5.26)
/Efk(x)dx—>/Ef(a:)dx (5.27)

Proof. Let For, = 0 <y < fr(z) and Fy = 0 < y < f(z) be two sets defined as seen. They are all
measurable since fi(z), f(z) are measurable, and due to the monotony of fi(z) we have that

Or, in another notation

oy ClFppC---CFyp, C--- N Fy = |_|F0k:
k=1

Due to o—additivity of the measure function, we have that Fy is measurable, and that
= F S (Fy) = lim F
0) ZM( 0k) p(Fo) = Iim p(Fox)

O

Notation (For Almost All). We now introduce a new (unconventional) symbol in order to avoid writing
too much, which would complicate the already difficult to understand theorems.
In order to indicate that we're picking almost all elements of a set we will use a new quantifier, which
means that we're picking all elements of a null measure subset of the set in question. The quantifier in
guestion will be the following

vt (5.28)

Corollary 5.2.1. Let f;(z) be a sequence of non-negative measurable functions over a measurable set

E, thenViz e E
/Eka( dx—Z/ fila (5.29)

k>0 k>0

Theorem 5.7 (Fatou). Let fi(x) be a sequence of measurable functions over a measurable set
E, such that V' x € E 3®(x) measurable : fi.(x) > ®(z), then

||m|m‘fk( )dT<I|m|mc fr(x)da
JE

g k—oo
Analogously happens with the limsup of the sequence

Proof. Let hy(z) = fy(z) — ®(z) > 0 VI z € E and g;(x) = infy>y hi(z), then V& > j we have

/Egj(:L') dxﬁ/Ehk(x) dz
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It's also (obviously) true taking the lim sup of the RHS, and for the theorem on the monotone conver-
gence, we have that

/ lim gj(z)dz = lim /gj(m)dmg/hk(x)d:c
E I j—eo B E
lim g;(x) =supg;(z) = sup inf hy(z) = I|m|nfhk( )

" j—roo j j k>J —00
O

Theorem 5.8 (Dominated Convergence (Lebesgue)). Let h(z) > 0 be a measurable function on
the measurable set E such that for a sequence of measurable functions fi,(x) we have that

[fu(@) < hx) YizeE

And
f(@)= lim fy(z) YizeE

k—o0

/;fc de = lim / fule

Proof. By definition we have that —h(z) < fx(z) < h(z) ¥' 2 € E, and we can apply Fatou’s theorem

Then

/f dx<l|m|m‘/fk )da < limsup fk dx</f

k—o00 k—o0

O

Corollary 5.2.2. Let E be a measurable set such that u (E) < oo and let fi(z) be a sequence of
functions in E such that |fx(z)| < M V'2 € E and fi(z) — f(z), VI 2 € E. Then the theorem (5.8)
is valid.

Example 5.2.1. Take the sequence of functions fx(x) = kze=* over E = [0, 1]. We already know
that fi(z) — f(z) =0forz € E, but fi(z) & f(x)in E.
We have that

sup fir(z) = e~ = h(z) # f(x)
E
We have that h(x) is measurable in E and we can apply the theorem (5.8)

Definition 5.2.7 (Carathéodory Function). Let (X, £, ) be a measurespaceand A C R™. f: X x A —
R is a Carathéodory function iff f(z#,a") € C(A) Va¥ € A and f(a#,a”) € M(X) Va2t € X

Definition 5.2.8 (Locally Uniformly Integrably Bounded). Let f : X x A — R be a Carathéodory
function. It's said to be locally uniformly integrably bounded if Ya¥ € A Jh, : X — R
measurable, and 3B.(a”) C A4, such that

Vy” € Be(a") [f(a",y")] < hov (2")

Note that if 4 is a finite measure, then f bounded = f locally uniformly integrably bounded or LUIB.
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Theorem 5.9 (Leibniz’s Derivation Rule). Let (X, F, u) be a measure space and A C R™ an open
set. If f : X x A — R is a LUIB Carathéodory function we can define

ga#) = /X f(a”,a") du (2) € C(4)
Then

Don f(a*a7) € C(A)

Is LUIB, and therefore
g(a") € C'(4)

And
0,9 = [ O fla”,a7) du(a7)
JX

In other terms

Ogn /X fla”,27)dp(z”) = /X Ogn f(a”,27) dp(x™) (5.30)

Proof. Since f is a LUIB Carathéodory function we have that 3h,u(z”) : X — R and B(a*) C A :
Yyt € Be(a”)
[F (" a")| < han(z")

Therefore

9@ < [ hon@”) da”) < o0
X
Now take a sequence (a*),, : (a"), — a*, then f € C(A) = f(a",z¥) — f(a*,a") Viat €

X, Vat € B.(a")
AN eN V> N | f(ah,2")| < hau(x”)

olat) = [ flatan)dnte®) = [ fat,a) dpta”) = gla)

Since f is differentiable and its derivative is measurable, we have for the mean value theorem
fla' +tet, a¥) — f(a", x") = t0, f(§" (t,27),27)
If £#(t, ") € Be(a") we have that

60, f (" (t,27),27)| < han(z")

Then

And therefore (@ Mgl 1
g(a" +tet) — gla . -
AL I 2 [ 0uf(€ (077 dn(a)
JX
Fort — 00,f(&”,27) — 9, f(a”,27), and the LHS is simply the gradient of g. Therefore for theorem
(5.8)

Oug(a”

3@“/fa x7) du(x /&Lfa %) du(x)
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§ 5.3 Calculus of Integrals in R? and R?

§§ 5.3.1 Double Integration

Theorem 5.10. Let E C R? and F C R3. Define E, := {y € R| (z,y) € E} the sections of E
parallel to the y axis, then

wE) = /H%M(EE) dy (5.31)

Where with u; we indicate the i—dimensional measure on R™.
Analogously, we define F. := {(z,y) € R?| (z,y,2) € F'} then

M(F):/RMQ(Fz)dZ (5.32)

If we define F,, .= {z € R| (z,y,2) € F} we have

u(F) = //R n(Fy) drdy (5.33)

Proof. Let A C R? open, and let Y}, C R? be rectangles such that

Y1CY2C}/3C"'
A=| |
k=1

Then, due to o—additivity, we have

pa(4) = Jim us(¥i) = fim. / 11 (Vi) d

But
Yl:r, C }/21: c--
k=1

Due to o—additivity and the Beppo-Levi theorem we have that

[mands = jm [ (i) ds
R k—o00 R
Let E C R? be a measurable set. Define a sequence of compact sets K; and a sequence of open sets
Aj; such that
Kiyc---CK,CECA;C---C4

We have that lim; o0 p12(A4;) = liM; 00 p2(K;) = po(E) and that K, C E C Aj,.
From the previous derivation we can write that

im [ (0 (450) = (1)) do =0

Jj—o0
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Building a sequence of non-negative functions f;(z) = p1(A;z)—p1 (Kj,) we have that f;(x) < fi—1(x)
and due to Beppo-Levi we have that

lim /fj(w)dl‘f lim f;(z) dz

J—ro0 R R]%oc

And therefore 1 (Kj,) = p11(A;.), and

VieeR n(k) = [ m(K)de< [ B de< [ A = m(d)

Theorem 5.11 (Fubini). Let f(z,y) be a measurable function in R?, then
1. VizeR yw f(x,y) is measurable in R
= [ f(z,y)dy is measurable in R
3. ffR2 z,y)dzdy = [; [p f(z,y)dzdy

Proof. Let f(z,y) > 0. Defining Fy := {(z,y) € E xR|0 < z < f(z,y)} C R3, we have that Fy is
measurable, and

pa(F) = | [ Hadndy

But Fy, is also measurable ¥t z € R and therefore

pa(Fo) = [ retRon)do = [ [ fe.p)dedy

Theorem 5.12 (Tonelli). Let f(x,y) be a measurable function and E C R? be a measurable set.
If one of these integrals exists, the others also exist and have the same value

'/.H%Q f(x,y)dzdy /R('/H%f(:r,y)dx) dy A<Af($7y)dy) da

Theorem 5.13 (Integration Over Rectangles). Let R = [a,b] x [c,d] C R? be a rectangle, and f(x,y)
a measurable function over R. Then

O

1. IfVi 2z € [a,b] 3G(x f f(z,y)dy, the function G(z) is measurable in [a,b] and

//Rf(a:,y)dxdi :/{LbG(m)dx:/:[df(x’y)dydx
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2. IfViy € [e,d] 3F(y) = [ f(x,y) da, the function F(y) is measurable in [c,d] and

d d b
(¢,y) dz dy = y)dy = (2, y) da d
sz(l,y) z dy / F(y)dy / / f(z,y)dzdy

If both are true, then

/Rf(l‘,y)dwdy/abdl-/cdf(x,y)dy/Cddy/:f(x’y)dx -

Definition 5.3.1 (Normal Set). A set E C R? is said to be normal with respect to the x axis if
E={(z,y) ERQ‘agasza(x) <y<B(z)}
The definition is analogous for the other axes.

Theorem 5.14 (Integration over Normal Sets). Let E C R? be a normal set with respect to the x
axis, and f(x,y) is a measurable function over E. Then

b B(x)
f(z,y) drdy = du f(x,y) di (5.35)
/E (‘L y) B /a L/oz(m) (‘L y) Y

Theorem 5.15 (Dirichlet Inversion Formula). Take the triangle T := { (z,y) € R*|a <y < z < b}.
It can be considered normal with respect to both axes, and we can use the inversion formula

,//;fﬁw) dzdy = /bdx/ fz,y)dy = /abdyAbf(:L',y) dz (5.36)

§§ 5.3.2 Triple Integration

Theorem 5.16 (Wire Integration). Let E C R3 be a normal set with respect to the z axis. If
f(x,y,z) is measurable in E we have

//E f(x,y,z)dedydz = //D dz dy /h::?) f(x,y,2)dz (5.37)

This is called the wire integration formula

Theorem 5.17 (Section Integration). Let FF C R? be a measurable set bounded by the planes
z=aand z=bwith a <b. Taken z € [a,b] we can define F, and we have

//F f(z,y,2)dzdydz = /abdz//Fz f(z,y,2)dzdy (5.38)

This is called the section integration formula
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Theorem 5.18 (Center of Mass). Take a plane E C R? with surface density p(z,y) > 0. We define
the total mass M as follows

M= /[E p(,y) dz dy (5.39)

The coordinates of the center of mass will be the following

Loy
TG = 57 //E p(z,y)x dz dy

1 (5.40)
ve =77 //E p(z,y)y dz dy

Theorem 5.19 (Moment of Inertia). Taken the same plane E, we define the moment of inertia
with respect to a line r as the following integral

I, = //E p(x.y) (d(p",r))” dz dy (5.41)

Where d(p*,r) is the distance function between the point (z,y) and the rotation axis r.
Both formulas are easily generalizable in R?

§§ 5.3.3 Change of Variables

Definition 5.3.2 (Diffeomorphism). Let M, N C X be two subsets of a metric space X. The two sets are
said to be diffeomorphic if 3f : M = N an isomorphism such that f € C*(M) and f~! € C*(N).
The application f is called a diffeomorphism.
Two diffeomorphic sets are indicated as follows

M~ N

Theorem 5.20. Let A, B C R" be two open sets and o : A -~ B a diffeomorphism, such that
PM(E)=F

If f: EC B— Ris measurable, we have that
[ e = [ s
JE S~ H(E)

Theorem 5.21 (Change of Variables). Let o : R — R" be a diffeomorphism such that

det0,,¢" det 9, ¢" | da*
y5%

%

dz# = /F f(#")

P = V], > 1

And f : R® — R a function such that supp f = K C R" is a compact set. If f is measurable,
we have that

)y dy" = [ F(" (")) dz* (5.42)

detd,, "
R™ Rn nv
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Proof. Take n = 2 without loss of generality. We can immediately write that

y'l
9y v?) = / f(n,y*)dn
Then, for the fundamental theorem of integral calculus
gl v?) = fw' )

TakenceR, c>1: K C Q= [-c,c| x[—c,c|, we have that o (") = 6L V|[z"[|, > 1 A f(a#) =
0Vzt ¢ Q.

Therefore f(¢*) = 0 also and we have

F(") det 8" da” = / F(g") detd, 0 da” = / Brg(") det B,” da”
% Q Q

v pv

R

But we have that
9y") =0 Yly'[=c Vv [yt] <—c

0 Y
Hp,y = ( lé./qt(:jz ))

detH,, = d1g(¢")detd, ¢”
Ji% nv

Define the following matrix H,,,

Then we have that

Writing g(¢*) = G(a*) we have
det H,, = 01G02p* — 0oGO1p?
g

Thanks to the integration formula (5.34) we can then write

; Cjﬁt H,, dz7 = /C dz? ’ 01GOy* da”
Integrating by parts we get

g %eytHW da” = Goo®|” — ) Go3y° dz' — Gog®|” — C‘Gafzﬁ da:?
ButVzt € 0Q ¢*(z¥) = a# = G(—c,2?) = g(—c,2?) =0 A G(c,2?) = g(c, 2?)

Q M Q
O
Theorem 5.22 (Common Coordinate Transformation in R? and R?3). 1. Polar Coordinates
:(p,0) = pcosh peRT
QOM(CL'U) — T(p; ) p . p (543a>
y(p,0) = psing 0 €]0,27)
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.,  [cosf —psind
Onp (sin@ pCOSH)

(5.43Db)
detd,¢" =p
iz
2. Spherical Coordinates
x(p,0,¢) = psingcosf pecRT
o (z") =< y(p,0,¢) = psingsing 0 € [0,2m) (5.44a)
z(p,0,¢) = pcos ¢ ¢ € [0, ]
singcosd —psingsing  pcospcosl
Oup” = | singsing  psingcosd  pcoseosing
oS ¢ 0 —psiné (5.44b)
(illeyt Oup” = p?sing
3. Cylindrical Coordinates
z(p,0,2) = pcosf peR"
() = ylp,0,2) = psind 6 €|0,2n) (5.45a)
2(p,0,2) =z z€eR
detd,¢" =p (5.45b)
pv

Definition 5.3.3 (Rotation Solids). Let D c R? be a bounded measurable set contained in the half-plane
y =0,z > 0. Suppose we let D “pop up” into R? through a rotation by an angle 6, around the z axis.
What has been obtained is a rotation solid E C R3. We have that

0o
N(E):// drdydz = // / pdpdﬁdz:éo// pdpdz:ﬁo// xdzdy (5.46)
E M Jo D MDD

w(E) = boxgpuz(D)

Or

Theorem 5.23 (Guldino). The measure of a rotation solid is given by the measure of the rotated
figure times the circumference described by the center of mass of the solid.
This is exactly the previous formula.
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§§ 5.3.4 Line Integrals

Definition 5.3.4 (Line Integral of the First Kind). Given a scalar field f : A ¢ R® — R and a smooth
curve {v} C R3, we define the line integral of the first kind as follows

A fds = / " f)

Theorem 5.24 (Center of Mass of a Curve). Given a curve v : [a,b] — R? with linear mass
density m : {y} — R, we define the total mass of v as follows

G

4 dt (5.47)

m

b dy#
M = /Tﬂdé’:/ m(y*)||——1 dt (5.48)
/, Ja at ||,
The center of mass is then defined as follows
L 1 v
zlh = i Ax“m(m ) ds (5.49)

Definition 5.3.5 (Line Integral of the Second Kind). Given a vector field f# : A — R? and a smooth
curve v* : [a,b] — A C R3 we define the line integral of the second kind as follows

b
/ T, ds = / ) S (5.50)

Defining a differential form w = f* dz,, we can also see this integral as follows

/w: /f“Tuds (5.51)
L)

Where T* is the tangent vector of the curve

Definition 5.3.6 (Conservative Field). Let f#: A — R3 be a vector field such that f* € C*(A) and A
is open and connected. This field is said to be conservative, if Va* € A

JU(xH) € C*(A) : fr = —-0'U (5.52)

The function U(x*) is called the potential of the field.

Theorem 5.25 (Line Integral of a Conservative Field). Given a conservative field f* : A — R? and
a smooth curve {v} C A, v* : [a,b] — R® with A open and connected, we have that

[ 5785 = U @) - UG0) (5.53)

Where U(z*) is the potential of the vector field.
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Definition 5.3.7 (Rotor). Given a vector field f# : A — R3 with f* € C'(A), we define the rotor of
the vector field as follows
rot(f*) = el 9" f7 (5.54)

Theorem 5.26. Given f* a conservative vector field on an open connected set A, we have that

e o1 =0 (5.55)

Alternatively, if v : [a,b] — R® is the parameterization of a smooth closed curve, we have
that

yé frT,ds=0 (5.56)

§§ 5.3.5 Surface Integrals

Definition 5.3.8 (Area of a Surface). Given r* : K ¢ R? — ¥ C R? a smooth surface, we have that
given its metric tensor g,,,,(u, v) we have that

M(E):/Zdo:‘//K\/%dudv://%mdudv (5.57)

For a cartesian surface S we have that
. . 5
n(s)= [ ds= [[ /14 (10.f1,) dody (5.58)
s ) K

Definition 5.3.9 (Rotation Surface). Given a smooth curve v* : [a,b] — R3, the rotation of this curve
around the z—axis generates a smooth surface 3 with the following parameterization

7' (t) cosf
ri(8,0) = L A2(t)sin®  (t,6) € [a,b] x [0, 6] (5.59)
73(t)

The area of a rotation surface is calculated as follows

b 1N 2 2\ 2
ey = [ oy () () 5560

Theorem 5.27 (Guldino Il). Given ¥ a smooth rotation surface defined as before, we have that
its area will be

(%) =6y / zlds = HOxéLW (5.61)

Where xl, is the first coordinate of the center of mass of the curve, calculated as follows

1/

1 1
xe=— [ x ds
L, /,
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Definition 5.3.10 (Surface Integral). Given a smooth surface ¥ c R? with parameterization 7# : K —
¥ and a scalar field h : R® — R, we define the surface integral of h as follows

h(a) d :// h(r+)  [detg,, dud 5.62
/2(33)0 K(r) et g, du dv ( )

If ¥ is a cartesian surface, we have

/h(x“)d(f:// hat, o, F)v/1+ (19, 711" de dy (5.63)
b K

Definition 5.3.11 (Center of Mass of a Surface). Given a smooth surface ¥ with parameterization
r#(u,v) and mass density §, we define its total mass as follows

M:/éda (5.64)
by
Its center of mass z/. will be calculated as follows
.
o= = ars(2”
TG = 97 Zx d(z")do (5.65)

Definition 5.3.12 (Moment of Inertia of a Surface). Given a smooth surface ¥ with parameterization
r#(u,v) and mass density § we define its moment of inertia around an axis r, I, as the following
integral

I= / §(x") (d(p*,r))*do p'ex (5.66)
J3¥

Definition 5.3.13 (Orientable Surface). A smooth surface with parameterization r* : K ¢ R? — ¥ C
R3 is said to be orientable if Vv : [a,b] — X smooth closed curve, we have, given n# the normal
vector of the surface

n* (7" (@) = n(+* (5)) (5.67)
Another way of formulating it is
n*(z”) € C(K) (5.68)

Definition 5.3.14 (Boundary of a Surface). Given a smooth surface as before, we define the boundary
0% as follows
X =¥\X (5.69)

Note how, given the parameterization r#, we have r#(0K) = 0%
Definition 5.3.15 (Closed Surface). A surface > C R3 is said to be closed iff 9% = {}

Definition 5.3.16 (Flux). Given a vector field f# : A ¢ R? — R3 and a smooth orientable surface
> C A, we define the flux of the vector field f# on the surface as follows

Oy (f) = /E fin,, do = //K P )epyo 0177 Dor” du dv (5.70)
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§ 5.4 Integration in C

Definition 5.4.1 (Piecewise Continuous Function). Let v : [a,b] — C be a piecewise continuous curve
suchthat{y} c DcC,and f: D — C, f e C(D). Then the function (fo~)+'(t) : [a,b] — C
is a piecewise continuous function

Definition 5.4.2 (Line Integral in C). Let v : [a,b] — D C C be a piecewise continuous curve and
f: D — C ameasurable function f € C(D). R
We define the line integral over ~ the result of the application of the integral operator K.,[f], where

b
mmz/ﬂwmz/amwvww (5.71)

Where VT z € {v} f(2) is defined

Theorem 5.28 (Properties of the Line Integral). Let z,w,t € C, f,g € M(C) and {~},{n}, {x} three
smooth curves, then

1. Ky [zf +wg] = 2K, [f] + wK, [g]
2.y~ = Ky[f] = Ky[f]

3 y=n+r = K[f] = Kpalf] = Ky[f] + Kl /]
4. Kyulf(2)] = K, [f (2 + w)]

Notation. If a measurable function f(z) has the same value of the integral for different curves between
two points z1, 22 € C, we will write directly

L F(z)dz = / F(2)dz

Theorem 5.29 (Darboux Inequality). Let f : D — C be a measurable function and v : [a,b] —
{v} € D C C piecewise smooth. Then

z)dz

< Ly sup [[f(2)]

ze{v}

Proof. The proof is quite straightforward using the definition given for the line integral

- (fov )t /’n 07 (Dl dt <
< sup 7(- n/|w ot =L, sup 1)
ze{~v} ze{v}
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§§ 5.4.1 Integration of Holomorphic Functions

Definition 5.4.3 (Primitive). Let f : D — C and F : D — C be two functions and D c C an open
and connected set. F'(z) is said to be the primitive function or antiderivative of f in D if

Z—Z =f(z) VzeD (5.72)

Notation. Given a closed curve v and a measurable function f(z) we define the following notation

L F(z)dz = yéf(z) dz

Theorem 5.30 (Existence of the Primitive Function). Let f: D — C f € C(D) with D C C open
and connected. Then these statements are equivalent

1. 3F: D — C: F'(z) = f(2)
2. V21,22 € D, ¥{y} C D piecewise smooth [ f(z)dz= [* f(z)dz
3. Vy:[a,b] — {~} C D closed piecewise smooth 567 f(z)dz=0

Proof. 1 = 2. As with the hypothesis we have that 3F : D — C : F'(z) = f(2) Vz € D. Given
two points z1, 22 € D and taken a smooth curve 7 : [a,b] — D : v(a) = 21 A ~y(b) = z2. Therefore

Af(Z)dZZ/ah(fow)v’(t)dh/b(F’ov)v’(t)dt

a

The result of the integral is obviously F(z3) — F(z1), therefore we can immediately write that, if
JF: D —C: F'(2) = f(2) ———>/f(z)dz:/ f(z)dz
vy 21

2 = 1 Taken a point zy € D, any point z € D can be connected with a polygonal to z, since D is
connected. The integral of f over this polygonal is obviously path-independent, hence we can define
the following function

F(z) :/ f(w) dw
Since D is open we can define d, € R, 6, >0 A 3Bs,(z) C D. Taken Az € C : ||Az|| < 6, we have
that
z+Az
F(z+Az)—F(z) = / f(w)dw

Dividing by Az and taking the limit as Az — 0 we have that using the Darboux inequality we get that

z+Az
! / f(w)dw

= S €
[Az]]

H F(z+ AA,z*z “FG) g
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2 = 3. Taken an arbitrary piecewise smooth curve v and z; # z2 € {y}. We can now find two
curves such that v(t) = v1(¢) — y2(t). Since the integral of f is path independent, we get

/;f(z) dz = 7 F(z)dz — // f(z)dz =0

3 = 2is exactly as before but with the opposite reasoning. O

Example 5.4.1. Let's calculate the integral of functions f,(z) = 2™ n € N for a closed simple
piecewise smooth curve « such that 0 ¢ {v}.
For n > 1 we have that f € C(D) where D = C\ {0}, and we have that

1 —(n—1)
/—dz:—z +w weC
zZ" n—1

Therefore, for every closed simple piecewise smooth curve v : 0 ¢ {v} we have

1
,fyz/

For n = 1 we still have that f € C(D) but F(z) : D — C primitive of f(z), but there exists one in
the domain G of holomorphy of the logarithm.
Although we have that G € D, and we can take a curve v : 0 € extr~, and therefore {y} C G and

we have that
1
% ~dz=0
~ z

If we otherwise have 0 € 4° the integral is non-zero.
Take a branch of the logarithm ¢ and a curve n has only one point of intersection with such branch
at z; = upe'®. Taken n(a) = n(b) = upe®, we define n. : [a + €,b+¢ — Cwithe >0 : n(t) =

n(t) Vt € [a + €,b + €], then
L. - |im§£ L.
z e—0 e z

n

Therefore, Vz € C\ {o} we have that
dlogz 1

dz z
And therefore

§£ % dz = log (n(b — €)) — log (1 (a + €))

e

For e — 0 we have
"1
/ —dz = (log(ug) +i(a + 27)) — (log(ug) + ic) = 27i
z
n
Example 5.4.2. Let's calculate the integral of f(z) = /2 along a closed simple piecewise smooth
curve v : [a,b] — C : 0 € 4° and it intersects the line o, = ugei®, where

VZz = et reRY, 0€(a,a+2m], aeR
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Taken a parametrization y(t) : y(a) = v(b) = upe!® we have that f(z) € H(D) where D = C\ {04,}.

Proceding as before, we have
%ﬁdz: Iimyé Vzdz
~ e—0 e

Since it has a primitive in D we can write

Ye(b—e) 2 3. 2 3, 4 3;
= Sugyugez Ot _ Sy Suge® = — —ugyJuge®
Ye(ate) 3 3 3

. 2 .
lim 56 Vzdz = = lim 2z
=0 ), 3 =0

Lemma 5.4.1. Taken a closed simple pointwise smooth curve v : [a,b] — C and taken D = {y}°U~y =
{~v}°and afunction f € H(D), for afinite cover of D, Q composed by squares Q; € QVj € [1, N] C N,
we have that

f2) = f(z) _df

z— 2z dz

<eVze@n{y}°\{z}

HZjEQjﬁW: H

Zj

Proof. Going by contradiction, let's say that
Je>0: ﬂZj EQjﬁ{7}°

Taken a finite subcover Q,, where diam(Q7) = 24 vQ; € Q we can define for some k € K C N

A, = U Qrn{y} vYneN

keK

We have that A,,11 C A, and taking a sequence (w),, € {v}° we have due to the compactness of
{y}° that 3(w),, — w € {y}°. Since f € H({v}°) we have that f is holomorphic in w, therefore

ve>0355>0:Hf(Z)_f(“’)df
Z—w dz

< eVz € Bs, (w) \ {w}

w

Taken an 7 such that diam(Q7) = %d < § we have that still w € 4,, ¥n € N, and due to its closedness
we can also say
dN; € N : ¥n; > Nj (w)n; € Ap

Therefore i
Hk()EN : wGQ’ZOﬂ{"/}OCAﬁé

O

Theorem 5.31 (Cauchy-Goursat). Taken v : [a,b] — C a closed simple piecewise smooth curve
and D = {y} U{y}° and a function f € H(D), we have

gg f(z)dz=0 (5.73)
Iy
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Proof. Using the previous lemma we can say that for a finite cover {~},Q; € Q 3z; € Q; N {~}° and

a function N =
f(z)— f(z; ,
6j(2) = z—izjjif(zj) 2 F 2

0 z =z

Which is countinuous and §,(z) < € Vz € Q; N {v}°.
Taken a curve {n;} =0 (Qj N {7}0), and the expansion of f(z) in the region, we have that

f(2) = f(z) + [ (z)(z — 25) + 0;(2) (2 — 25)
b 10z = () -5 ) G det I G 2ds+ - 5)ds

1 5 j

The first two integrals on the second line are null, and we have therefore

%,j f(z)dz = 75, 5;(2)(2 — z;) dz

By definition {v} = U;yzl{nj} and therefore

g§ f()dz =

Using the Darboux inequality we have immediately that

\ggﬂz)dz gi

Using the theorem on the Jordan curve, we have that 3Q,, € Q such that {y} C @,,. Taken diam(@Q,,) =
D
FOLE
.

Definition 5.4.4 (Simple Connected Set). An open set G C X with X some metric space, is said to be
simply connected iff V{;} C G simple curves we have that v, ~ 0.
~ ~ 0 implies that the curve is homotopic to a point

N

I RICIEEPALE

j=17"M

N
<) ev2d(4d + Ly)

j=1

| 0;(2)(z — z;)dz

N
<) eV2D(AD + L) =0
j=1

O

Theorem 5.32 (Cauchy-Goursatll). Let G C C open and simply connected. Then,Vf € H(G),{v} C
G with v simple closed and smooth

yéf(z) dz =0
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Proof. 1. The curve v doesn't intersect itself.
55]“(2) dz = %f(z) dz=0
o 0

2. The curve v intersects itself n — 1 times.

Then {v} = Uj_; {7} with 44 simple smooth non intersecting curves. Since {y;} C G Vk =
1,--,n, {y} ~ 0, we have

ﬁf(z)dz:iyg F(z)dz =0

k=1""7k

O
Theorem 5.33. Let G C C be a simply connected open set. If f € H(G), then there exists a
primitive for f(z)
§§ 5.4.2 Integral Representation of Holomorphic Functions

Definition 5.4.5 (Positively Oriented Curve). The parametrization of a curve in C is said to be positively
oriented if its parametrization is taken such the path taken results counterclockwise.

Notation. The integral over a closed positively oriented parametrization of a curve ~ is indicated as

follows
A

Theorem 5.34 (Cauchy Integral Representation). Taken a positively oriented closed simple piece-
wise smooth curve v : [a,b] — C and a function f : G ¢ C — C such that if D = {y} U{y}° C
G, f € H(D), we have that

f(z) = L?ﬁ Jlw) dw Yw e {y}° (5.74)

2 JLw— 2
Proof. Taken v,(0) = z + pe'® such that v, ~ v, {7,} C {7}° is a simple curve, we have

§ 10 g, § S0,

) —
,YPQL z

1
% dw = 271
Jyw—z

P CIEP R (UEF C P

w—z Yo w—z

Then, using that

We get
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Since f € H({v}°) we have that
Ve>030.>0: [z —w|| <d = ||f(z) — flw)|| <e

Taken p < 4. we get, using the Darboux inequality

) de < 2me = %de:o

Yo w—z w—z

O

Theorem 5.35 (Derivatives of a Holomorphic Function). Let D c C be an opensetand f: D — C
a function f € H(D), then f € C*(D) and

af _ n! %ﬂdw (5.75)

dzn  2mi (w — z)ntt

Where v is a closed simple piecewise smooth curve such that z € {y}° and {y} Cc D
Corollary 5.4.1. Let f € H(D), then

d7lf

: H(D
Vn € N o € (D)

Theorem 5.36 (Morera). Let D C C be an open and connected set. Take f : D — C : f € C(D).
Then, if V{y} C D closed piecewise smooth

?gf(z) dz=0 = fe H(D) (5.76)

Proof. Since f € C(D) 3F(z) € CY(D) : f(z) = F'(z). Since C*(C) ~ H(C) we have that, due to
the previous corollary

dr
= f(z) € H(D)
O
Theorem 5.37 (Cauchy Inequality). Let f € H(Bgr(z0)) with zo € C. If || f(2)|| < M Vz € Br(zo)
df n!M
Hdz z0 : R <577)

dzn
Zi

Proof. Take ~,(8) = zo 4 rei® with 6 € [0,27], » > R, then the derivative 9|  can be written using
0
the Cauchy integral representation, since f € H(B,(z))

df|  ml f(w)

den | 2mi Jo (w — zp)n ]

dw

z0 Yr
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Using the Darboux inequality we have then

dnf n n!M
=2 s e <
z 20 r ze{vr} r
Since r < R we therefore have
ﬁ n!M
dZ”’ o - Rn

O

Theorem 5.38 (Liouville). Let f : C — C a function such that f € H(C), i.e. whole. If
IM >0 : ||f(2)|| < M Vz € C the function f(z) is constant

Proof. f € H(C), ||f(2)|| £ M and we can write, taken yz(6) = z + Re®® with 8 € [0, 27]

F(2) = 1 sﬁm f(w)de

T 2mi (w—2)

Rree

Since R > 0 is arbitrary, we can say directly that || /'(z)|| = 0 and therefore f(z) is constantvVz € C. O

For Darboux .
4 o SR IFGN M
- R - R

) 1
17l < 5]

Theorem 5.39 (Fundamental Theorem of Algebra). Take a polynomial P, (z) € C,[z], where C,,[]
is the space of complex polynomials with variable z and degree n. If we have

P,(z) = Zakzk, z,ar €C, ap #0
k=0

We can say that 3z € C : P,(2) =0

Proof. As an absurd, say thatVz € C, P,(z) # 0. Then f(z) = 1/P,(z) € H(C).

Since lim, 0 Py (2) = 0o, we have that || f(2)|| < M Vz € C, and lim,_,, f(z) = 0.

Therefore 3R > 0 : V||z|| > R, ||f(2)|| < 1. Since f € H(C), we have that f € C(Bg(z)). Due to the
Liouville theorem we have that f(z) is constant 4 O

§ 5.5 Integral Theorems in R? and R?

Theorem 5.40 (Gauss-Green). Given D C R? a set with a piecewise smooth parameterization of
0D and two functions a,3: ACR? — Rand D C A

// 0. dxdy = B(z,y) dy, // Oyadrdy = —/ a(z,y)dzdy (5.78)
D o+D D ap
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Theorem 5.41 (Stokes). Given D C R? an open set with 0D piecewise smooth and a vector
field f*: A — R2withD C A

/ €5, 0" f¥ d dy = / ¥, ds (5.79)
JD ot+D

Where t# is the vector tangent to D

Theorem 5.42 (Gauss 1). Given D C R™ open set with 0D piecewise smooth and a vector field

fPrA—R"withDC A
// O M dzdy = / frn, ds (5.80)
D o+D

Where n* is the normal vector to 0T D

Theorem 5.43 (Stokes for Surfaces). Given a smooth surface ¥ C R with parameterization r"
and a vector field f* : A — R3withX C A

/nﬂe,ma"fV da:/ Frt, ds (5.81)
3 oty

Where t* is the tangent vector to the border of the surface

Theorem 5.44 (Useful Identities). Given u,v € C?(Q) and a vector field f* € C?(Q,R3)
/ 0,0tvdrdydz = / nt0,vdo
Q o0

/ ud, f*dxdydz = 7/ fro,wdz dyder/ uftn, do
¢ Q 0

) (5.82)

/ ud, 0*vdrdydz = —/ Opud*v dx dy der/ un*d,vdo
Q Ja o0

/ (w0, 0*v — wd,0"u) dr dydz = / (un*9,v — wn*d,u) do
Q J O

We can analogously write these theorems in the language of differential forms and manifolds, after
giving a couple of definitions

Definition 5.5.1 (Volume Element). Given a k—dimensional compact oriented manifold M with bound-
ary and w € A¥(M) a k—differential form on M, we define the volume of M as follows

V(M) :/M dV:/Mw (5.83)

Where dV is the volume element of the manifold, given by the unique w € A¥(M), defined as follows

w= fdz"* A AdzHE (5.84)

With f an unique function.
For M C R? with n* as outer normal and w € A%(M) we can write immediately, by definition

[N ) v,y _
wtw” = nte,, 0w’ =dA
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Therefore
dA = [lepuy 0w ||* (5.85)

Which is the already known formula.
For a 2—manifold we can write immediately the following formulas

dA =nldy Adz+n?dz Adz+nddz Ady (5.86)

And, on M
ntdA =dyAdz
n?dA =dz Adz (5.87)
n®dA =dz Ady

Theorem 5.45 (Gauss-Green-Stokes-Ostogradskij). Given M a smooth manifold with boundary, ¢
a p—cube in M and w € A(M) we have

/dwz/ c*dw=/ w (5.88)
c (0,1]7 e

dw = / " (5.89)
M oM

Definition 5.5.2 (Gauss-Green, Differential Forms). Given M C R? a compact 2—manifold with
boundary and two functions «, 3 : M — R with «, 8 € C'(M) defining

In general, we can write

w=adzr+ [dy (5.90)

/ adw+ﬁdy:/ w:/ dw:// (%@)dx/\dy (5.91)
oM oM M v \ Oz dy

Proof. Take w = adz + S dy, then

We have

dw = d(adz + sdy) = <gfgg) dz A dy

O

Theorem 5.46 (Gauss, Differential Forms). Given M a 3—manifold smooth with boundary and
compact with outer normal n* and a vector field f* € C*(M), we have

/ Oufrdv = / fFn, dA (5.92)
M oM
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Proof. Taken the following differential form
w=fldyAndz+ f2dzAdz + f3dz Ady

We have, using the formulas (5.87)
w= ftn,dA

And
dw = 0, f"dV

/ 8,,,,f”dV:/ dw:/ w:/ ftn, dA
M M OM oM

Theorem 5.47 (Stokes, Differential Forms). Given M C R3 a compact oriented smooth 2—manifold
with boundary with n* as outer normal and t* as tangent vector in 9M, given a vector field
e CY(A) where M C A, we have

Therefore

O

/ nteu, 0" fTdA= [  f't,ds (5.93)
M oM
Proof. Taking the following differential form
w= f'dz,
We have that
dw = (O2f® — 05f*) dy Adz 4 (O3 f' — 01 f3)dz Ada + (91 f% — Do f') da A dy

Using the formulas (5.87) we have
dw = nte,,, 0" 7 dA

Since in R2 we have t* ds = dx* we therefore have

frt,ds= flde, =w

/ n*e 0" f1dA = dw—/ w—/ fHt, ds
M oM

These last formulas are a good example on how they can be generalized through the use of
differential forms, bringing an easy way of calculus in R™ of the various integral theorems, all condensed
in one formula, the Gauss-Green-Stokes-Ostogradskij theorem

And therefore

O



6 Sequences, Series and Residues

§ 6.1 Sequences of Functions

Definition 6.1.1 (Sequence of Functions). Let S be a set and (X, d) a metric space, a sequence of

functions is defined as follows
fn i8S — (X, d)

s = fn(s)
Where, Vn € N a function f(,,y : S — (X, d) is defined

Definition 6.1.2 (Pointwise Convergence). A sequence of functions (f,,)n>o is said to converge point-
wise to a function f : S — (X, d), and it's indicated as f,, — f, if

Ve >0, Vo € S IN(z) € N : d(fn(x), f(x)) < e¥n > N(x) (6.2)

It can be indicated also as follows

(6.1)

lim (fn(2)) = f(x) (6.3)

n—00

Definition 6.1.3 (Uniform Convergence). Defining an |-, = sup,,, |-| we have that the convergence
of a sequence of functions is uniform, and it's indicated as f,, = f, iff

Ve > 03N, € N : d(fn(z), f(x)) <eVn>N.VreS (6.4)

Or, using the norm |||
Ve>03IN. eN: | fn— fll <e€ (6.5)

Theorem 6.1 (Continuity of Uniformly Convergent Sequences). Let (f,)n>0: (S,ds) — (X,d) be a
sequence of continuous functions. Then if f, = f, we have that f € C(S), where C(S) is the
space of continuous functions

Proof.
Ve eS, Je>0: fu f, . ¥n> N €N d(fulz), f(z)) < %
fo €C(S) = 36, >0 : d(fu(), fnly)) < % Yo,y € S : dg(z,y) <8 (6.6)

sd(f(2), f(y) < d(f (@), fu(@) + d(ful2), fu(y)) +d(fa(y), f(y) <€ = ds(z,y) <0

91
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Theorem 6.2 (Integration of Sequences of Functions). Let (f,).>0 be a sequence of functions such
that f,, = f Then we can define the following equality

b b b
im / Fulz) dz = / lim £, (@) de = / F(z) da 6.7)

n—o0

Proof. We already know that in the closed set [a, b] we can say, since f,, = f, that
Ye> 03N, €N : ¥n> N, |[fn— fll < ﬁ (6.8)

Then, we have that

Vn > N,

b b
| fa@rde = [ f@)de| <10 - Fl - @) <o (6.9)

Theorem 6.3 (Differentiation of a Sequence of Functions). Define a sequence of functions as
fn: I — R, with f,(x) € CY(I). If

1. dzg eI : fn(.’lio) —1
2. fl =gV el
Then
folx) = f = Ve el, f(x) = lim fl(z)=g(x) (6.10)

n— o0

Proof. For the fundamental theorem of integral calculus, we can write, using the regularity of the
fn(x) that

Ful@) = fulon) + [ a0yt

Taking the limit we have

im_fu(e) =1+ [ "yt di = f(a)

n—oQ

But, we also have that

Ve> 0| fy = Flloe < [falzo) = U+ 11f} — glloo(b—a) <€
= s
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§ 6.2 Series of Functions

Let now, for the rest of the section, (X,d) = C.

Definition 6.2.1 (Series of Functions). Let (f,,).>0 € C be asequence of functions, such that f,, : S — C.
We can define the series of functions as follows

=> fulx) 6.11)
k=1

Definition 6.2.2 (Convergent Series). A series of functions s, (x) : S — C is said to be convergent or
pointwise convergent if

su(z) = ful(x) — s(x) (6.12)
k=0
Where s(z) : S — C is the sum of the series.
This means that

Vo €S, lim sy ka (6.13)

Theorem 6.4. Necessary Condition for the convergence of a series of functions:
Let (f,) € C be a succession, then the series s,(x) defined as follows, converges to the
function s(x)

e’}

sn(@) =Y frlz) =s(@) = fr(x)
k=0

Proof.
Vee S lim fi(z) = lim (sp(x) — spr1(x)) =0
k— o0 n—o00

O

Definition 6.2.3 (Uniform Convergence). A series of functions is said to be uniformly convergent if
and only if

Z ) = s(z) <= sp(z) = ka(:c) = s(x) (6.14)
k=0 k=0

Definition 6.2.4 (Absolute Convergence). A series of functions is said to be absolutely convergent if
and only if

3 fulw) = s(a) =:>Z|fk )| = s(x (6.15)



CHAPTER 6. SEQUENCES, SERIES AND RESIDUES 94

Theorem 6.5. Let Y~ fiu(x) 2, s(z), then

S fula) S s(@) = Y fulz) = s(x) (6.16)
k=0 k=0

Proof. Let

oo

9(@) = 3 fulw)

k=0

sn(@) =Y fu(x) . 3g(x): (S,d) — C, IN.(z) EN :
k=0

= Y |fu(@)| < eVn = Ne(a)

k=n+41
S ¥Yn,meN,m>n

< i |fu(z)| < eVx el

k=n-+1

> frlx)

k=n-+1
o (sn(x)) is a Cauchy series in C = si(x) — s(x)

‘Sm(x) - Sn(x” =

O

Definition 6.2.5 (Total Convergence). A series of functions s (z) is said to be totally convergent if
1. 3My, - supg |fu(x)] < My VE>1
2. oMy — M

The total convergence is then indicated as s () X s(x)

Proposition 10. Let
k=0
Then
1. fo(z) € C(9) A sk(x) = s(z) = s(x) € C(S)
2. fulz) € C(9), sp(z) = s(x) = [ s(x)de =limg_o0 [ si(z)dz
3. sg(z) el s(x) = sip(z) = s(x)
4. sp(x) = s(z) = sip(x) A, s(x)

5. sp(x) SN s(x) = sip(z) = s(x)
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§§ 6.2.1 Power Series and Convergence Tests

Theorem 6.6 (Weierstrass Test). Let (f,,) : (S,d) — C a sequence of functions.
If we have that

Vn >N, e NIM, >0 : |fu(z)] < M,

VeS8 fulw) <Y My — MY frla)" = s(x)
k=0 k=1 k=0

Definition 6.2.6 (Power Series). Let z, 29, (a,) € C. A power series centered in z is defined as
follows

Zak(Z*Zo)k (6.17)
k=0

Example 6.2.1. Take the geometric series. This is the best example of a power series centered in
29 = 0, and it has the following form

> 2t (6.18)

k=0

oo

We can expand it as follows

m . ) . ntl 1 + Z71+1
Zz =(1-2)(1+z+224+--+2")=1-=z =17V\z|7é1 (6.19)
k=0 mF
Taking the limit, we have, therefore
= L Y]z < 1 (6.20)
1—2

k=0

Theorem 6.7 (Cauchy-Hadamard Criteria). Let Z?:o ar(z—20)* be a power series, with a,,, z, zy € C.
We define the Radius of convergence R € R* = RU{*o0}, with the Cauchy-Hadamard criteria

+ ! 0
o0 —_— =
R
! limsup |a,|™ l 0< Ly (6.21)
—_ = an”: A — = ( .
R n~>oop <R =0
1

Then si(z) = s(z) V|z| € (—R, R)

Theorem 6.8 (D'Alambert Criteria). From the power series we have defined before, we can write
the D’Alambert criteria for convergence as follows

Ak+1 Ak

Qg

— = lim

k— o0

= R= |im

k—o0

(6.22)

Af+1

Where R is the previously defined radius of convergence
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Theorem 6.9 (Abel). Let R > 0, then if a power series converges for |z| = R, it converges
uniformly V|z| € [r, R] C (—R, R]. It is valid analogously for t = —R

Remark (Power Series Integration). If the series has R > 0 and it converges in |z| = R, calling s(z) the
sum of the series, with x = |z| we can say that

oo Rk+1

"R 00 R R 0
s(z)dz = / apx® dz = / ara®dz = ak (6.23)
/0 (=) ;) 0 : 0 kz::l : Z "1

k=0

Remark (Power Series Derivation). If Abel’s theorem holds, we have also that, if we have s(z) our
power series sum, we can define the n—th derivative of this series as follows
d”s

_— = — — k—n
dzn };’f(’f - (k=n+Darx (6.24)

§ 6.3 Series Representation of Functions

§§ 6.3.1 Taylor Series

Theorem 6.10 (Taylor Series Expansion). Let f : D — C be a function such that f € H(Bg(z0)),
with B.(z9) C D. Then

, "1 drf
f(z):Z:Oﬁ dZ"

(z—20)" |lz—20l <r (6.25)

Z0

Proof. Taken z € B,(zy) and y(t) = 2o + e’ t € [0,27] and ||z — 2o|| < r < R we can write, using
the integral representation of f

16 = g A dw— o I

(w—z) ©2mi L, (w— 20) — (2 — 20)

From basic calculus we know already that if z # w
1 17(2/10)"Jr 1 <z)” B
w—z w\ 1—z/w 1—z/w \w B
n—1
1 Z\" 1 Z\"
TEr t AR 6
k=0
Therefore, inserting it back into the integral representation, we have

N (20" f(w) (z = 2)" f(w)
JG) = Z 2mi ?g (w — zp)k+t dw + 2mi §é [(w—z0) — (2 — 20)] (w — 20)™ dw

k=0
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On the RHS as first term we have the k—th derivative of f and on the right there is the so called
remainder R, (z). Therefore

n 1 dkf k
f(z) = 2 T Aok (z = 20)" + Ra(2)
It's easy to demonstrate that R,,(z) "= 0, and therefore

O

Definition 6.3.1 (Taylor Series for Scalar Fields). Given a function f: A C R® — R f € C™(A), given
a multi-index « one can define the Taylor series of the scalar field as follows

f@)= Y L0 fao)e - 20) + Rule)

la|<m

Where, the remainder is defined in integral form as follows

Ru(@)=(m+1) W/( (1= ™0 f(xo + ta — tag) di

- al )
|a|=m+1

Definition 6.3.2 (MaclLaurin Series). Taken a Taylor series, such that 2o = 0, we obtain a Maclaurin
series.
= 1 dkf

- k! dzk
k=0

P (6.26)
z=0

f(2)

Definition 6.3.3 (Remainders). We can have two kinds of remainder functions while calculating series:
1. Peano Remainders, R, (z) = O(||z — 2z0||")
2. Lagrange Remainders, R, (x) = (n + 1)!=1 £+ (&) (z — 20)" !, 2,20 € R E € (2, 20)

What we saw before as R, (z) is the remainder function for functions f : D ¢ C — C.
A particularity of remainder function is that R,,(2) — 0 always, if f is holomorphic

Theorem 6.11 (Integration of Power Seriesll). Let f, g : Br(z0) — C and {~} C Bgr(z0) a piecewise
smooth path. Taken

[ee]

f(z) =) an(z=20)" g€C{r})
n=0
We have that -
Z anp, / 9(2)(z — 20)" dz = /g(z)f(z) dz (6.27)
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Proof. Since f,g € C({~}) by definition, and f € H(B,(z)) with r < R, we have that 3K, [fg].
Firstly we can write that Vz € Br(z)

Z arg(2)(z — 20)" + g(2)Rn(2) = i arg(2)(z — 20)* + g(2) Z ag,(z = zo)"
k=0

k=n

Then we can write

/7 dz_zakyﬁ )z — 20) dz—i—[yg(z)Rn(z)dz

Letting M = sup_¢ (3 llg(2) |, and noting that || R, (2)|| < e for Ve > 0 and for somen > Ne €N, z €
{7} we have, using tF}we Darboux inequality

‘ / 9(2)Ro(2) d

Theorem 6.12 (Holomorphy of Power Series). If a function f(z) is expressable as a power series
F(z) = 35Zgan(z — 20)*, ||z — 20|l < R we have that f € H(Bg(z0))

< MLye —0

O

Proof. Take the previous theorem on the integration of power series, and choose g(z) = 1. Since
g(z) € H(C) we also have that it'll be continuous on all paths {~} C C piecewise smooth.
Take now a closed piecewise smooth path {~}, then we can write

oo

§{>f dzgéliak(zzo)kZak;§£(zzo)kdz

Y k=0 k=0 v

Since the function h(z) = (2 — 20)¥ € H(C) Vk # 1, we have, thanks to the Morera and Cauchy
theorems

7§f<z> dz=0 = f(2) € HBr(Y))
O

Corollary 6.3.1 (Derivative of a Power Series Il). Take f(z) = > par(z — 20)* ||z — 20| < R. Then,
Vz € Br(zo) we have that

= Zakkj(z — zo)k_1 (6.28)

Proof. Taken z € Bg(zp) and a continuous function g(w) € C({y}), with {y} C Bg(zo) a closed
simple piecewise smooth path. If z € {y}° and

g(w) = %m (W_lz)g)
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We have, using the integral representation for holomorphic functions

1 7}‘(10) dw = i &gg 7(1” —20)* dw

2mi J, (w — 2)? (w — z9)?

Since h(w) = (w — z)* € H(C) Yk # 1 we have, using again the integral representation for
holomorphic functions

1 fw) _df

2mi J, (w — 2)? dw = dz

1 w— )" d
2mi (w— 2)?

w=k(z— z)*1

Y

Therefore
L fw) Z” o df
2m’§é (w — 2)2 dw = po ark(z = z0)" = dz
O

Corollary 6.3.2 (Uniqueness of the Taylor Series). Taken an holomorphic function f € H(D) with
D c C some connected open set, we have that

V||z — 20l < R

20

) 2
f(z) = ;M(z—zo)k aj, = % 37{

Proof. Taken g(z) a continuous function over a closed piecewise simple path {~v} c C, where

o L1
9\&) = 211 (Z — Z())kJrl
We have that

L L = N & _ k—n—1
27”%; (z — Z())n+1 dz = Z 27mi %('Z ZO) dz

The integral on the RHS evaluates to 6%, and thanks to the integral representation of f(z) we can write

L IO g1
2mi J, (2 — 2z)" ! ST den

=nla,
20

§§ 6.3.2 Laurent Series

Definition 6.3.4 (Annulus Domain). Let 0 <7 < R < 0o and zy € C, we define the annulus set as
follows
Arr(z0) i={z € Clr < |z — 2] < R} (6.29)
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Special cases of this are the ones wherer =0, R=coandr =0, R = oo

Ag,r(20) = Br(20) \ {20}
Ar,oo(ZO) =C \ ET('ZO)
Ap,oo(20) = C\ {20}

Theorem 6.13 (Laurent Series Expansion). Let f : Ag,r,(20) — C be a function such that
f € H(AR,r,(20)), and {v} C Ag, r,(z20) a closed simple piecewise smooth curve.
Then f is expandable in a generalized power series or a Laurent series as follows

oo — [&.9]

= ZC:(Z_ZOV"'Z(ZEW = Z cr(z — 20)F (6.30)
n=0

n= k=—o0

Where the coefficients are the following

C;:2m¢f )z —2)""tdz n>0

_ L L 1)
1 f(2)
ck:%§£( )kHdz keZ

zZ— 20

Proof. Taken arandom point z € Ag, r,(20), a closed simple piecewise smooth curve {y} C Ag, r,(%0)
and two circular smooth paths {72}, {73} : {72} U{73} = 04,1 (20) C Arypa(20) AT} C Aryra(20)
and a third circular path {vs} C A, (20), we can write immediately, using the omotopy between all

the paths
mdwzyg FACOIPI G (I
Y1

,‘/2’11}72 w—z ,“U) Z

Using the Cauchy integral representation we have that the integral on 73 yields immediately 27i f(z),
hence we can write

RN S ([ R fw

2mi —20) — (2 — 20) 2mi J, (20 — 2) — (w — 20)

Using the two following identities for z # w

We obtain that

Z Z—ZO §I§ (w f(:;;m dw""p"(z)—kz%i(z%gé Fenw=z0)" duton(2)
k=0 Y2 k=1 m

_ ZO)




6.3. SERIES REPRESENTATION OF FUNCTIONS 101

Where, after choosing appropriate substitutions with some coefficients ¢}, ¢, we have

n—1 n —
f2) =Y (2= 20) 4+ pu(2) + > —E +0u(2)
(z — 20)
k=0 k=1
Where p,,, o, are the two remainders of the series expansion, and are
(z —20)" §£ f(w)
n = - d
pn(2) 271 Y [(w—20) = (2 — 20)] (w — 2p)" v
_ 1 f(w)
onl2) = 2mi(z — zo)™ {jél (w—z9) — (2 — 20) dw

n—roo

In order to prove the theorem we now need to demonstrate that p,,o0, — 0. Taken M; =
SUPe ey 1F ()]s M2 = sup.cq.,y | F(2)]], we have, using the fact that both 71, y2 are circular

]\[2 ||Z - ZOH " n—o0
lon(2)|| < 1 : — 0 lz =20l <72
1
— Iz — 2ll r2
A{ n
[ E)] E—— a "0y < ||z — 2
Tz = 2] — 1 \[lz — ]
And the theorem is proved. O

Theorem 6.14 (Convergence of a Laurent Series). Being defined on an annulus set, the Laurent
series of a function must have two radii of convergence. Given a function f holomorphic on

a set Ar, r,(20) we have
1

— =limsup ¥/|call
Ry

n— 00 (632)

Ry = lim sup n\/' HC*nH
n— 00

It’s equivalent of showing the convergence of the two series
_ - + o k E Cl:
o=Fateat+ £y

Theorem 6.15 (Integral of a Laurent Series). Let f(z) € H (Ag, r,(20)) and take {v} C Ar,r,(z0) a
piecewise smooth curve, and g € C({v}), then we have

Proof. We begin by separating the sum in two parts, ending up with the following

Sl 55 9(2)(z — z)" dz = ég@).mz) dz

n=0
oo

> e 75 (Zg_il) dz = é 9(2)f_(z)dz

n=1
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Which is analogous to the integration of Taylor series. The same could be obtained keeping the bounds
of the sumin all Z O

As for Taylor series, in a completely analogous fashion, a Laurent series is holomorphic and unique.
The derivative of a Laurent series, is then obviously the following

d o]
d—ﬁ = Z cnn(z — 29)" !

n—=—oo

§§ 6.3.3 Muiltiplication and Division of Power Series

Theorem 6.16 (Product of Power Series). Take f(z) = >~ jan(z — 20)", z € Bg,(20) and g(z) =

Yoo obn(z —20)", z € Bp,(20). Then

z) = ch(z —z0)", cp = Zakbn,k Iz — 20|l < min(Ry,R2) = R
= k=0

Proof. Due to the holomorphy of both f and g, we have that the function fg has a Taylor series
expansion

oo

f(2)g9(2) => enlz—2) |lz—2l <R

n=0
We have then, using Leibniz's derivation rule

1 dn dk dan— k
Cn_a@« L'Z( ) dzk Zn k ZU_
B i l dk‘if 1 dn, k,g B
B kl dzF | (n—k)! denk|
k=0 20 Z0
= Z a1bn—p

O

Theorem 6.17 (Division of Power Series). Taken the two functions as before, with the added
necessity that g(z) # 0, we have that

f(Z) _ Zd"(z - Zo)ﬂ d < Z dk-bn k)

Proof. Everything hold as in the previous proof. Remembering that (f/g)g = f and using the previous
theorem, we obtain
= Z dpbr—n
k=0
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And therefore, inverting
a 1 n—1
= — — — dby,—
bo by ;} kOn—k
O
§§ 6.3.4 Useful Expansions
> Z"
Z = 2l < o0 (6.33)
— n!
; _ l iz —iz) _ G (71)71 2n+1
sin(z) = 5 (e e ) = /ZO 2ns 1) 1)!2 l|lz|| < o0 (6.34)
cos(z) = - sin(z Z 22 ||z]| < o0 (6.35)
n=0
H ] > 22"
cosh(z) = cos(iz) = nz:% )] Iz]| < o0 (6.36)
) d o0 22n+1
1 =,
= z:joz 2] <1 (6.38)
= Z D" 2] < 1 (6.39)
n=0
=) (-D)"z-1D" [lz—1] <1 (6.40)
n=0
(1+2)° = Z (Z) 2" seC, |z <1 (6.41)
n=0
et = Z 0 < ||z|| < o0 (6.42)
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§ 6.4 Residues

§§ 6.4.1 Singularities and Residues

Definition 6.4.1 (Singularity). Given a function f : G — C we define a singularity a point zp € G
such that
Ve > 03z € Be(z0) : f(z) is holomorphic (6.43)

Definition 6.4.2 (Isolated Singularity). Given a function f : G — C we define an isolated singularity
a point zg € G such that

Definition 6.4.3 (Residue). Let z; € G be an isolated singularity of f : G — C, then 3r >0 : Vz €
Apr(20) the following Laurent series expansion holds

oo oo

Z an z— ZO 77 Z Z Cn(Z — ZQ)n
Z — Z()

n=0 n=1 n=—oo
The residue of the function f in zg is defined as follows

Res f(z) = by = c_y (6.45)

Z=z0

A second definitiion is given by the following contour integral

Res f
z=z0 27TL ?5 1z

Where v is a simple closed path around zg

Definition 6.4.4 (Winding Number). Given a closed curve {~} we define the winding number or
index of the curve around a point 2, the following integral

1 dz

n(7,20) = 2mi o 2 — 2o
Jy

(6.46)

Theorem 6.18 (Residue Theorem). Given a function f : G — C such that f € H(D) where
D = G\ {z, - ,2,} and z; are isolated singularities, we have, taken a closed piecewise
smooth curve {v}, such that {z;,--- ,z,} C {v}°

ygf( )dz—?mZn (v, k) Res f(2) (6.47)

k=0
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Proof. Firstly we can say that v ~ >, v, where ~;, are simple curves around each z;, then since the

function is holomorphic in the regions Ag,.(zx) with k = 1,--- ,n we can write
f(z)= Z cn(z — zi)"

Therefore, we have

o0

g§ dz—z ” Z yg (2 — 2)7 dz

kO"”C k=0 j=—00

We can then use the linearity of the integral operator and write

§£f dz—ichyé (z—zp)  dz 4 c_ 1§I§

k=0j=—o0

+Zc]§£ z—szdz

Thanks to the Cauchy theorem we already know that the first and last integrals on the RHS must be

null, therefore
55}" dZ—Z(‘ 155 p—

k=0
Recognizing the definition of residue and the winding number of the curve, we have the assert

¢ #(:)dz = 2mi Y (s ) Res £(:)

k=0

zZ — Zk

O

Definition 6.4.5 (Residue at Infinity). Given a function f : G — C and a piecewise smooth closed
curve v. If f € H({~v}Uextr{v}) we have

§l§ f(z)dz = —2mi ZR_es f(z) =2mi R(jg Z—lzf <i) (6.48)
¥ =00 z=

Theorem 6.19. Given a function f : G — C as before, if the function has z; singularities with
k=1,--,n

Res f(z Z Res f(z (6.49)

§§ 6.4.2 Classification of Singularities, Zeros and Poles

Definition 6.4.6 (Pole). Given a function f(z) with an isolated singular point in zy € C, we have that
in Ag,(20) the function can be expanded with a Laurent series

6= st 3

k=0

The point z; is called a pole of order m if b, = 0Vk > m
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Definition 6.4.7 (Removable Singularity). Given f(z), zp as before, we have that zy is a removable
singularity if b, = 0Vk > 1

Definition 6.4.8 (Essential Singularity). Given f(z), 2o as before, we have that z, is an essential
singularity if b, # 0 for infinite values of k

Definition 6.4.9 (Meromorphic Function). Let f : G ¢ C — C be a function. f is said to be
meromorphic if f € H(G) where G = G\ {z1,- -+, z,} Where z;, € G are poles of the function

Theorem 6.20. Let zy be an isolated singularity of a function f(z). z is a pole of order m if
and only if
)= —— 8 e B >0 (650
2= (m— 1)t dem=t] g e\%0)) € '
Proof. Let f : G — C be a meromorphic functionand g : G — C, g € H(G) where f(z) has a pole
inzp € Gand g(z) #0
9(2)
Z) = ——F
) =5

Since g(z) is holomorphic in zy we have that, for some r
— 1 dg k
9(2):;)5%@*20) z € By (20)

And therefore, Vz € Ag,(20)

Since g(zp) # 0 we have the assert.
Alternatively we start by hypothesizing that zq is already a pole of order m for f, and therefore we can
write the following Laurent expansion for some r > 0

f(z) = Z ce(z — 20)"  Vz € Aoy(20)

k=—m

Where c_,,, # 0. Therefore, we write

g(z) o {(Z — z())mf(Z) z € A()T(Z())

Com Z =2

And, expanding g(z) for z € B,.(zg) we obtain

oo
9(2) = com + coma1(z — 20) + -+ co1(z— 20)" T+ Z cr(z — 20)" T
k=0

g(z) is holomorphic in the previous domain of expansion, and therefore we have, since the Taylor

expansion is unigue
1 d'm—lg
4=———==R
C_1 (TTL 7 1)| ngLfl z:ezso f(z)
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Definition 6.4.10 (Zero). Let f : G — C be a holomorphic function. Taken zg € G, it's said to be a
zero of order m if

k

d—{zo k=1, ,m—1
dzd

d/ITLf

dz{]”7éO

Theorem 6.21. The point z, € G is a zero of order m for f if and only if

F2) = 25 ) £0, g€ HG)

Proof. Taken f(z) = (z — 20)™g(z) such that g(zo) # 0 we can expand g(z) with Taylor and at the

end obtain
HOEDY

(

k

o
<

(z — zo)F*™

=~

| =
o

2

el
Il

Since this is a Taylor expansion also for f(z) we have that, forj =1,--- ,m —1

¥ m
of o dnf

i m
dz dzg

= mlg(z0) # 0

The same is obtainable with the vice versa demonstrating the theorem O

Notation. Let f be a meromorphic function. We will define the following sets of points accordingly
1. Z7 as the set of zeros of order m
2. Sy as the set of isolated singularities of f
3. Pf* as the set of poles of order m
We immediately see some special cases
1. Pg° is the set of essential singularities of f
2. P} is the set of removable singularities of f
Theorem 6.22. Let f: D — C be a function such that f € H(D), with D an open set, then
1. f(z) =0Vz €D
2. 3z : f®)(20) =0Vk >0

3. Zy C D has a limit point
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Proof. 3) = 2)
Take zp € D as the limit point of Z;. Since f € C(D) we have that z, € zy. therefore

f(z) =(2—20)"9(2) 9g(20) #0, g€ H(D) = 36>0:g(z) #0 Vz € Bs(20)
Therefore

f(z) #0 Vze Ags(20) 4

2) = 1)

Suppose that Z;u) := {2z € D| f"(2) = 0} # {}. We have to demonstrate that this set is clopen in
D.

Take z € Z;x) and a sequence (2)x € Zyw such that z;, — 2. We have then

f®(z) = Jim F®(z) =0

Therefore Z ;) = Zw) and the setis closed.
Take then z € Z;uy C D, since D is open we have that 3r > 0 : B,(z) C D, therefore

Z =W

Yw € B,(z), z # w f(w):kZ:‘:)ak(’w—Z)k:O = {ak:() Yk >0

Since w # z we have that B,.(z) C Z;x and the set is open. Taking both results we have that the set
is clopen and D = Z ) O

Corollary 6.4.1. Let f,g: D — C and f,g € H(D). We have that f = g iff the set {f(z) = g(2)}
has a limit point in D

Corollary 6.4.2 (Zeros of Holomorphic Functions). Let f : D — C be a non-constant function
f € H(D) with D an open connected set. Then

Vz € Z}” m < 00

Proof. Take z, € Zy, then since f is non-constant we have that Z; has no limit points in D, therefore

dkf dmf
36 >0 f(2) #0 Vz€ Ags(z0) A Im>1: — =0k € [0,m),
dz; dzgn

£0

Therefore zg € zy O

Theorem 6.23. Let f : D — C be a meromorphic function, such that
f(z) = W) P H(D)

If 2y € Zy such that p(z) # 0, then z, € P
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Proof. z, € Z]" is an isolated singularity of ¢, therefore
36>0:q(2) #0 Vz € Ags(20) .. 20 € Spq
We therefore can take ¢(z) = (z — 20)™g(z) and we have

) = p(2) _ h(z)
f( ) - g(Z)(Z*ZO)m - (Z* Zo)m

Where h(z) is a holomorphic function such that h(zo) # 0. By definition of pole we have zy € P;* [

Theorem 6.24 (Quick Calculus of Residues for Rational Functions). If f(z) = p(z)/q(z) as before,
there is a quick rule of thumb for calculating the residue in z,. We can write

1 dm—1p
Res 1) = oz dz T

If the pole is a removable singularity, we have z, € P]} and

Res 1(:) = B2

Theorem 6.25. Let f be a meromorphic function. If zy € P we have

i, 1) =oc

Proof.
9(2)
(Z . Zo)m ’

. 1 (z — 2p)
| = | =
zl—@o f(Z) ZL’”;D g(Z)

Z20 € P}n = f(Z) = 20 ¢ Zg

Then

Theorem 6.26. If zo € P}, Je > 0 such that f € Ao.(z0) and || f(2)]| < M, Vz € Aoe(20)
Proof. By definition we have that
dr >0 : f S H(AOF(Z()))

And therefore the function is Laurent representable in this set as follows
o0

f(z) = ch(z —20)F 0< |z -2 <e€
k=0

Taken the following holomorphic function
f(2) z € Ape(20)

9(2) = ch(z —20) z=2g
z=0

We have that g € H (Bc(z)) and therefore || f(2)|| < M Vz € Age(20) O
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Lemma 6.4.1 (Riemann). Take a function f € H (Aoc(z0)) for some e > 0, then if || f(2)|| < M Vz €
AOe(ZO)
The point zg is a removable singularity for f

Proof. In the set of holomorphy the function is representable with Laurent, therefore

70(7 B k o0 —
f(Z)*ZF z— z) Jr; = 2)F

k=0

We have that the coefficients ¢, are the following, where we integrate overa curve {y} := {z € C| ||z — 20| = p < €}

%f )z —2)Ftdz
~ omi

The function is limited, and therefore for Darboux
e, <pFM -0 VE>1

Therefore z, € P} O

Theorem 6.27 (Quick Calculus Methods for Residues). Let f be a meromorphic function, then

1. z € P} then

1 dn71 n
Res f(z) = lim (z—20)" f(2) (6.51)

z=z0 (n— 1)l 2=z dzn—1

2. zp € P{* and f(z) = p(z)/(z — 20)™, where p € Cy [2] with k < m — 2 and p(z) # 0, then

Res f(z) = Res _pE) =0

z=z0 z=20 (Z — Zo)m

§ 6.5 Applications of Residue Calculus

§§ 6.5.1 Improper Integrals

Definition 6.5.1 (Improper Integral). An improper integral is defined as the integral of a function in
a domain where such function has a divergence, or where the interval is infinite. Some examples of
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such integrals, given a function f(x) with divergences at a,b € R are the following

/wa(x)dx—lgiinw/ch'(x)di
/d fa)dz = im /d (@) da
/fdx—/f :p—hm/f

/j dz = lim f(L)dL

e—~0% Jgte

h a—e h
/ fla)dz = Tim. (/ f(z)da + Wf(x)dx) a€ (e,h)

Definition 6.5.2 (Cauchy Principal Value). The previous definitions give rise to the following definition,
the Cauchy principal value. Given an improper integral we define the Cauchy principal value as
follows

Let f(x) be a function with a singularity ¢ € (a, ), and g(x) another function then

PV'/O:Cg(:L’)dzPV/ﬂ; (z)dz = lim /ig(x)dx

R—o0

b c—e b
PV/“ f(z)dx = E|er01+ (/{L f(z)dx + . f(z) da:)

In the first case. PV is usually omitted.
For a complex integral, if vg(t) = Re® is a circumference, we have

PV .[m f(z)dz = RILmOC .[m f(z)dz

Notation (Circumferences and Parts of Circumference). For a quick writing of the integrals in this
section, we will use this notation for the following circumferences

Cr(t) = Re'* te|o,
Crap = Re t € [a,
Ch(t) = Re" te0,n]
Cr(t)=Re ™ tel0,n]
C*r=C% x [-R,R]

€ [0, 27|

Al

Hypothesis 1. Let Ry > 0 and f € C(D), where D :={z € C| ||z|| > Ro} UR and
lim zf(z)=0

Z— 00
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Hypothesis 2. Let Ry > 0 and f € C(D), where D :={z € C|||z|| > Ro} UR and
Theorem 6.28. /f (1) holds true, then
W [ fE)d:=0 = CnChLCy (6.52)
TR
Also, if f(x) is a real function
/ f(z)dx = PV/ f(z)dz =PV f(z)dz (6.53)
R (o Cr
Theorem 6.29. Let f(z) be an even function, if (1) holds we have
f(x)de = 1 PV/ f(z)dz = 1 PV/ f(z)dz (6.54)
0 2 cf 2 Cy
Theorem 6.30. Let f(z) = g(z*), k> 2. If (1) holds
/ f(z)da = ! 5 PV/ f(z)dz (6.55)
JO 1—e* C’Rozw/k
Theorem 6.31. If (2) holds
/ f(z)e™ dz = PV/ f(z)e™dz A >0
R i
i (6.56)
/ f(z)e™* dz = PV /~ f(z)e™dz A>0
JR Jey
From this, we can write then, for A > 0
/ f(z) cos(irz) dz = Re <PV f(z)e* dz) A>0
R (oFs
(6.57)

JOR

/ f(x)sin(iAz) dz = Tm (PV
JR

Hypothesis 3. Let f(z) = g(z)h(z) with g(z) a meromorphic function such that S, ¢ R* and

1. h e H(C\R")
2. lim, 500 2f(2) =0

. f(z)etr dz) A>0
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3. lim,02f(2) =0

Definition 6.5.3 (Pacman Path). Let I'r,.. be what we will call as the pacman path, this path is formed
by 4 different paths

Y1(t) = re" t e [e,2m — €
=|-R,R
72 [ v ] (6.58)
v3(t) = Re™  t € [e,2m — ¢
V4 = [_R, R]
We will abbreviate this as T’
Theorem 6.32. Given f(x) a function such that (3) holds, we have that
/ g(x)Ah(z)dz = PV/ g(2)h(z)dz (6.59)
0 r
Where
Ah(x) = |irgl+ (h(x +i€) — h(xz — i€)) (6.60)
In general, we have the following conversion table
h(z) Ah(x)
— = log_ (2) 1
log_ (2) —27i
Iogi(z) —2milog(z) + 4m? 6.61)
log (2) —2milog, (2) —4milog(x)
1097 (2) +  log, (2) log ()
[Z(x]-‘r P (1 _ eQTrio()

All the previous integrals are solved through a direct application of the residue theorem.

§§ 6.5.2 General Rules

Theorem 6.33 (Integrals of Trigonometric Functions). Let f(cos®,sin @) be some rational function
of cosines and sines. Then we have that

27 -1 |
/ f(cos,sin6)do :/ f it ,Z Z d—z (6.62)
0 [|z]|=1 2 21 (74
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Theorem 6.34 (Integrals of Rational Functions). Let f(z) = p.(z)/qmn(z) with m > n + 2 and

gm(xz) #0 Vz € R, then
/ (z) QmZ Res Pn(?) (6.63)

Qm(T Z=Zk Q'm Z

Lemma 6.5.1 (Jordan’s Lemma). Let f(z) be a holomorphic functionin A := {z € C| ||z|| > Ro, Jm(z) > 0}.
Taken v(t) = Re® 0 <t < 7 with R > Ry.
If3IMp >0 : ||f(2)]| < Mg Vz € {~} and Mr — 0, we have that

PV/ F(2)e"*dz=0 a>0 (6.64)
vy

Theorem 6.35. Let f(z) = pn(x)/qm(z) and m > n + 1 with ¢, (x) # 0 Vz € R, then Va > 0 we
have that

pul@) Pul2)
9% dp = 2 R etz 6.65
/qu< et de =i} Res oye (6.69)

Lemma 6.5.2. Let f(z) be a meromorphic function such that z, € P} and ~;* are semi circumferences
parametrized as follows _
VE() = 20 + e 0 e [—m,0]

Then
PV /i F(2)dz = i Res f(2) (6.66)
Jr =20
Theorem 6.36. Let f(z) = pn(x)/gm(x) with m >n + 2 and g,,(z) has z; € Z}|, then
() (2) (2)
dox = 2mi Res 2 + Res 2 (6.67)
/qu(»L) 2K 2 qm (2) Zz 25 qm (2)
If g(x) = ro(x)/ss(z)e* and B > a + 1 with z; w thenva >0
" ra(2) ro(z) (2)
74(1[13 d — 2 R laz R ZaZ 6.68
/RS/j(CC) v ﬂ—lzz ezsk 8/5 Z +7TZZZQJSJ 95 Z ( )

2y, are all the zeros of ¢, s contained in the plane {Jm(z) > 0}



[ Hilbert and Banach Spaces

§ 7.1 Banach Spaces

§§ 7.1.1 Sequence Spaces

Definition 7.1.1 (Banach Space). Given a space and a norm (X, ||-
space if it's complete with respect to the norm ||-|.

l.e. remembering the definition of completeness, we have that V(z), € X Cauchy sequence, = —
reX

), the space is said to be a Banach

Notation (The Field F). Here in this section, the field F should be intended as either the field of real
numbers R or the field of complex numbers C

Definition 7.1.2 (Sequence Space). As a n-tuple in the field F” can be seen as a sequence, as follows
YIS Fna T = (ZL'],CCQ, o 7xn) = (xk)]zzl

We can imagine a sequence as a point in a space. We will call this space FY, and an element of this
space will be indicated as follows

zeFY, o= (2)n = (x1,22, T, ) = (21)72
Therefore, every point in FY is a sequence. Note that the infinite sequence of 0s and 1s will be indicated
as0=(0),, 1=(1),

Definition 7.1.3 (Sequence of Sequences). We can see a sequence of sequences as a mapping from N
to the space FY, as follows
z:N — FY

n— ((2)k)n

It's important to note how there are two indexes, since every element of the sequence is a sequence in
itself (i.e. ((z)x)n € FN for any fixed n € N)

Definition 7.1.4 (Convergence of a Sequence of Sequences). A sequence of sequences is said to
converge to a sequence in FY if and only if

lim [l(2) — ((@)e)all = 0 (7.1)

n—roo

For some norm ||-||

115
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Definition 7.1.5 (Pointwise Convergence). A sequence of sequence is said to converge pointwise to a
sequence in FY if and only if
vk € N ILm (2)g)n = () (7.2)

And it's indicated as ((z)x)n — (z)k

Example 7.1.1. Take the following sequence of sequences in FY

This sequence converges pointwise to the null sequence, since

lim ((2),), = lim = = (0),

n—oo Y n—oo N

Space of Bounded Sequences

Definition 7.1.6 (Limited Sequence Space). Let (x); € FY. Calling the space of bounded sequences as
£>°(F), we have that (x); € ¢>°(F) if and only if

sup|(z)n| =M € F (7.3)

neN

Therefore, this space is defined as follows

0>(F) == {(2),, € FY| sup |(z)n] < M, M € F} (7.4)
neN

Theorem 7.1. The application |-|| ., = sup,,cy || is @ norm in (> (IF)

Proof. 1) ||(z)n]l = 0V(z), € FY, |(@)nll, =0 <= (), = (0),, by definition of sup the first
statement is obvious, meanwhile for the second

0 <|(z)n| < ,Slég (@)n| =0 = (@)l =0 . (2)n = (0)n

2) le(@)alloe = lelll(@)nll o

le(@)nlloe = sup |e(2)n] = sup [e][(z)n] = |e| sup |(2)n] = le[[[(2)n]l

neN neN

I @)n + Wnlle < M@l + 1@)nllo

SUp |(2)n + (y)nl < sUP ([(2)n] + [(Y)nl) = sUP [(2)n] + SUP [(¥)n] = [|(2)nllc + 1(¥)nllo
neN neN neN neN

Since £>°(F) is a vector space, the couple (¢>°(FF), ||-||.) is a normed vector space O

Remark. Let V be a vector space over some field F. If dim(V) = oo, a closed and bounded subset
W C Visn't necessarily compact, whereas, a compact subset Z C V is necessarily closed and bounded.
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Example 7.1.2. Take V = ¢>°(F) and W = B;((0),,), where

B1((0)n) = {(2)n € F| [()n]lc <1}

We have that diam(B;) = 2, therefore this set is bounded and closed by definition.
Take the canonical sequence of sequences ((e),,),,, defined as follows:

((€)x),, = ((O)k, (O)ks -+ 5 (0)k; (D), (0), - -), for some k € N

Therefore, Vn # m
[((€)1), = (@)l = 1MWkl

Therefore there aren’t converging subsequences, and therefore B; can't be compact.

Space of Sequences Converging to 0

Definition 7.1.7 (Space of Sequences Converging to 0). The space of sequences converging to 0 is
indicated as £y (F) and is defined as follows

6 (F) := { (x)n € FY| (z), — 0} (7.5)

Proposition 11. /() C ¢>°(FF), and the couple (¢y(F), ||-||.) is @ normed vector space, where the
norm ||-|| . gets induced from the space ¢>°(F)

Proof.
klim (), =0 = Ve>03INeN: |(2),| <eVn>N
—00
sosupl(@)n| =e<MeF = (x), € L), . bo(F) C £>°(F)
neN
O
¢P(IF) Spaces
Definition 7.1.8. The sequence space ¢?(TF) is defined as follows
(F) :={ () € F| [[(z)nlly = M € F} (7.6)

Where ||-[|, is the usual p—norm

Proposition 12. The application [|-[|, : ¢#(F) — F is a norm in £7(FF), and the couple (¢7(F), [|-||,,) is a
normed vector space

Proof. We begin by proving that ¢7(FF) is actually a vector space, therefore 1) V(). (y)n € P(F), (z)n+
W)n = (& +y)n € 7(F)

(z+ ) € L°(F =>Z + Wl = @)+ W)all’, < M € F

1(@)n + @)nll, < (= )nHZ +[(W)ally, < M €F
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2)¥(x)n € LP(F), c €F, c(x), € (P(F)
c(@)n € P(F) = |c(@)nl, <M €T

le@)ally = Y le(@)al” = 1" Y- 1@)al” = lel[(@)ally < M € F

n=0 n=0

Remark. (z), € tP(F) = (), € {o(F).

Proof. The proof is simple, taking (y), = |(z).|", we can see that (y),, — 0, therefore (z),, — 0 and
(2)n € Lo(FF) O
Space of Finite Sequences

Definition 7.1.9 (Space of Finite Sequences). The space of finite sequences is indicated as ¢;(F) and
it's defined as follows
04(F) :={(z)n € F| (), =0Vn > N € N} (7.7)

It's already obvious that £;(F) C ¢°(F) C ¢4(F) C {,(F) C ¢>°(F), where p < ¢ € R* \ {0} where
p<qeRT\{0}
§§ 7.1.2 Function Spaces

Notation. In this case, when there will be written the field F, we might either mean R only, i.e.
functions R — R, or R; C, i.e. functions R — C.

Definition 7.1.10 (Some Function Spaces). We are already familiar from the basic courses in one
dimensional real analysis, about the space of continuous functions C'(A), where A C R. We can define
three other spaces directly, adding some restrictions.

1. Ch(F) = { f € C(F)| sup,cx(f(2)) < M € F}
2. ColF) :={ f € C(F)| M, ou(f () = 0}

3. C(F):={feCl)| f(x) =0 Vre A“CTF}ie. C.(F):={f e C(F)|supp(f)iscompact},
where with supp we indicate the following set suppg(f) := {z € F| f(z) # 0}

Due to the properties of continuous functions, these spaces are obviously vector spaces.

Proposition 13. We have C.(F) C Cy(F) C C(F) C C(F), the application

£l = Iflloe = sup | ()] (7.8)
r€A

Is a norm in C(A), whereas

[fllu = 1/l = sup [f ()| (7.9)
zeF

Is a norm in the other three spaces
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Proof. The inclusion of these spaces is obvious, due to the definition of these. For the proof that the
application [|-||,, is a norm, it's immediately given from the proof that the application |-|| . is @a norm in
¢>(F), and that [|-]|, = [ -

Remark. Take f, € Cy(F) a sequence of functions. The uniform convergence of this sequence means
that f,, — fin the norm ||-[|, = |-/l

Proposition 14. If f € Cy(F), then f is uniformly continuous

Proof. Let f € Cy(F), then
€

2
Since every continuous function is uniformly continuous in a closed set, then

Ve>03dl: |z| >1 = |f(2)| <

Ve>030 : Ve,ye [-L—-1,L+1Ajlz—y|<d = |f(x)— fly)| <e

Hence we can have two cases. We either have | — y| < § or z,y € [-L — 1, L + 1]. Hence we have,
in the first case

[f(@) = fW) < [f (@) + [fy)] <e

Or, in the second case
Ve>030>0:|z—yl<d = |f(z)— fly)| <e
Demonstrating our assumption O

C,(F) spaces

Definition 7.1.11. We can define a set of function spaces analogous to the ¢7(F) spaces. These spaces
are the C,(IF) spaces. We define analogously the p—norm for functions as follows

1£1, == / (@) da (7.10)

Thanks to what said about ¢?(TF) spaces and p—norms, it's already obvious that these spaces are normed
vector spaces

Remark. Watch out! C,(F) ¢ Cy(F), and C,(F) ¢ C,(F) for 1 < p < q. It's easy to find counterex-
amples

Proposition 15. If 1 < p < ¢, then

Cp(F) N Cyp(F) C Cy(IF)

Proof. Let f € C,(F) N Cy(F). Therefore sup,cp |f(x)| < M €F, then

/F (@) da = / F@) | (@) de < M / (@) d < oo

Therefore f € C,(F) NCy(F) = f € Cy(F) O
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§§ 7.1.3 Function Spaces in R"

Definition 7.1.12 (Seminorm). A seminorm is an application ||-|, 5 : A — F with A a function space
and «, 8 multiindices, where

[ fllap = ||z*0°f||, = sup |229° f(2)] (7.11)

Definition 7.1.13 (Schwartz Space). The space S(R") is called the Schwartz space, and it's defined as
follows
S(R™) := {f € C(R")[ || fllyp < 000, B multiindices} (7.12)

Example 7.1.3. Taken p(z) € R[z] a polynomial, a common example of functions f(z) € S(R) is the
following.

f(a) = pla)ealel™ (7.13)
Witha >0, neN

Theorem 7.2. A function f € C*°(R") is in S(R™) if V3 multiindex, Va > 0 3C,, g such that

%7 (@) < —C2  wperr (7.14)

(14 N2l

Proof. Takenn =1 and f € C*(R), then

C.: . |
Lﬂ,<0j$k Vo € R

210% f(2)| = |z |0F f(z
270" f ()] = |l |0" £( ){S(HLL_Q)é

Therefore
[fll; < Cjp <0 = feSR)

Taken f € S(R) we have that, if |z| > 1

(1+2%)% <28z

Taken j = [a]
gk f 2% . 25 i
0% ()| = 270" f ()] - IIfH,;,k - IIfHJ,;; - ||f||072 ul <1
|z’ || (I+a2)z = (142?)2
Taken Cj = 2% max £ 11470 1 fllo, & the assertion is demonstrated O

Definition 7.1.14 (Space of Compact Support Function). Given a function with compact support f, we
define the space of compact functions C°(R™) as the space of all such functions.
We have obviously that C°(R™) c S(R™)

Theorem 7.3. Both C°(R") and S(R™) are dense in (Cp(R™), ||-]|,)
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Theorem 7.4 (Other Function Spaces). 1. C(R) Space of continuous functions
2. R[z] Space of real polynomials

C*(R) Space of continuous k—derivable functions

C*(R) Space of functions f € C*(R) with compact support

C>(R) Space of infinitely differentiable (smooth) functions

Cy(R) Space of smooth functions with lim,_, 1 f(z) =0

N o un oA W

. C*(R) Space of smooth functions with compact support
We have the obvious inclusions
by CPC--ClyCRY
C.(R) C Cp(R) C --- C Cp(R) C C(R)
Rlz] c C®(R) C --- C C(R)
CZ(R) C O (R)CC"C( )

§ 7.2 Hilbert Spaces

Definition 7.2.1 (Hermitian Product). GivenV a complex vector space, and an application {-,-) : ¥V — C
such that Vu, v,z € V, ¢,d € C

. {v,v) >0

—_

2. (v,v) =0 <= v=0

3. (u,v) = (v,u)

4. (u+v,2) = (u,2) + (v, 2)
5. (cu,dv) = cd(u,v)

The application (-,-) is called an Hermitian product in V, and the couple (V, {(-,-)) is called an
Euclidean space

Remark. It's usual in physics that for a Hermitian product, we have that

(cu,v) = ¢{u,v) (7.15)

Definition 7.2.2 (Hilbert Space). Given (V,(-,-)) an euclidean space. It's said to be a Hilbert space if
it's complete

Theorem 7.5 (Cauchy-Schwartz Inequality). Given (V,{(-,-)) a complex euclidean space, then
Yu,v €V
|, 0)|)* < (u, u) (v, v) (7.16)
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Proof. Taken t € C, we define p(t) = (tu + v, tu + v). Then by definition of the Hermitian product,
we have
p(t) = ||tH2<u,u> + t{u,v) + t{v,u) + (v,v)

Writing (u,v) = pe??, t = se~*% we have
p(se™) = s%(u,u) + 2sp+ (v,0) >0 VseR

Then, by definition, we have ,
p* = | (w,v)|* < (u,u) (v, 0)

O

Theorem 7.6 (Induced Norm). Given a Hermitian product (-, -) we can define an induced norm
Il by the definition

I =/ () (7.17)

Theorem 7.7. Addition, multiplication by a scalar and the scalar product are continuous in an
euclidean space V, then, given two sequences v, — u €V, v, - v € V and

Up + Vy — U+ V
ceC = cu, —u
(Up, Vp) — (u,v)

Proof. Thanks to Cauchy-Schwartz we have

[(w, v) = (tn, vn)| = [(u,0) = (U, v) + (U, 0n) = (Un, vn)| < [, v) = (u, vn)| + [(u, vn) = (Un, vn)| =

- HUHHU - /Un” + ||U7LHHU - un”
Since the successions are convergent, we have that 3M > 0 : ||v,|| < M Vn € N, therefore

[{w, v) = (un, vn)| < Maxlull, M} (lv = on |l + [Ju — unl]) = 0

Example 7.2.1 (Some Euclidean Spaces). 1) ¢?(C)
Given z,y € (?(C) we define the scalar product as

i=1

2) (i), a weighted sequence space, where

Pp) = {a‘ € (CN’ Zui|$i|2 < oo, i €R, p; >0 Vz}

i=1
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Given x,y € ¢*(u) we define
i=1
3) C2(C) Given f,g € C2(C) we define

(f.9) :/Rf(T)ﬁdT

4) Co(C, p(x) dx), weighted function spaces, where

C’2(C,p(x) dT) = {f S C((C)‘ /Rf(T)f(T>p(x) dx < 00, p(T) c C(R;R+)}
Given f,g € C3(C, p(x) dz) we define
()= [ F@ial@lpla) da

The spaces Cy aren’t complete therefore they're not Hilbert spaces. The spaces L?(C) and the
weighted alternative are the completion of such spaces and are therefore Hilbert spaces

Theorem 7.8 (Polarization Identity). Given a complex euclidean space (V, (-,-)) we have, Vu,v € V

1 2 2 . 2 2
() = 7 (40l = llu = vl* +i (Jlu+ iv]]*ju = iv])*)) (7.18)

Theorem 7.9 (Parallelogram Rule). Let (V,||:||) be a normed vector space. A necessary and
sufficient condition that the norm is induced by a scalar product is that

w4 ol* + |lu—v]* =2 (Hu||2 + ||UH2) Yu,v €V (7.19)

§ 7.3 Projections

§§ 7.3.1 Orthogonality

Definition 7.3.1 (Angle). Given a real euclidean space (V, (-, -)) we define the angle § = uZwv as follows

f = arccos (M) (7.20)

[l

Definition 7.3.2 (Orthogonal Complement). Given an euclidean vector space V and two vectors u, v,
we say that the two vectors are orthogonal v L v if

(u,v) =0 (7.21)
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If X c Vand Vz € X we have that
(u,z)y =0

We say that u € X+ where this space is called the Orthogonal Complement of X, i.e.

X+t :={veV (v,w)=0Ywec X} (7.22)

Theorem 7.10. Given X C V with V an euclidean space, the set X~ is a closed subspace of V
Proof. X is a subspace, hence Yv;,v5 € X+ and ¢, ¢ € C we have
(c1v1 + covg, w) = c1{vy, w) + co{vg,w) Yw € X

Hence cjv; + covg € X+
Given a sequence (v), € X+ : (v), — v € V we have, given w € X

(Up,w) =0 VneN
Due to the continuity of the scalar product we have that

7’l||_>moo<vn,w> =0= (v,w)

Therefore v € X+ and the subspace X is closed in V O

Theorem 7.11. Given X, Y C V with V an euclidean space, we have

XCcY = Ytcx*t

Xt = (@) = (span(x))

Proof. Taken v € Y+ we have by definition

(v,y) =0 VyeY
Since X C Y we have then

(v,2) =0 VeeX

Therefore Y+ c X+, o
By definition we have that X € X C span(X), and thanks to the previous proof

X+ o (X)* o (span(X))*+
Taken w € span(X) we have

w:Zciwi w; € X
i

And given v € X+, we get

(v,w) = ZC{,<U,U}7J> =0
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Now take w € span(X). Take a sequence (w), € span(X) such that (w), — w. Thanks to the
continuity of the scalar product we have

(v, w) = (v, nlem Wy) = 7L|me<1), wp) =0

Demonstrating that X+ = (span(X))+ O
Lemma 7.3.1. Let V be a Hilbert space. Given W C V a closed subspace. Given v € ¥

lweg e W : Yw eWd=|lv—wl| <llv—uw

Proof. Take d = inf,ew ||v — w||. By definition of infimum we have that 3(w),, € W such that

lim o —w,| =d
n—oo

Using the parallelogram rule, we have that

1 2
lwn — wel® = [[(wn — ) + (0 = we)[* = 2o — w,l|* + 2l — w1 4H2<w” k) — v

Since 1/2(w,, + wg) € W we have by definition of d

1
H(wn—l—wk)—v >d

2

Therefore, we can rewrite
[wn = wi|* < 2fjo = wn|* + 2/|v — w|* — 4d
Therefore, we have
Ve>03IN €N : Vn, k> N |wp, — wi||> < 4(d+ €)? — 4d?

Hence (w),, is a Cauchy sequence. Since by definition V is complete and W C V is closed, we have
that W is also complete, therefore (w),, — wo € W and we have

[[v—woll = d
Now suppose that Jwy,ws € W such that the previous is true, i.e.
[o—wi] = llv —wsf < [lv—w|] YweW

Taken ws = 1/2(wy + wa) we have
2 9 1 2
lv = wsl|” = flo —wi]|” = 7llwa —wi]

Taken d = ||lv — wq || = ||Jv — w2

, 21 =v—wsgand zo = 1/2(w; — ws) we get
lex + 22l + llea = 22l = 2 (20l + 12l

And therefore )
2
le. if wy # we, ws is the infimum between v € V and W ¢4 O

1
@ = 5 (o =will® + lo = wal*) = llo = w]|* + J lwn = wall
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§§ 7.3.2 Projections and Orthogonal Projections
Theorem 7.12 (Projection). Given W C V closed subspace of a Hilbert space, we have

v=w+z YweV, weW, ze Wt

Proof. Given v € V, due to the previous lemma we have that 3w € W such that
d=|lv—w| <|v—w'| V' ew

Taken z = v — w, and an element z € W, define the vector w + tz with ¢t € C. Since W is a subspace
w+tx € W and Vi € C we have
& < o= (w+ta)|* = o — w|* = Fv — w,z, =)t(z, v — w) + [|¢]*[]
Writing (z,v — w) = |[(z,v — w)||e?? and t = se=% with s € R we have
—2s|/(v — w,z)|| + ?||z]|* >0 VseR
Which implies
(w—waz)=0 = z=v—we W

Therefore there exists a representation v = w + z with w € W, z € W+ Now, we suppose that
v=w+ 2, then
0=(w—w)+(z—-2)

Therefore , ,
0=l(w—w)+(z=2)" = lw—w|+|z—2
Therefore the representation is unique. O
Theorem 7.13. If W C V with V a Hilbert space, we have
(W) =w
If W is closed L
W) =w

Proof. Taken w € W we have that w L v with v € W+, therefore w € (W+)+. Therefore
we (W)

Since the space on the right is closed, we have

W=t = wh"

Now taken w € (WL)L, since W is a closed subspace by definition, we can write
w=v+z veW, ZEWLZVVL
We have w L z, and therefore

2P = (z;w—0) =0 = w=veW
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Definition 7.3.3 (Orthogonal Projection). Given a closed subspace W C V we can define an operator
Tw : ¥V — W such that
AW =w <= weW, v—we Wt (7.23)

7w is linear and called a orthogonal projection

Theorem 7.14. Given W C V a closed subspace of the Hilbert space V, then given an orthogonal
projection iy, : V — W we have, Vv, z € ¥V and another closed subspace Z C V

1. 72, = fw
2. (v, z) = (v, Tpwz) >0
3 IfZCWL Apporz=Rzo0fw =0
4. IfZCW fpwofz =fzofmw=7w
Definition 7.3.4 (Direct Sum). An euclidean space V is called the direct sum of closed subspaces

V; C V and it's indicated as follows

V=VieV, & =P (7.24)
k=1

1. The spaces V. are orthogonal in couples
2. Yo eVu=> 7", v with v, €V
Corollary 7.3.1. Given a Hilbert space V and a closed subspace W, then

y=waowt (7.25)

§§ 7.3.3 Orthogonal Systems and Bases

Definition 7.3.5 (Orthogonal System). A set of vectors X € V X # {} is said to be an orthogonal
systemifVu,v € X, u#v u L.

Definition 7.3.6 (Orthonormal System). Given an orthogonal system X C V such that Vu € X we
have |lu|| = 1, the system X is called an orthonormal system

Theorem 7.15. Given an orthogonal system X C V with (V,(-,-)) an euclidean space, then we
have that X is a system of linearly independent vectors

Definition 7.3.7 (Basis). Given an orthogonal and complete set of vectors (v),, in an euclidean space V
it's said to be an orthogonal basis of V. If it's an orthonormal and complete set of vectors it's said to
be an orthonormal basis of V
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Lemma 7.3.2. Given an orthogonal system (v)?_; € V and let w € ¥ an arbitrary vector. Then given
z €V as follows

n

zi=u— Z <u’vk>vk

U
k=1 ||’UkH
We have that z L v; V1 < i < n and therefore z 1 span{vy,--- ,v,}
Proof. Vi =1,--- ,nit's obvious that (z,v;) = 0, therefore
z € {vg,- - ,vn}L

Therefore

1L L 1L

z€{v1, ,vn}T =span{vy, - v} =span{vr, -, vn}

O

Theorem 7.16 (Gram-Schmidt Orthonormalization). Given V an euclidean space and (v),eny € V @
set of linearly independent vectors. Then 3(u),ecn € V orthonormal system such that

1. u, is a linear combination of v; V0 < i < n, i.e.

n
Uy = § AnkVk  Qpp # 0
k=1

2. v, can be written as follows

n
Up = § bnk:uk bnn 7é 0
k=1

Therefore, Yn € N we have that

span {vy, -+ ,v,} =span{uy, -, u,}
Proof. Defining
n—1
<Una Uk7> W,
Wy, = Uy — W Up =
k; Jw ? [[wn|
We can say immediately that Vn > 1 w,, € {wy,- - ,wn,l}L. By induction we can say that it holds

V(w)nen, therefore (w),, is an orthogonal system and (u),ey is an orthonormal system

We can also say that
k—1

Vp = Wy + § anu'j

j=1
l.e. Vn > 1w, is a linear combination of {vy,--- ,v,}, therefore, by definition

span{vy, -+ ,v,} =span{wy, - ,wy} =span{uy,- -, un}



7.3. PROJECTIONS 129

Example 7.3.1. 1) Legendre Polynomials

Using the Gram-Schmidt orthonormalization procedure, we can find an orthonormal system {pg, - - - , pn} C
C3[—1, 1] starting from the following system
(,U)n = {1,1’,1’2,1'3,1‘4, to 7In}

The final result will be called the Legendre Polynomials We begin by taking the canonical scalar
product in Cy[—1,1] as follows

1
= x)g(x) d:
(f.9) / f(a)gla) dr
1 2 _
/‘ 2 d — ni—&—l n=2keN
-1 0 n=2keN

1
wo =1 ||w()||2:/ dz =2
-1

And using that
Therefore, we have that

1t —1 2
wlzcc—i/_la:dx:x leHQZTde;U:g

Normalizing, we find

pa() = 85<12:1,)> % 2(31-271)

And so on. The set (p), is called the set of Legendre polynomials 2) Hermite Polynomials

Using the same procedure, we can find the Hermite polynomials H,,(x) in the space C2(R, e dz).
The first 5 are the following

Hi =1
Hy(x) ==
1
H3($) = 1'2 — é
3
Hy(z) = 2% — 2%
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Theorem 7.17 (Existence of an Orthonormal Basis). Given a separable or complete euclidean
space V, there always exists an orthonormal basis

Proof. Taken V a separable euclidean space and (v),en a dense subset of V.
Removing the linearly independent elements of this subset, we can call the new linearly independent
set (w)nen. We have obviously

span {(w),Z; } = span {(v)n2,}
span {(w)52,} = span{(v)p2,} =V

Orthonormalizing the system (w),en With the Gram-Schmidt procedure | obtain then a new set (u)nen
such that

span {(u)nen} = span {(w)pen} =V
(u)nen is complete and therefore a basis. O

Remark. If V is a complete euclidean space but not separable, we can find thanks to Zorn’s lemma a
maximal orthonormal basis, but

1. There isn't a standard procedure for finding this basis

2. Taken the basis (u)qer it can't be numerable. If it was then ¥V = span{(u),}. Taken X =
spang {(u)x} as the set of finite linear combinations with rational coefficients, we have that
X = span {(u)x} and therefore X =V contradicting the fact that V is not separable



3 Distributions

§ 8.1 Linear Functionals

§§ 8.1.1 Dual Spaces and Functionals

Definition 8.1.1 (Dual Space Il). Given (V,||||) a normed vector space over a field F, we define the
following set
Vi ={f:V—Flv— f(v)}

An element f € V* is called a continuous linear functional, with the following properties, Vf, g €
V5, u,v eV, M, AETF
Fru+ Aav) = A f(u) + Ao f(v)
(f +9)(uw) = f(u) +g(v) 8.1)
(Af)(u) = f(Au) = Af(u)

With these properties the set V* has a vector space structure, and it's called the dual space

Definition 8.1.2 (Bounded Linear Functional). Given f € V*, we call f a bounded linear functional
if, Ve € V

sup |f(x)] < o0 (8.2)
[lx][<1

Definition 8.1.3 (Dual Norm). Given a normed vector space (V, ||-|]|) we can give a structure of normed
vector space to its dual with the couple (V*, [|-||, ), where the application ||-||, is called the dual norm

[l Ve —F

The dual norm is defined in two ways. Vf € V*, v € V

1£1,. = sup L&) (8.3a)
Lo |l
11, = sup |f(2)] (8.3b)
vl <1

Where f € V* is a bounded linear functional.

131
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Theorem 8.1. For a bounded linear functional f € V* the two definitions of the dual norm
coincide, i.e.

£, = 11F1l, = 111

And we can define the following inequality

[f@) < IflL el Yo eV (8.4)

Proof. Since f € V* is bounded we have that both norms exist and must be finite. We can therefore
write, thanks to the homogeneity of f, taken v € V

1£1l,, = sup
v#0

f (”Z”)‘ = sup [f(v)] < sup1|f(v)| =/l

llvl=1 vl <

Le. [I£1l., < I£1l,. analogously

I71.. = sup 17l < sup el < sup Ll = .
le. [ fll,, = IIfll,,. therefore we have
£l = IIf1L, = IFIl
The inequality is obvious taken the definition of supremum O

Theorem 8.2. Given f € V* with V normed vector space, we have that the following assump-
tions are equivalent

1. fis continuous
2. fis continuous at the origin
3. fis bounded

Proof. 1) = 2)
Since f € V* is linear by definition, we have that it's also continuous and injective, therefore

lim f(v) = £(0) =0

v—0

2) = 3)
Since f is continuous at the origin, we have by definition of continuity and limit

Ye>030>0: |jz|| <d = |f(x)|<e z€V

Taken u = dz € V, we have |ju| = |/]|=| and

@) =7 (%)

= g|f(u)\ <e
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Therefore, if ||z|| <1 we have that | f(u)| < de, therefore
f@] < I f el = 1ALz < L < e
3) = 1) By definition of continuity and boundedness we have
Yo,w e V,Ve>036>0: |lu—w| <d = |f(u) — flw)] <e
Through the linearity of f we have
|f(u) — f(w)| =

Taken 6 = e||f||:1, we have

flu—w) < [Ifll v —wl <8I fI,

[f(u) = f) <[l fll, =€

O
Corollary 8.1.1. Given f € V*, we have that, given C € F a constant
VeeV |f(x)] < Cllz|
Ifl,=C <= ,
Ve>03z eV : |f(x)| > (C— e
Proof. We have, by definition of || f]|,
Ifll, = sup [f(z)] < sup [e]zfl] = C
lz][<1 [l <1
In the second case, supposing || f||, < C and taken e = 1/2(C' — || f1|,)
eV |f@)] =@ =Fl)l=ll ¢
O

Definition 8.1.4 (Kernel). Given a linear functional f € V* we define the kernel of f as the set of
zeros of f, i.e.
kerf ={v e V| f(v) =0} (8.5)

Theorem 8.3 (Riesz Representation Theorem). Given (V,{(-,-)) a Hilbert space, we can uniquely
define its dual V* through the isomorphism ¢, : V -~ F defined as follows

Vu,0 €V ¢y (u) = (u,v)

le.v— (- v).

This isomorphism has the following properties
DYveVo, eV, |, = Ilv]
2) V(Jl, Co € ]F7 V1,02 € 1% ¢cl1)1+621)2 = ad)vl + 691)’1)2 (86>
N feV = eV : f=0g,
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Proof. Taken w,v,z € V and ¢, s € F we have by definition

Guw +2) = (w+ 2,0) = (w,0) + {2,0) = Gy (w) + 6,(2)
dulew) = {ew, v) = clw, v) = ey (w)
) )

¢cw+sz (’U) = <U, cw + Sz) = E<’U, w
We also have, thanks to Cauchy-Schwartz

60 (2)] = [z, 0)] < [|2][lv]]
|60 ()] = [(w,0)] < [lol* Il = Il
For the last one we take f € V*. If ker f = V we have by definition that
fw)=0 YoeV - f=0
Taken v = 0 we then have
do(v) =(0,v) =0= f(v) YveV

Supposing now ker f # V there must be w € ker f+ : w # 0. Taken u € V we can write

f(u) flu) = fu)

U=U]+ W =U— W+ W

fw) flw)— f(w)

Therefore, through the linearity of f

flu) = f (u - ]"f((;‘jf)w) — f(u)— fw) = fu—v) =0 u € kerf

Since w € ker f+, we have that
(up,w) =0

By definition of ¢,, then

f(w)

5 W
]

fw) I
" Flw)

w) = u1) +

Po(u) = (v, 1) + (v, w)

Then
f(w)

= 2
[[w]]

f(w) f(u)
lw|[* f ()

Q%(U) <wa 71'1> + <U}, U)> = f(“)

Therefore
bo(u) = f(u) YfEV*, YueV
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§ 8.2 Distributions

§§ 8.2.1 Local Integrability

Definition 8.2.1 (Weak Convergence). Given a normed vector space (V, ||
is said to be weakly convergent to v € V and it's indicated as vy — v if

vfEVt  lim f(u) = f(v)

), a sequence (v)ren € V

Theorem 8.4. Given a normed vector space V and a sequence (v)ren € V such that v, — v eV
(i.e. converges strongly), we have that

Vg =V = U —w U

Proof. Given v, — v, we have by definition that
vy — v <= |m |vp—v||=0
k—o00
Now, writing the definition of weak convergence and applying the linearity of the limit

v —wv = VfeV* k“_)moo (f(vg) = f(v)) =0

Therefore
VEEVt  lim (flur—v) < [IfI, lim [lox — o]
k—o0 k—o0

Therefore we have that, since f is bounded

AC eF : Iim (f(op—v)) <C lim vy —v|| VfeV*
k— o0 k— o0

And therefore
Vg — UV =— UV —w?

Remark. The opposite isn't necessarily true.

Proof. Take (V,|-||) = (¢2,]|-||,) and take the standard sequence (e;); where
(ez)j = (0707" . 707 (1)]70~)

And (1); is the identity sequence.

We have that (e;); 4 (a); since

[(€i); — (ed)klly, = V2 Vi#k
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Now, considering that (¢2, |-||,) is a Hilbert space, we have that, due to Riesz representation theorem

Viel®™ f=(,a)=¢, acl/l?

Therefore -
fleij) = (eij,a;) = Zai‘fij =a; =0
i=1
Therefore
V((I)] € 02 Vf S 02 ||m f(G,J) =0
Jj—o0
Hence, by definition e;; — 0 O

Definition 8.2.2 (Isolated Singularities Il). Given a function f : R — C, it's said to have isolated
singularities if

575={a e R im 1) # 10}
Doesn’t have accumulation points, i.e. if [Sf| < oo

Definition 8.2.3 (Piecewise Continuity). A function f : [a,b] C R — C is said to be piecewise
continuous if

1. Sf?é{} and |Sf| < 0

2. Yu e Sf
3 lim_f(z) = f(u*)
vt (8.7)
3 limf(z) = f(u")
3.
3 lim_ f(z) = f(a™)
vt o (8.8)
3 lim (@) = £(67)

Definition 8.2.4 (Jump). Given a piecewise continuous function f we define the jump of the function
at a discontinuity € Sy as follows

Definition 8.2.5 (Piecewise Differentiability). A piecewise continuous function f : [a,b] — C is said to
be piecewise differentiable if and only if

1. fis piecewise continuous in [a, b]
2. f"is piecewise continuous in [a, b]

Definition 8.2.6 (Local Integrability). A function f: R — C is said to be locally integrable if
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1. Sy #{}and |Sf| < 0
2. Ya,b € R, a < b we have that

Lb.f(r)ldm<w

The set of locally integrable functions forms a subspace of L!(R) and it's indicated as L}

loc(Eg)
Theorem 8.5. Let f : R — C be a piecewise continuous function, then f € L} (R)

Proof. Take f(x) a piecewise continuous function, then Va,b € R 3(u)o<k<n ER : up =a, u, =b
for which we have f € C((ug—1,ux)) Y0 < k < n. | can therefore define f, : [ug—1, ux] — C, where

f(z) x € (Up—1,ur)
Jel@) = fluf_y) @ =up—y
flug) o =u
We have that

= fulx)

k=0
And therefore
/|f \dx—Z/ |dx_z/
k=0"Y Yk—1 k=0"Y Yk—-1
Therefore f(z) € Lj, . (R) and the theorem is proved O

Theorem 8.6 (Integration by Parts in L}, .(R)). Let f, g € L}, .([a,b]), then indicating the evaluation
of a function at two points as [f(z)]?¥ we have

b
[Fals = / (F(@)g(x) + f(2)g (@) dut
+ Y (fl@7)Ag@) + (@™ )Af(x) + Af(x)Ag(x))

TESFUS,

Proof. Take H : [a,b] — C, then for the fundamental theorem of calculus

H(b™) = H(a™) = %Z de+ Y AH(x

@ z€SH

Taken H(z) = f(x)g(x) we have
A(fg)(x) = f(zF)g(z™) = f(z7)g(a™)
With some manipulation we have

A(fg)(x) = flaT)g(a™®) = f(zT)g(x™) + f(@F)g(z™) — fx7)g(z™) = fla™)Ag(x) + g(a7)Af(z) =
= (fz)+ Af(x) Ag(x) + g(z)Af(x) = f(z7)Ag(x) + gz )Af(z) + Af(z)Ag(x)
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Therefore
b
(fo)(b7) = (fg)(a™) :/ (fo)(@)dz+ D (fa7)Ag(x) + g(z7)Af(z) + Af(x)Ag(x))

zeSrUS,

§§ 8.2.2 Regular and Singular Distributions

Definition 8.2.7 (Test Functions). A function f : R — C is said to be a test function if supp{f} is
compact and f € C>*(R), i.e. f € C>*(R)
This space is usually denoted as follows C°(R) = K

Definition 8.2.8 (K-convergence). Given a sequence (f)nen € K, it's said to be K—convergent if
1.3ICR : Vo eI fo(z) =0
2. VkeN £ (z) = ™ (a)

Then, it's indicated as f, —x f

Definition 8.2.9 (Distribution). A distribution is a continuous linear functional ¢ : K — C, i.e.

v(f)n e, fa—xf = So(fn) :¢(f)

By definition of dual space, we have that ¢ € K*

1
loc

Theorem 8.7. Given g € L;,.(R) and ¢, : K — C, if we have

%U%iéﬂ@ﬂ@dwvfeK

Then ¢, € K*

Proof. Using the fact that f € K we can immediately say that | f(z)| < M Vx € [—a,a] C R, therefore

a

AmmﬁmwxzzﬂmmﬂmmxSM/'mme<m

—a

Alternatively, using the defintion of integral we can say that

Sog(af + /Bh) = O“Pg(f) + BWQ(h) Va,B3€C, Vf,h e K

We only need to show that this application is —continuous. | take f,, —x f, with f,, € K.
It's obvious that f,, = f, and using the linearity and that g € L}, (R), calling A = ||g||, we have

loc

0g(f) = wg(fn)| < Allf = full, =0

Therefore v, (fn) = ¢4(f) Vfn €K, fn—x f [
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Definition 8.2.10 (Regular Distribution). A distribution f € K* is said to be regular if 3g € L}, .(R)
such that

f = <'7g> = Py
le.

(1) = 2,(0) = (h.g) = [ n(w)g(e)

JR

Definition 8.2.11 (Ceiling and Floor Functions). We define the ceiling function [-] : R — Z and the
floor functions |-| : R — Z as follows

lz| = m.ax{meZ\m <z} (8.10)
[z] =min{n € Z|n >z}

Definition 8.2.12 (Heaviside Function). We define the Heaviside function as a function H : R — R

as follows
1 >0
H(x) =
0 <0

It's obviously piecewise continuous and therefore H € L} (R)

loc

A secondary definition is the one that follows H : R — R

ﬁ@%:¥ x>0

0 <0

Example 8.2.1 (Floor and Ceiling Distributions). Since both the floor and ceiling distributions are locally
integrable, we can build a regular distribution ¢ € K* as follows

k+1
o) = [ f@lelde =3 [ kfw)da

kez’"®

k+1
o (f) = / f@)fa]dr =Y /k (k+1)f(z) da

kez v ®

Example 8.2.2 (Theta Distribution). Given H € L}, .(R) we can define the associated theta distribu-
tion pg =9 € K, as follows

00 = [ Fe)fE = [ @)

f
JRT
It's already obvious that ¢ 5 = ¢ g, but it's better to formalize it in the following theorem

Theorem 8.8. Let f,g € L} (R) such that {z € R| f(z) # g(x)} = {u1,--- ,u,}. Then we have
pg =y € K*
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Proof. We have by Riesz theorem that

eol) = [ o)1) do = / f(@)a() dz+ 3 /uj"“f@)g(m /:fu)m

But, since f(x) = g(x), Vaz € (ug,urt1) We have

/Rf(m) dr—/ o dx+”§/uw F(@)g(z) dz + O%f(x)g(g;)dx:

k=2 Uk Un
uk+1 o0
/ f(x)h(z dzL+Z/ oh(z)dz+ [ fl@)h(z)de = | f(z)h(z)da
k=2 Y Uk Unp R
Therefore
¥ Ph

Definition 8.2.13 (Singular Distribution). A singular distribution is a distribution f € K* for which,
given g € L}, .(R), f # ¢4, where

oq(h) = / h(x)g(z) dx

Definition 8.2.14 (Dirac Delta Distribution). An example of singular distribution is the Dirac delta
distribution ¢, € K*. This distribution is defined as follows

6(f)=f(a) VfeK,aeR

Theorem 8.9. Given the Dirac delta distribution §,, #5(x) € L}
without loss of generality)
0= [ ra)ste)ds

(R), therefore, we could define 6o = (-, §(x)). This function therefore

(R) such that (taken a = 0

Proof. Let'ssaythat34(z) € L;,,
must have these properties
0(r) #0 <= =0, x € Ss

But, since for b € R, b # 0, we have that §(z) — §(b) continuously, i.e. §(b) = A > 0, therefore

A
Je>0: 0(x) > 3 Ve e[b—eb+e€

But, then 3f € K such that f(z) — f(b) continuously, f >0, f(b) = 1. Taken e < b we can say

Je € (0,¢) : f(x) > Ve e[b—¢€,b+ €]

DN | =
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Therefore, we have that

' e Al €A
/Rf(:c)é(x) dz = /. f(@)é(z)dz > /75 D) dz = >

But, by definition f(0) = 0, therefore

/R f@)6()dzr =0 = os(f) = polf) 4

Therefore, the distribution ég # (-, §(x)) O

Notation (Common Abuse of Notation). A common abuse of notation in the usage of the Dirac delta
distribution, is supposing that it's writable like a regular distribution, i.e. supposing that 35(x) € L}, .(R),
the “Dirac delta function” such that

5a(f) = / f(2)b(z — a)dz = f(a) Vf ek

This is obtainable only if the “delta function” is defined as follows

+oo =0

6(95):{0 .20 (8.11)

Note that
do(1) = / d(z)dz =1
R

Theorem 8.10. Given g, € L}

1e(R) such that g,, € C[—ay,,a,]) with a,, - 0, a, >0 Vn €N, we
have that, if

/R gn(z)dz = 1

lim g, (f) = do(f)

n—oo

Then

Proof. We use the definition of limit, therefore we have

[ gt go - 50(.1“)’ < [ 15@ - 1O)lga(e) de
R

—an

Using that the integral over the real axis of g, is unitary

[ Fiont) de - %(f)' < sup [f(x)— F(O)] =0

lz|<an

Therefore

lim g, (f) = do(f)

n—o0
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Corollary 8.2.1. Given g € C1(R) a non-negative function g > 0 such that

/Rg(x) de =1

Then, if we put g, (x) = ng(nz) we have that
lim g, (f) = do(f)

n—oo

Proof. As before, we use the definition, and therefore we have

Using the substitution u = nx we therefore get

/'f 0)lg(nz)n da = / 7 () = £O)]gw) du

But, by definition of g(x), we have that 3L > 0 : Je > 0 for which

—L

L
176§/ glu)ydu <1 A / glu)du <e
|u|>L

And therefore

L1 (%) = rfstw du- /_LL £ (3) - roloaans [ 15 (7) -

By using the properties of the integral, we know that

(7!1 dT*CSO ‘ /|f 7}0 |gn T7W/|f 7f |(] T'T)

0) ‘g(u) du

L@M(Z)—f@)ﬂmdu<SwLﬂ@—me+e(pr(ZN—¢ﬂm>

<L ueR
—_n

Since f(xz) — f(0) continuously, due to the fact that f € K, we have that

[ 1#(@) = $O)lgtnainda < 21,
Therefore
i | [ @)gn () dx - %(f)' 0

Definition 8.2.15 (PV (z~") —Distribution). Taken n > 0, n € N, we have that 2™ ¢ L}

therefore there is no associated distribution ¢,—» € K*.

loc

O

(z) and

A useful thing we could do is utilizing the definition of the Cauchy principal value of the function.

Therefore, we define the following singular distribution

() -t [ (-5 20

(8.12)
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Theorem 8.11. The application PV(z~") : K — R defined as before is a distribution, hence
PV(z—™) € K*

Proof. We already know that this distribution is linear, since Vf,g € K, Ve, d € R

PV (;) [ef +dg] = alem /ﬂl xi” < )+ dg(z) + Z i (pf(k) + dq(k)( )) > do =

k=0

=PV (;) [f] +dPV (;) 9]

Secondly we must show that the integral is well defined.
Let f € K, then

R
]g(f):/_Rl ( Zk'f(k) ')dx, neN, R>0

Using the Lagrange formulation for the remainder of the McLaurin expansion, we have

(k)
Rnfl Z f 77L 1('7;)

And therefore we have n
Iz(z) = / Tn—1(z) dz
-R

Since r,—1(x) € C*°(R) (it's a polynomial) and supp f C [—b, ] for some b € R, b > 0, we have that

forR>b .
n mn " S f(k) (0) 1
IR(f) - Ib (j) - k! b l'”_k dz
k=0 Jo<|z|<R
The last integral evaluates to
2 1 1
/ 1 i dr— VT E |:bn—k—1 — Rn—k—1:| n—k mod2=0,n—F%k>2
b<|z|<R T"~ 0

else

Therefore, introducing the following dummy index j = n — k where 5 mod 2 = 0, we have

n=1 o(j)
() n-rn-Y 0

Therefore the integral defining the distribution is well defined.

Lastly we need to prove that PV(z=")(f.) =k PV(z=™)(f), Y(f)n € K : fn. — f,i.e. thatit's a
continuous functional.

Going back to the previous definition we have that

ra () = Bt @ LA ) e € (0,)
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Therefore

" 2R
Hr(NI <2 sup |rp—a(@)] < — IS,
z€[—R,R] n.

'PV(;J (f)’n, i +Z\f<’. Jff)bjfl

Taken b; = max {b, 1} we have that supp f C [—b1,b1] and whenever j —1 > 1, b; > 1

Which means
(")

2
(G—1p "~

Therefore, finally

i = (n) — ‘f(]) ‘
’PV(wn)(f)‘< max {b, I}Hf , +22

Now, defined f; € K and hj(z) = f(z) — f;(x) with f; — f we have that supph; C [-b,b], Vj € N.
By definition we have that h; = 0 and h§-") =0vneN

1 }ng)(o)’

+2)
“ j=0

1 2 n
PV <> (hy) < = max{b, 1} Hh§ )

x n

This means c

_2b+1+6)

Chosen N = maxo<k<n—1 N We have thatVj > N

()

Therefore, PV(z™™) € K* O

<%
T 2(0b+1+e¢)

j()

n—1
max {b, 1}+Z ] <e—0

§§ 8.2.3 Operations with Distributions

Definition 8.2.16 (Weak Derivative). Given u € L*([a, b]), we define the weak derivative v € L!([a, b])
if, Vh € C2°([a, b]) we have

/b u(z)h'(z) dz = — /abv(:v)h(a:) dx

a

The function v(z) will then be identified as follows



8.2. DISTRIBUTIONS 145

Theorem 8.12 (Operations with Distributions). Given ¢,y € K*, f € K, h € C*(R) and ¢ € C we
define the following operations in K*

+: K" x KF — K*
S Cx K — K7

0:C® x K — K*
D:K* — K*

(8.13)

Where, they act as follows

The last operation is the distributional derivative.

Theorem 8.13. Given g(z) € L},
C>®, fek
(hpg)(f) = pg(hf) = Png(f) (8.14)

(R) and ¢, € K* its associated distribution. Then, Yh €

Proof. The proof is quite straightforward

(hoo)(f) = 0o(hf) = / |

R

9(@) (h(z)f(z)) dz = /]R f(@) (g(2)h(x)) dz = png(f)

O

Theorem 8.14. Taken g € L}, .(R) and g — ¢, € K* its associated distribution, we have that

loc
Doy =wpny
Where D g is the weak derivative of g

Proof. Vf € K we have that

Dy (f) = —po(f) = — / F(2)g(x) da = / £(2) D g(x) dz = ¢p 4(f)

O

Theorem 8.15. Vg, f € L}, .(R) and given ¢ 4, ~v; € K*, c € C their associated distributions, we
have that
gt Pf = Potf

Pef = CPf
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Proof. The proof is obvious using the linearity of the integral operator O

Theorem 8.16 (Useful Identities). Here is a list of some useful identities

.’L'(SO =0
1
TPV () = (8.15)
X
xZ D50 = —(50

Proof. 1) z§p = 0.
Taken f e K

280(f) = bo(f) = 0£(0) =0

2) zPV (1%) =1
Again, taken g € K

oo (2) 0 =Py (3 ) (e0) = fim /l;cpof(r) dr = o1

For the last one, taken h € K

xDdo(f) =Ddo(xf) = —do (f +af) = —f(0) = 0f(0) = —f(0) = —do(f)
O

Notation (Abuse of Notation). Given g € L} (R) and its associated distribution g — ¢, is quite

common to use the original function to indicate actually the distribution. Together with this, the
distributional derivative D gets indicated as an usual derivative, therefore

Pg — g(x)

d
Doy = g'(a) = 5

Therefore it isn’t uncommon to see identities like this

1
PV () =1
T

Where actually 1 — ¢4 is the identity distribution.
Or
d = —do
This makes an easy notation for calculating distributional derivatives and have some calculations, but
one should watch out to this common abuse of notation

Definition 8.2.17 (K* Convergence). Given (0),eny € K* a sequence of distributions, it's say to
K*—converge if
(@)n(f) = o(f) €K”
It's indicated as follows
(0)n—y0
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Theorem 8.17. Given x € K* a distribution, we have that f € C>°(K) in the sense of distribu-
tional derivatives, where the n—th derivative is defined as follows

D" k(f) = (=1)"w(f™) Vfek

Proof. Taken f € K we have that f € C°(R) € C°°(R) hence f is smooth, therefore we have, for
Kk €K*

lterating, we get for n = 2
D*k(f) = =Dr(f') = w(f")
[terating till n we get finally
D" k(f) = (=1)"k(f™)
Hence the derivability depends only on the test function f, and since it's smooth, the distributional
derivatives can be defined Vn € N O

Example 8.2.3. Take for example the delta distribution éy € K*, given f € K we want to calculate
the following value

D'n, (So(f)

Using the previous identity, we have that

D" 30(f) = (~1)"o[f™] = (=1)" £ (0)

Theorem 8.18 (Chain Rule). Given h € C*°(R) and n € K*, we have that
D(hn) =h'n+ hDn

Where the distributional derivative is identical to the usual derivative for h and it’s the usual
distributional derivative for 7

Proof. Taken h € C*, n € K* and f € K we have
(hn)(f) = n(fh)
Therefore, using the identity for derivating a distribution we have that
D(hn)[f] = —(hn)[f'] =
= —nlhf'] = —nl(hf) = W f] = =nl(hf)'] + k' f] =
= (hDn)[f] + (h'n)[f]
O

Theorem 8.19. Given g,(x) : R — C a continuous sequence of functions such that g, = g €
C(R). Then, taken g, — ¢, € K* the associated distribution, we have that

@Qn % ng € ,C*
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Proof. By definition of convergence, we have that, given f € K, where supp f C [—a, d]

‘Wgn(f) - @g(f)| < 99\977fg|(|f|) < 2aHgn - gHu”f”u =0
Therefore, ¢g, — ¢4 O
Theorem 8.20. Given (n), € K* a sequence of distribution, then if (n), — n we have that

Dn,—Dn

Proof. By definition, we have

lim Daa(f) = = lim na(f') = =n(f") = D ()

O

Example 8.2.4 (The Absolute Value Distribution). Taken g(x) = |z| we have that (obviously) |z| €
L},.(R), therefore there exists a distribution ¢, € K* defined as follows

loc

ol (f) = / 2] f(z) d

We have that the distributional derivative it's actually the function sgn (z), (in this case, since it's a locally
integrable function it coincides with its weak derivative), therefore it's not unusual to see expressions
like this

%\.ﬂ =sgn(x) weakly/distributionally
The proof of this is quite easy. Taken f € K

Do) = () = = [ lalf (@) o =
~ (of @)~ of @l + [ f@)do— [ flo)do=
. R+ R—-
- / S9N (2) £(2) d = Psgne) ()

Since we have that
Dyg =¢pyg
Where D g is intended as the weak derivative of g, we have that
D |z| = sgn(x)
Where in order to emphasize tha this is a weak derivative, one could use the notation
Dw [z| = sgn(z)

Note that in literature it's common to use the abuse of notation written beforehand in general and in
this particular case.

Also note that if the function we had used would have been an ordinarily derivable function, the weak
derivative would have coincided with the ordinary derivative.
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Theorem 8.21. In general, given g € C*(R), we can say that g(|z|) has the following weak
derivative

Dg(lz[) = Dg(|=[) sgn(x)

Proof. Since g(|z|) € L}

e (R) we can say that exists g — ¢, € K* such that
D g(jal) = P0g(jal)

Where D g is the weak derivative of g(|z|). Since it's a derivative (and it's also demonstrable) we can
use the rules for composite derivation, and knowing that D |z| = sgn(z) we have

D @g(jal) = ¥Dg(al) = $DgD 2| = PsgnDg
O

Theorem 8.22 (Derivative of the ¥ Distribution). Given 9 € K* the theta distribution, we define
o) = [ f@H@d = [ @)
R JR+

The derivative of this distribution is
DY = (So

Proof. We haveVf € K

Di(f) = =0 == | F@)E) =~ [ @)de=10) = (1)

+

Therefore
DY = do

Or, using a common abuse of notation
¥ =d(x) = H(x), DH(x)=4(x)
O

Notation (Piecewise Derivative). Given g : R — C a piecewise differentiable function, we define the
differential operator D, as follows

/ /
g'(z) 3¢'(x)
Do g(z) = ) (8.16)
9(z) {0 g (x)
Theorem 8.23. Given f : R — C a piecewise differentiable function and Sy := {uy,--- ,u}

isolated singularities, then

D f(x) = Do flx) + Y Af(ui)d(ui)

i=1



CHAPTER 8. DISTRIBUTIONS 150

Proof. Taken S := {u} without loss of generality, we have that

lim_f(x) = f(u®)

lim f(a) = f(u")
Af(w) = flut) = f(u)

And, Vg € K, taken f — ¢y € K*

Dos(g) = —¢y(g') = — / " (@) () de / " (@) f(x) da

u

Integrating by parts and rebuilding the definition of Af(u) we have

Doy(g) = g(u)Af(u) + / 9(2) Do £(2) dz = o, o(f) + AF (). (f)
And therefore
D f(x) = Do f + Af(u)d(u)
O

Example 8.2.5 (Deriving the Sign Function). Take a € R and the function sgn(z — a), using the
previous formula we have that Sggn(z—q) = {a} and Asgn(a) = 2, therefore

Dsgn(z — a) = Do sgn(z — a) + 25(z — a)
Since Do sgn(z — a) = 0 we have finally
Dsgn(z —a) = 26(z — a)

And equivalently
Dsgn(a — z) = —26(z — a)

Example 8.2.6 (A General Piecewise Differentiable Function). Take the function g : R — R defined
as follows
1 x <0
9(x) = {x—Q x>0

We have that
0 <0

1 >0

Do g(x) = H(x) = {
Since the discontinuity is in the origin and we have Ag(0) = —3 we have

Dg(x) = H(z) — 36(x)
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Example 8.2.7 (Derivative of the Floor Function). Given the floor function |z] : R — Z we have that
S|z) = Z, Alz| = 1 and D, |z] = 0 therefore

= dz—k)y= > dx—k

keZ k=—o0
Given instead a different function, [2?] we have that D, |2?| = 0 and S|,2| = {k €Z| + \/E} CR
with A|£vE| = +1, therefore

Dl2?| =) oz —Vk)— (= f:a Vk) = 6(z — V=F)

k>1 k=1

Theorem 8.24. Given h € C*°(R) a smooth function and a € R, we have that

h(z)D"§(z —a) =Y (~1 ( >h(k>( )D"F5(z — a)

Proof. Taken f € K we have that
(h() D" 62)(f) = D" 8u(hf) = 8 ((hF)")

Using now Leibnitz's composite derivation rule, we have
d i dendnkf
d[E” ' — CCk dxn— drn—k
We have that

(h(z) D™ 84)(f) [ kz( > (n=k) (4 )1 —
-y (}) -0 @0+ a)

k=0

Example 8.2.8. Take as an example the following distributional derivative
D7 (arcz D2 50)
We have from that formula that

- dz d
ze® D? 6y = @(%6"’)50 i (e + ze®)do = (2 + x)e"dy
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And therefore /(0) = 1, /(0) = 2

Which means that
2 2 9 2 , 2 "
ze® D (50 = (2> h(O) D 60 — (1) h (O) D(So + (0) h (0)(50

Inserting the values, we get
re® D2 5() =2D (S() — 26()

The derivative is now trivial, and we get

D7 (aze‘” D2 5()) =2 D7 ((5() — D50) =2 (D7 5() — D8 5())

Theorem 8.25. Given k,m € N and a function f € C*(R) we have that

0 k<m

D* (2™ f) (0) = (k

m

)m'f‘k m)(0) k> m

And _ }
D' (2™)(0) = m!é,,

Proof. We apply immediately the Leibnitz chain rule and we have

m

D (@) (0) = 3 (k> FED (0)mldm = m! ( 7’;) FE0) Yk > m

Jj=0 J
0

Theorem 8.26 (Properties of the PV(z~") Distribution). Here there will be listed some properties
of the PV(z~™) distribution

1. Dlog |z| = PV(z™™)

2. Givenn,m €N, then
1
mPV( ) = 1
" PV (> m<n
mn—’m,

3. D"PV(z™™) = (—m)IPV(x~—"™)

Proof. 1) Taken log|z| € Lj,.(R) we know that Jpioq |, € K* such thatlog || — ¢joq |, and therefore
we can write as follows the previous derivative, that Vf € K

D g 121(f) = —iog 1o (/) = — lim / F'(x)log(—z) dz — lim / f(z) log(x

e—0— e—0t
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Integrating by parts we get

e—0+ e—0+ x™

Dlog|z| =PV (171)
o
2) Taken fe K

(ﬂPv (;)) (f) = PV (xln)( mf) = A@m/i; <a:mf(a:) —gwmk> do

Taken m > n we have that the sum is null Vk < m, therefore since k <n —1 < m itsumsto 0
Therefore

D ogiel(f) = lim loge (/) ~ f(-e) + im_ [ i @) 4 — py (1) )

Or

lim I2(2™f) =PV <;n) (z™f) = /Rxm*”f(z) dz = ym-n(f)

R—o0

Taken m < n we have that

n—1 $k n—1 n—m-—1 (k) 0

= k=m k=0

Therefore
lim Iz(z™f)= lim lim /R ! f(z) — nigmil fk(o):vk dz =PV ! (f)
R—o0 R " R—ooe—0 _p ™ k! - pn—m

3) Takenn € N, n > 0, m = 1 we have

D PV (gjn) (f) = —PV <1> (f)=— lim Ix(f")

In

Integrating by parts we have

n N 1 - f(k+1) (0) 1 "
Iz(f) = [x” (f(x) - f(0) — 2 D) att ) 7R+
R n—1 X
n f(k+1)(0) . B
+/_RW (f(x) - f(0) - kzoi(k+ ol xk) dz =
n o p(k)
Rn ( Z f ) (—}{)n (f(_R) - Z ! k;l(O) (_R)k> + n[?;rl(f)
k=0 ’

Since supp f C [—b, b] we have two cases, R > band R < b.
Supposing R > b we have

(k)
() =m0 - 3 0 (- )

k=0
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Taken a new index j = n — k such that j mod 2 = 0 we have

, " @) 1 1
IL(fh = n[}’i""l - 22 ! J'( ) Tk — —nPV <aﬁ”+1> f)

=0

In case that m > 1, by iteration we get

1 1
D"PV | — | = (—m)IPV
( xn ) ( fTL) ( CL‘n—‘,-m >

§§ 8.2.4 A Physicist’s Trick, The Dirac 4 “Function”

Definition 8.2.18 (Composite Delta). Supposing that a Dirac ¢ exists also as a function, we can imagine
describing it as a composite function (6 o f)(z) = §(f(x)).
Watch out, since §(f(z)) # do(f)

Definition 8.2.19 (Giving it Some Meaning). Taken g, € Lj,.(R) a sequence of functions such that

gn € C[—an,ay) with a,, > 0, a,, — 0, we have that 3lg,, — ¢, such that ¢, — do
A good choice for this sequence would be the Gaussian function +,, defined as follows

n 2 2

o) = —=e (8.17)

Then, we have that ¢,, — do, or written in a clear abuse of notation with non-existing functions

lim v, (x) = d(x)

n—roo

Which, actually means that

i / (@) () di = [(0) = bo(f) VfEK

n— oo

Then, letting b(x) € C1(R) we can define the following quantity

n— o0

[ @) de= fm_ [ (b f@)ds VS ek
R R

Theorem 8.27. Let g € C'(R) be a function with isolated and simple zeros Z,, := {x1,x2,x3, - },
thenVf € K we have

im_ [ nlo(@)s@)de = [ f@a(ae) de = 3 2ol 819

nee vhe?, lg' (z1)]
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Proof. Taken g(z) € C*(R) such that g(z) > g(y) Vx > y, supposing that Z, = {z,} we have, since
it's a simple zero, that ¢'(z¢) # 0

Taking in the previous integral the substitution y = g(z), we have that = ¢g~!(y) and dz =
D g~ 1(y) dy, therefore

/Sup“’) flo' W) 4

1= i [ etotepr@de = i [T

n—oo n—oo
Evaluating the integral we have

;o fO) Sl 1
g'(g710)  g'(xo) g (o) ™

This is easily generalizable if there is more than one zero O

Example 8.2.9 (Composition with a Constant). Take §(ax) with g(z) = ax and a # 0. Since Z, = {0}
using the previous formula we have ¢'(0) = a and therefore

0(ax) = i6(1)

|al

Example 8.2.10. Taken g(z) = atan(z) we have that Z, := {0} and

1
(z) = "0)=1
g (z) T2 g'(0)

Therefore
o(atan(x)) = d(x)

Example 8.2.11 (Composition with a Polynomial). Take g(z) = (z* — a?), then Z, := {—a,a} and

g'(£a) = +2a, therefore, if a # 0

§(z? —a?) = ﬁ (6(x —a)+d(x+a))

Example 8.2.12 (Composition with an Exponential). Taken g(x) = e* we have that Z, = {} therefore
5(e*)=0

Example 8.2.13 (Composition with a Trigonometric Function). Taken now g(z) = cos(x) we have
that Z, = {k € Z| kw/2} and ¢/(z) = —sin(z), therefore

g (xr) = sin<k27r> — (—1)kH!

Therefore

o

5(cos(x))=z5<$—k;r) = 5<x_k2ﬂ>

keZ k=—o0
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Example 8.2.14 (Calculating an Integral with the Composite Delta). Take the following integral
/ e~ 17l§(sin(22)) da
R

In order for solving it we expand the composite delta. We have that Z, = {k € Z| kr/2} and
g'(x1) = (=1)*2, therefore

o0

/Rc*\rl(s(sin(%))dx:% Z e lels (T_k;> :% Z o5

k=—o0 k=—0o0

Fixing the sum and summing, we have

kx 1 1 1
el §(sin(2z)) do = Sl _ -
/Re (sin(2z)) dz Zp 5= ToF 3

keN

§ 8.3 Integral Representation of Distributions

§§ 8.3.1 Dirac Delta and Heaviside Theta

Theorem 8.28 (Integral Representation of the Delta Distribution). Taken the non-existent §(z)
function, we can represent it as follows

(5(Jj — y) = 1 // eik:(:l;—y)f(a;) dk dz <819)
27'[' R2
Which means

oy (f) = % //R ) e* @) £ () dk da

Theorem 8.29 (Integral Representation of the Theta Distribution). Taken ¥(x) the Heaviside regular
distribution we can write Vx € R\ {0}

o k —ie

1 6ik:l:
I() = PV/ _dk (8.20)
R

Proof. This equation has two cases, one with = > 0 and one with x < 0. Therefore taking z > 0 we
have

6ikm

I(z) = PV/R ——dk

This integral can be evaluated using the residue theorem. We have defining the function f(k) as follows
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The integral can be seen as follows
I(x) =PV / e £ (k) dk
R

This can be written as a complex integral, writing the transformation z — z with z € C

I(z) = J(z) = lim 7§ 4

R—o0 Z — 1€

Where the path is the following

Writing it all out explicitly we have that

izx R izx
J(z) = Iim/ gy Iim/ s = Jp+ I(%e2)
C

R— RZ*ZG R—o0 R % — 1€

Due to the Jordan lemma we know for sure that Jg = 0 therefore we have that, writing Re(z) = z,
thanks to the residue theorem

1ZT

e

J(z) = I(z) = 2mi Z;f Res ——
The set of singularities of f is formed by a single point Sy = {ie} which is a simple pole, and therefore,
since ie € {yr}° we have

izx 12T

J(x) = 2mi Res — =27 lim (z — ie) :
z=1i€ 2 — 1€ Z—r1€ Z — 1€

— €T

=€
Therefore, we get

J(x) = 2mwie” "
For getting back to the first integral, we have

1 : —exr 1 __
Q—M,I(;I:):JLFBLG =1=9(x) >0

In the second case, for < 0 we have that the new curve will be
{7} =Cr U[-R R
Since Sy ¢ {vx}° we have thanks to Cauchy-Goursat that

1 1

Proving our assumption O
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§§ 8.3.2 Distributions in R™

Definition 8.3.1 (Scalar Test Fields). Given a scalar field f : R — C one can define the space of
scalar test fields C(R™) as follows
K(R") = CF(R™) (8.21)

A function f € C*(R™) is a function such that suppf € A C R™ with A a compact set and
30°f V|a|eN

Definition 8.3.2 ({C(R™)—Convergence). Given f,, € K(R") a sequence of scalar fields. f,, converges
to fe KR") if

1. 3A C R™ compact set such that f,, (A°) = {0}
2. Ya € N® multi-index 0% f,, = 0%f,Vx € A

[t's indicated as

fn_Aan

Definition 8.3.3 (Multidimensional Distribution). A n—dimensional distribution is a continuous
functional ¢ : K(R™) — C such that

Von =K. 9 ©(gn) = ¢(9) (8.22)
Then ¢ € £*(R™)

Theorem 8.30 (Operations in K£*(R™)). We can define the usual distributional operations in
K(R™). The usual operations defined for K* are defined in the same way, the only difference
is given by the definition of the derivative Given o € N", f € K(R"™), p € K*(R"™)

0%p(f) = (—1)1*lp(0”f) (8.23)

Example 8.3.1 (Laplacian of a Distribution). Taken 9% = §% = 9,,0*
0u0"o(f) = (8,0" f)

Remark (Local Integrability). The local integrability of some functions is different in R™. In fact taken
the spherical (n — 1)-dimensional coordinate transformation we have

d"z =r""tdrdS,_;

And taken the function g(z") = ||x“H;“ we get

Tnfl
/ / / 745, dr
R" HxﬂH Sn—1

Which means that [jz*| “ € L} (R") Va<n
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§ 8.4 Some Applications in Physics

§§ 8.4.1 Electrostatics

Example 8.4.1 (Point Charge). Taken ¢ a point charge in the origin (0,0, 0) we define the potential
generated by this charge as follows (in cgs)

0, 0"V (") = —4mp(x)
Where p(z) is the charge density, defined as
p(x) = q6°(z")

With 63 being the 3—d Dirac delta

Therefore
1
0o | —— | = —4nd3(z¥
z (xm) &)

Which means actually, that V£ € K(R?)
00" f ¢
x = —4rf(0
I 5, v
Proof. Since f € K(R?) we have that 3R > 0 : f(a") = 0¥z ¢ Bz (0)

Therefore we get that
/// O] § ¢ = tim / T
R3 ||‘,L.NH/1, €0 €§H.’L‘“H“SR ||"L.MH/1,

Taken A.g(0) = {x“ eR¥|e< at|, < R} We have that the second integral becomes, using Stokes’
theorem

Changing to spherical coordinates we have that

1 10 0 (1
ml _— = (22 =
ud (Hm#”u) r2 Or <T or (7’)) 0
Therefore we get

///AR lwiﬂa,,aﬂfoﬂ T =— //| M <i6,,,f — fo, <i)> r* dSs

Which, taken 9,,r=! = —##r~2 we have

/// i 6H8Hf03x = _// %#aufr dSQ - // f(T) dSQ
Acr ”tL ||:“‘ HI‘LH“:C H-’B“H;L:C
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We have for the first integral that

H // 9, fr dS,
o], =

< dmesup [|0,. f||
RS

And for the second

<dr sup |f(z")— f(0)|

llzn ], =

H//I| _ f(@)dS; —4rf(0)

Since e — 0% and since f € K(R?) we have that the first and second integral converge to 0, and

therefore )
/// — 9,0 fdx = — lim // f(x)dSy = —4mf(0)
Mes Nz, <0 jan =



9 Ordinary Differential Equations

§ 9.1 Existence of Solutions

You might test that assumption at your convenience1

Definition 9.1.1 (Differential Equation). Giveny € C™(I), I C R we define a differential equation
of order m the following
F($7y7y/7 e 7y(’m)> =0

If the equation can be rewritten as follows

dm
déETz{ = f(T, Y, ’y(’mfl))

It's called in normal form.
If only total derivatives appear, the differential equation is called ordinary, whereas if also partial
derivatives appear, the differential equation is called partial.

Theorem 9.1 (Reduction of Order). Given an ODE (ordinary differential equation) of order m,
one can reduce the order of the equation through a mapping to R™, where

And f(xayv e ,y(m)> = f”(l’,y“).
The equation becomes a first order differential equation

dy"
dl’ _f) (‘T7y )

Captain Picard, Star Trek: The Next Generation

161
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If f is linear, this system can be expressed in matrix form, where

dy#
dz

— AHy B
- Al/y

Definition 9.1.2 (Cauchy Problem). A Cauchy or initial value problem is defined as the following
system

{y’(w) = f(z,y()) 9.1)

y(wo) = yo
Where 10, to € R are known values

Theorem 9.2. Given the Cauchy problem (9.1) we say that y(z) € C' is a solution of the system
if and only if is a continuous solution of the following integral equation

y(x) = yo + /mf(s7y(8))d,9 (9.2)

Proof. Supposing y € C'* we have that for the fundamental theorem of integral calculus
va) =ya) + [ y()ds=un+ [ fls.u(s)ds

Instead, considering f o y we have that the new composed function must be continuous, therefore we
have for the fundamental theorem of integral calculus that y(x) € C! and that

y®w=m+/ F(s.5(s)) ds = yo

And therefore q 4 /e
ﬁm@ﬂw@mmww

Which gives back the thesis O

Theorem 9.3 (Picard-Lindel6f-Cauchy Existence). Let A ¢ R? with f : A — R a continuous
function which defines an ODE (9.1) where

y(z) =yo + /‘w f(s,y(s))ds

Leta,b> 0and take R = [z9g —a,zo + a] X [yo — b,yo + b] = I, x J, C A. Supposing f Lipschitz
continuous on the second variable, i.e.

L >0 : |f(z,u) — f(z,w)| < Llu—w| V(z,u),(z,w) € R

Then, if M = maxg | f(z,y)|
Je >0 : y(x) € CH(Be(yo))

Where ¢ = min{a,b/M,1/L}
Therefore, there is an unique local solution y(z) to the ODE
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Proof. We firstly define a Banach space (X, ||-||,,) where X := {y € C (I.)| ||ly(z) — voll,, < b}
Define the Picard operator as follows

T: X — X
Where .
T(w) =un+ [ fls,w(s) ds = 2(2)
We have
T(y) - 7()|| = T@—z)ﬂz'/fﬂ&u@»—f@w@»ds < Lefu—vl, Yuv,y,zeX

Since x € I, is completely arbitrary we have therefore, putting d(z,y) = ||z — y||,,
d(y, z) = d(T(y), T(=)) < Led(u,v)
Since Le € (0,1), Tis a contractor and it has a single fixed point in X.

Taking this fixed point as 5(z) we have

T@=m+/wmmmmzmm

Which is our searched solution, and it's unique O

Definition 9.1.3 (Maximal and Global Solutions). Given y(z) a solution to the Cauchy problem (9.1)
we define a maximal solution y,,(x) a solution for which y,,,(z) = y(z) Vz € I. and which still
solves the problem in a set (a,b) D I, and (a, b) is the biggest set for which y,,, () solves the ODE.

If y,, is defined Vx € R, the solution is called global

Theorem 9.4 (Prolungability of Solutions). Given the ODE (9.1) and let f : (a,b) x R — R. Let
c1,¢2 € K C (a,b) with K a compact set, such that

[f(z,y)] Ser+ealy(z)] zeK, VyeR

Then the solution can be extended in the whole set (a,b). The previous statement means
that f is sublinear in the second variable

Theorem 9.5. Let y,,(z) be a maximal solution to (9.1) defined on (a,b). ThenVK C A 36 >
0:Ved(a+d,b—90), (v,ym(z)) € K

Theorem 9.6. Taken y(z) a solution to the ODE (9.1). If 3¢ > 0 such that
ly(x)| <c Vie A
Then Jy,,(z) : (a,b) — R

Lemma 9.1.1 (Peano-Gronwall Inequality). Let ¢ : I C R — R be a function ¢ € C(I), if

wads

[p()] < e+ L
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Then the following inequality holds
e(t)] < ceH' =

y) is an ODE, taken f(¢,y) Lipschitz continuous on the second variable and
) where u, v are two solutions, we have that

Therefore, if y/(t) = f(¢,
chosen ¢(t) = u(t) — v(t

|f(t,u) — f(t,v)] < cellt—tol

§ 9.2 Common Solving Methods

Definition 9.2.1 (Separable ODE). Given y/'(t) = f(t,y(t)) an ODE we define a separable ODE a
differential equation such that

y'(t) = ft,y(t) = g(t)h(y)

Method 1 (Separation of Variables). Suppose that we have the previous ODE, then, thanks to the
Picard-Lindel6f-Cauchy theorem we can immediately say that

1. There is at least one local solution in B.(tg) if f € C,i.e. ifg,h e C
2. There is a unique local solution in B.(to) if 9, f € C, i.e. if h € C!

The first thing to do is finding all constant solution to the ODE, called the equilibrium solutions.
Then, a general solution can be found by direct integration, where we're integrating the following
differential form

1
——dy =g(¢)dt
h(y) Y g(t)
Integrating, and putting H(t), G(¢) as the two primitives, we can say that
H(y) = G(t) + H(yo) — G(to)
Where ¢ = H(yo) — G(to) is the integration constant in terms of the initial values, if given
Example 9.2.1. Take the following initial value problem
w'(x) = w?(x)
w(0) =1

We have f(z,w) = w?(z) i.e. the equation is separable, therefore
A C) N G
/ w2(2) dz = /dbL 1

=z—1

Therefore, integrating the LHS

1
w()
And
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Definition 9.2.2 (Autonomous Differential Equation). Given a differential equation in normal form
y'(x) = f(z,y(x)), it's said to be an autonomous differential equation if

fz,y(z)) = g(y(z))

Therefore
y'(x) = g(y(z)) 9.3)

Note that it's a separable equation, and therefore, writing the primitive of 1/g(y) = G(y) we have that
the general solution of this problem would be

Gly) =z +ec
Where ¢ € R is a constant
Example 9.2.2. Take the following initial value problem
y'(z) =ty
y(0) = yo

This is obviously a separable ODE, and we have f(t,y(t)) = t|y|.
We have that f € C(IR?) therefore there exists at least one solution for this equation.
Now, applying Picard-Lindeldf-Cauchy we can see that, V[, 5] C R compact set

[f(t,y) = £(E,2)] = [tly| — tlz]] = [¢l]ly] = |2]] < max{[el,[8]} |y — 2]

Taken L = max{|a/, | 8]} we have that f is Lipschitz continuous in the second variable in every compact
set K C R and therefore there exists a unique solution y : K — R.
Successively we move on to integrate directly the differential equation. We have

l.e.
| Yy 1 2 42
09 wl 5( 0)
g — eétge%tz
Yo
Since to = 0 we get
1,42
lyl(t) = lyole="

The solutions depend on the sign of 1o and we finally get

y(t) = {yoez

142
yoe 2" Yo <0

t2
Yo >0
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§§ 9.2.1 First Order Linear ODEs

Definition 9.2.3 (Integrating Factor). An example of linear ODE is the following kind of equation
y'(t)=pt)yt) +q(t) pgeC), ICR (9.4)

This equation has a unique solution in all of R, since f(¢,y) is Lipschitz continuous and sublinear in R.
We immediately know that the solution y € C* exists since f € C(R?) and by Cauchy-Picard-Lindel6f
we have

[f(ty) = [t 2)] = p()y(t) —p@)z(t)] = [p(®)lly — 2] < llpll, [y — 2|

Taken L = ||p||,, we see immediately that f satisfies the theorem and the solution is uniquely defined
in every compact set K C R.
We also see that f is sublinear, since

[F (&9 = lp@®)y(6) + 9] < [plllv®)] + llgll,,

Which means that the solution can be extended in R, and 3!y : R — R solution to the ODE.
We now proceed to integrate the ODE, for which we will proceed with a different method than usual.
Let u(t) be what we will call the integrating factor, defined as follows

plt) = e~ TP
Which has the property that p(¢)u(t) = ¢/ (t)
Method 2 (Integrating Factor). Let v/'(t) = p(t)y(t) + ¢(t) be a linear ODE, we solve by finding the

integrating factor u(t) and then multiplying both sides of the equayion by the integrating factor and
moving the p(t)y(t) term from the RHS to the LHS

By definition of the integrating factor we have that p(¢)u(t) = —p/(t) and therefore

p()y'(t) + 1 ()y(t) = q(t)u(t)

Using the chain rule we get

Integrating
u(o(t) = [ ua(t)de+c
And therefore, the final general solution will be the following

y(t) = % / H(Da(t) ot + o5
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Example 9.2.3. Take the following initial value problem

y(=1) =2

We immediately see the previous definition, therefore we can immediately say that since f is Lipschitz
continuous and sublinear the solution to the problem will be uniquely defined on all of R.

For integrating this ODE we use the integrating factor method, taking p(t) = ¢t=* and q(t) = 3t3.

By definition, we have u(t) = |t|, and therefore, since t < 0, u(t) = —t—1, which gives

{ Y (0) = pule) + 3¢

1
—gy(t) = —3/t2dt+c
Therefore
y(t) =t —ct

Applying the initial condition
y—1)=14¢=2 = c¢=1

And therefore the final, unigue solution of the initial value problem is the following

y(t) =t 1

Theorem 9.7 (General Solutions). Taken y'(x) + p(x)y(x) = q(z) a linear non homogeneous ODE,
we define the associated homogeneous ODE as the equation

2 (x) + p(z)z(z) = 0

The solution of the complete ODE will be given by the sum of the particular solution y(z)
and the homogeneous solution z(x)

Proof. Take y(z) a solution of the equation and 7(x) the particular solution of the ODE, we then have,

since both are solutions
y'(x) + p()y(z) = q(x)
7 () + p(x)y(z) = q(x)

<

Subtracting term a term we have
(¥ (z) = 9(x)) + p(2)(y(z) —Y(z)) =0
Chosen ¢/(z) — g(x) = z(x) we have that
2 (@) + ple)z(z) = 0

Therefore z(z) is a solution, but it's also the solution to the associated homogeneous ODE, and therefore,
inverting for the general solution y(x), we have

y(x) =y() + z(x)
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Example 9.2.4. Taken the following initial value problem

{y%x) 2y = -

y(=1) =2
We want to find the general integral of the equation, y(z). We begin by solving the associated
homogeneous equation
2
2 (x) + Ez(x) =0

In order to integrate this we use the integrating factor u(x), where

p(x) = exp (2 /x glch> = exp (2log(|z|)) = exp (log (z°)) = 2*

—1
We multiply by the integrating factor, and get

d _

Therefore

’2(z) =c = z(z) = T—CQ

The particular solution g(z) will be

1 1

)= i | et

sa) = [ do=

x x

Therefore

The general solution will be y(z) = §(z) + z(x), and we finally get

y(@) = 5+ -

Imposing the initial condition we have
y-1)=¢c—1=2 = ¢=3

Therefore
3 1

y(r) = 2

Note how we could have found the general integral directly using the formula

c 1 (" 31 (7
y(l’):ﬁ+ﬁ/,1dxzﬁ+?./fldm
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Method 3 (Variation of Constants). Given a linear ODE y/(¢) + a(t)y = f(t), witha, f € C(I), ICR
suppose that z(¢) is the solution of the homogeneous equation, we have therefore

2(t) = ﬁ = cexp (/ a(t) dt)

We can find a particular solution through variation of constants, i.e. we suppose ¢ = ¢(t), and we

have .
y(t) = c(t) exp ( / a(t) dt)

Imposing this on the differential equation, we have

() = ¢ (1) exp < [ at dt) ~ a(t)e(t) exp ( / a(t)> di

i e < 20D
L (€O = ae) + TS = ()

And therefore

Therefore

:ﬂﬂ=$dﬂ:/f®Mﬂm
Which implies

oy L

3t) = o [ fmoar

We then recover the previous formula by adding the particular and homogeneous solutions

c 1
mw=35+mg/fwmwm

§§ 9.2.2 Second Order Linear ODEs

Definition 9.2.4 (Initial Value Problem for 2nd Order Linear ODEs). Given a second order linear
differential equation y"(z) 4+ a(x)y’(x) + b(z)y(z) = f(x) we define the initial value problem for
such differential equation as follows

y'(2) + a(2x)y'(z) + blz)y(z) = f(z)
y'(z0) = Yo
y(zo) = yo

This kind of problem, if a,b, f € C(I) I C R is said to be well defined

Theorem 9.8 (Space of Solutions). Given a second order linear ODE, the solutions of the ho-
mogeneous equation span a vector space of dimension 2 S, and the general solution of the
homogeneous equation has the following form

zg(x) = c121() + c222(2) € S
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l.e., if we define a matrix W, (t) as follows
_ (7(t)  z(t)
W= (3 30
If z1, zo solve the differential equation, the matrix W, (t) is non-singular
Proof. Suppose z1, zo € C%(I) are two solutions. If they're linearly inddependent we have that they
solve the following system with ¢, c2 € R\ {0}
c121(x) 4+ caza(z) =0
c121(z) + cazh(z) =0

This system is solvable only if the determinant of the matrix ,,,, is non zero, and therefore the two
functions must be linearly independent and span the vector space of solutions & O

Method 4 (Characteristic Polynomial). Take the following linear homogeneous ODE of order 2
Z'(z) +az'(z) +b2(z) =0  a,bER

We begin by “guessing” a solution in exponential form z(z) = e**, where X € C. Therefore, reinserting
into the ODE, we have
M (A2 +aX+b) =0

Since the exponential is never zero Vx € R, VA € C we have that the polynomial must be zero, and

therefore we get two roots
1 ——
)\1'2:7315 a274b

We can now discern 3 cases.
Case 1), a®> —4b >0
There are two real roots A\;, s, and therefore we have

2(x) = €M7 + cpe?®

Case 2), a?> —4b < 0 B
There are two complex conjugate roots A, A, and the solution will be

2(@) = Re (16 + 6™ ) = 1MV cos(Im(N)a) + e sin(Im(M)2)
Or
z(z) = AN cos(Tm(N) + )

With A, € R Case 3) a2 —4b =0
There is only one root A = a/2 with multiplicity 2. In order to find the general integral z(z) we impose
the variation of constants, and we have

And
2 (x) = (2)e™ + e(z)er® = (¢ (z) + Ae(x))

2(x) = " (2)eM + A (2)e N + Ne(z)e = (< (x) + A (x) + Ne(x))
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Since \ is a root of the characteristic polynomial, we end up with
() =0 = c(z) =co + 1t

Therefore
2(z) = eM(cy + cat) = e 2l ey + eat)

Method 5 (Similarity Method). Another method for finding a particular solution is the similarity method.
Given the following linear ODE

y'(z) + ay'(z) + by(z) = f()
The particular solution of this problem can be found using the shape of f(z).
Case 1) f(x) € Ry|z]
In this case we will suppose that the solution will be a polynomial, and we can discern 3 cases
q(z)  b#0
j(e) = {wa(e) b=0, a#£0
z?q(x) b=0,a=0
Where ¢(z) € R, []
Case 2) f(x) = Ae*, N e C
In this case we will suppose the particular solution as the real part of a complex exponential, where
J(x) = Re (j(z)) = 7(2)%Re ()
Where v(z) € C*(I), I C R is some unknown function. From this we will have, deriving twice
() =N (Y (z) + My (@)
7' (@) = e (Wy(@) + 20/ (2) +1"(2))
Substituting into the differential equation we obtain
(@) + 2N+ a)y' (z) + (N +dA +a)y(z) = A

We get again 3 different cases
AN +ar+b=0
In this case we have

(1) = oy = 1) = a3
=N ra+s M T N raarb”
D)X +ar+b=0,2\4+a#0
In this gase instead we have
A A
/ . () — AT
V(I)72)\+a §() Mta

OMNF+arA+b=0, 22 4+a=0
Lastly we have
A
,7//(1‘) — A — Q(T) _ 51;26)\:1:
The solution for the differential equation will lastly be either the real (or imaginary, if there is a sine in
the RHS) part of the function we found.
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Example 9.2.5. We will use the similarity method to solve the following differential equation
y'(x) + 29/ (2) + By(x) = 26

We see immediately that f(z) = 2¢3% so we choose a particular solution 7(z) with the following form

y(w) = ke
We therefore have
@l(T) — 3]{7(23I
@H(l’) _ 9]663‘1’

Substituting
18k=2 = k= %

Therefore our searched solution will be the following

Example 9.2.6. Let's now solve the following differential equation
y'(z) + 2y (2) - 3y() = 2

Following the same approach, we see that the characteristic polynomial is null, and we end up with a
contradiction, therefore we find a solution of the following kind

7(x) = kxe 3
Deriving the particular solution, we have

7 (x) = ke 3" (1 — 3x)
= 3ke

7' (x) ke™3% (3z — 2)
Substituting
3k(3x — 2) + 2k(1 — 32) — 3kx = 2
—4k =2
1
h=

Therefore the particular solution we're searching for is, finally

() — 7% —3z
y(z) 5¢
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Method 6 (Variation of Constants). Another method that might be used to solve a second order linear
differential equation is the method of variation of constants.
Given the following differential equation and the associated homogeneous equation

y'(z) + ay'(z) + by(z) = f()
2" (x) + a2 (z) + bz(x) =0
Suppose that z;(x), z2(z) are two linearly independent homogeneous solutions, and
z(x) = 121 () + coza(x)

We search for a particular solution supposing that the two constants are actually functions, and we
have
y(z) = c1(2)z1(2) + ca(x)22(2)

Due to the necessity of a non-singular Wronskian determinant, we impose the following condition
ci(z)21(@) + ch(z)z2(x) =0

Deriving two times the particular solution and then substituting in the original equation we end up
with the following system

ci ()21 (2) + ¢5(2)25(x) = f()

The necessity for the linear independence of the solutions is clear here, since the system is solvable if
and only if the Wronskian determinant is zero.
We solve the system by substitution, and we have

{c’l (x)z1(x) + ch(x)22(z) =0

() = <>E§ |
i = L=
Therefore
) =~ e
o (z) = () f(@)

z1 ()25 (2) — za(7)21 (7)

Written in terms of the Wronskian determinant det,,,, W, (z) we finally have as particular solution
1) = 200) [ g f)de—a0) [ o jw)de+e
detW Wp,u (LC) ’ det,u,z/ Wp,u (LC) ’
And the general solution of the differential equation will be the following

y(x) = z2(x) /10 Wﬂx} dz — 2z (z) /IU mﬂx) dz 4 c121(x) + caza(2)
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].O Fourier Calculus

§ 10.1 Bessel Inequality and Fourier Coefficients

Definition 10.1.1 (Fourier Coefficients). Suppose (ux)ren =U C V, with (V, (-, -)) an euclidean space,
taken v € V we can define an operator F; : V — CN such that

YweV Fyw)=cec

Where
c= ((v,u1), (v,u),---) € CN

The coefficients (v, ui) € C are called the Fourier coefficients of the vector v € V

Theorem 10.1 (Bessel Inequality & Parseval’s Theorem). Given (uy)rey =U C V an orthonormal
system and V an euclidean space with v € V. Taken «ay,--- ,a;, € C some coefficients and
defined the two following sums

n

S, = Z(v,uk>uk = chuk
k=1

k=1

n
S:;: E QU
k=1

Then
HU - SnH < HU - S’OIéH

(oo}

2 2
D llexll < ol
k=1

The last inequality is known as Bessel’s inequality
Lastly we also have Parseval’s equality or Parseval’s theorem, which states

v = Z{z)7uk)uk = chuk — Z HckHQ = H’UH2
k=1 k=1 k=1
Due to this the operator F, actually acts into (>(C), i.e.

Fu:V — 2(C)

175
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Proof. By definition of euclidean norm and using the bilinearity of the scalar product we have

0 < o= S5l = [[o]* = 2Re (v, S3)) + 1S5 ]* =
= ||lv||* — 2Re (Z U, U ) ) + Z lla ||?
k=1

Therefore
n n
2 2 2
0 < ol* = > llerll® + > llow — cxll
k=1 k=1
The minimum on the left is given for oy, = ¢ and therefore, since S¢ = S,, we have
o= Sull < [lv=S7l

And, using the non-negativity of the norm operator, putting n — oo we have
2 2 - 2 2
0 < Jlo—=Sall = [olI* = D llexl® = D llexll* < [lol
k=1 k=1

Therefore
2 2
> w1 < o]
k=1

Which means that the sum on the left converges uniformly, and therefore ¢;, € £2(C). This demonstrates
that 5, : V — (2(C) and Bessel’s inequality.
This also gives Parseval's equality, since, for n — oo

2

) [e'S)
v=Y (wurhu| =0 < |[v]* = [|(v, ur)]
k=1 k=1

Due to the uniform convergence in V we have therefore

o0
E U uk
k=1

Definition 10.1.2 (Closed System). An system (ug)ren € V is said to be closed iff Vo € V

(o]
2
loll® = v, ui)ll
k=1
[e.9]

v = Z(v,uwuk

k=1
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Theorem 10.2 (Closeness and Completeness). Given an orthonormal system U = (ug)ken € V
with V an euclidean space, we have thatU is a complete set if and only if U is a closed system.
If U is complete or closed, V is separable

Proof. Defined S,, the partial sums of the Fourier representation of v (ndr the series that represents v
with respect to the system (uy)), we have that for the theorem to be true the following two things
must hold
lim S, =v span(ug) =V
n—oo
lle. Ve > 03N €N, aq, - ,an € Csuch that |jv — S%|| < e. Using Bessel-Parseval we have
0<flv—=Snl<lv—5Sxll<e

Proving the closure of the system if the space V is complete.
Taken (uk)ken @ closed system, we have that S,, — v, therefore v € ad (span(l/)), which implies

v espan(ld) = V = span(U)

The last implication is given by the fact that v € V is arbitrary, and it implies the completeness of ¢/ and
the separability of V O

Theorem 10.3 (Riesz-Fisher). Given Va hilbert space and U = (ux)ren € V an orthonormal
system, therefore Vc € (? 3v € V : Fy[v] = c and

Ck = <U7 uk)

oo
2 2 2
oll* = llelly = > llexl
k=1

v = Z(Uuk>uk

k=1

Proof. Taken a sequence (vi) € V defined as follows

m

Un = E CrUg
k=1

This sequence is a Cauchy sequence, therefore it converges to v € V, since

2 m m

= Z CrLUE, Z Cruy) =

m

E CrUf

an - 7)7””2 -

k=n-+1 k=n-+1 k=n+41
m m m
= Z Z rCilUi, uk) = Z ekl
k=n+1i=n-+1 k=n+1

By definition, since ¢ € £2, the sum on the right converges, therefore

o0

[on —vm|? < D Jlerl” < o0
k=n-+1
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Which means, that Ve > 0 3N € N such that
llvn — UMHQ < Z ||Ck||2 <e Vn>N
k=n-+1

Which implies that v,, — v and
v::§:(%uk
k=1

We can now write (v, ug) = (Un, u) + (v — vy, ug).
We have

n

Vi >k (vn,ur) = ) eilui, u) = c

i=1
For Cauchy-Schwartz we also have that

(v = v, ug)|| < Jlv = on] =0

Which implies that ¢, = (v, ug) and therefore

oo (oo}
v = Z(v, Up YU = ch,uk
k=1 k=1

§ 10.2 Fourier Series

§§ 10.2.1 Fourier Series in L?[—m, 7]

Definition 10.2.1 (Fourier Series). Given a function f € L?[—x, x| we define the Fourier series
expansion of this function the following expression

F(z) ~ % + kz::l ay, cos(kx) + by, sin(kz) (10.1)
Where o
ar = 1 f(x) cos(kx) dx
L (10.2)
by, = - f(z)sin(kx) dx

—Tr
The notation ~ indicates that the Fourier series of the function converges to the function f(x). Usually
an abuse of notation is used, where the function is actually set as equal to the Fourier expansion.

Definition 10.2.2 (Trigonometric Polynomial). A function p € L?[—x, 7] is said to be a trigonometric
polynomial if, for some coefficients ay,, 8 we have

Qo

p(x) 5

+ Z oy, cos(kx) + B sin(kx) (10.3)
k=1
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Theorem 10.4 (Completeness of Trigonometric Functions). Given (uy), (vy) € L*[—m, 7] two se-
quences of functions, where

{uk,(x) = cos(kx)

vg(x) = sin(kx)
The set {uy, v} is orthogonal and complete, i.e. a basis in L*[—n, 7]

Remark. These trigonometric identities always hold, Vn,k € N, n # k

cos(nz) cos(kx) = = (cos[(n + k)z] + cos[(n — k)z])

sin(nz) sin(kz) = - (cos[(n — k)z] — cos[(n + k)x]) (10.4)

cos(nz)sin(kz) = = (sin[(n + k)z] — sin[(n — k)z])

N = DN — DN —

Proof. We begin by demonstrating that the two function sequences u, vy are orthogonal in L[, 7].
Therefore, by explicitly writing the scalar product, we have, for k # n

s

(i, 1) = / " cos(nz) sin(ka) dz = % / cos{(n + k)] + cos[(n — k)z] de

Therefore
_ 1 [sin[(n+k)z]  sin[(n — k)z] o
<un7uk>* 2 |: n—i—k + n—k 771-*0
Analogously
oy _ L[sin[(n—k)z] sin[(n+ k)] o
And, finally

1 {cos[(n +k)a]  cos[(n — k)] } "

{tm; vk} = 2 n+k n—k

™

Which demonstrates that, for k # n up L up, vp L vy, ug L vp.
Now, taken a trigonometric polynomial p(z) € L*[—m,n] we need to prove that span {uy, vy} =
L?[—m, 7, ie.

Ve >0Vf e L?[-mn |p—fl,<e

We have already that C[—m, 7] = L?[—, 7] and that for a Weierstrass theorem (without proof), every
periodic function with period 27 is the uniform limit of a trigonometric polynomial.

Using these two results, given f € L?[—m,n], 39 € Cl—m, 7] : ||f —gl, < €/3. Taken g(z) as the
periodic extension of g(x), for Weierstrass we have

N € N € . €
— <= —gly <= = llp-— < —=
lo—dll, <3 o=l <3 = lp—ill, < 575

Therefore, finally || f — pl|, < ¢ -
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Theorem 10.5 (Parseval Identity). Given f € L?[—n, 7] we have that

™ 2 [e’e)
. a
[ 1s@R de = 8 S
ST k=1

Proof. The proof is quite straightforward, since trigonometric polynomials form a basis for L?[—, 7
we have that this is simply the already known Parseval identity, since

oo
o2 2
112 =D llel
k=0

Writing ¢, = ay + by, we have

laol® . <

.12 0 2 2

17l = ——+ D lanl® + llox|
k=1

§§ 10.2.2 Fourier Series in L?[a, b]

Definition 10.2.3 (Basis of the Space). In order to define a trigonometric basis in L?[a, b] with a # b,
we can use a simple coordinate transformation onto the {(us), (vx)} basis of the space L?[—n, 7).
Therefore, taken

y(z) = m(% —a—1b)

The new basis on L2[a, b] will be

(ug(y(x))) = cos(ky(x)) = cos (bk_ﬁa(ZI —a— b))

(on(y() = sinChy(a)) = sin (2 (20~ a 1))
The completeness of this basis is given by the fact that, this change of coordinates is a smooth
diffeomorphism between L?[—m, x|, L?|a, b].

Definition 10.2.4 (General Fourier Series). With the previous definition, the Fourier series of a function
f € L*[a,b] is given as follows

T ~—|—Zakcos( 2m—a—b))+5ksin (blma(%_b_a)> (10.5)

_b—a/f cos( (2x—b—a))daz
b—a/f sm( (2xba)>d1

Where

ay,

(10.6)

by =
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§§ 10.2.3 Fourier Series in Symmetric Intervals, Expansion in Only Sines and Cosines

Definition 10.2.5. We firstly begin finding the Fourier series of a function in L2[—1,1]. Using the
previous general case in L?[a,b] and setting a = —I, b =1 we have Vf € L*[—L,]

=4 Zak cos( ) —+ by, sin <k7lm> (10.7)

}/_ll f(z) cos (lmlm) dx
_ }/ll f(x)sin (’T) dz

Theorem 10.6. Taken the space L?[0, 7] we have that both trigonometric sequences (uy(z))
and (vi(x)) are orthogonal bases in this space, and the following equalities hold.
Vf e L?[0, 7

With coefficients

(10.8)

12 oo

fla) ~ % + ) aj cos(kx)

k=1

) ~ Y b sin(kz)
k=1

aj, = 72r/07r f(x)cos(kz) dz
2 [T .
_ ;/O f(@)sin(ka) dz

Proof. The proof of this theorem is straightforward, we firstly define the even and uneven extensions
of the function f(z) in L?[—, 7] as follows

Where

—f(=2) zc[-m0)

Expanding both these functions in [—7, 7] we have that, indicating the coefficients of each as af, b¢, a}, b}

[ﬂj x) cos(kx) d / f(z) cos(kx) d

Fo() = {f(x) » € (0.7

by, =0
ap =0

1 (7 _ 2 ,
by = - f*(z)sin(kx) de = - f( 2)sin(ka) dz = by,
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Therefore

/ o5}
fé(z) ~ % + Z% cos(kx)
k=1
fh (@) ~ > by sin(ka)
k=1
Which implies that
17¢ = Sull3 = 21 = Sullfy..g = 0

And
u 2 2
17 = Sully =2[f = Snllg- = 0

Proving the theorem. O

Example 10.2.1. Taken the function f(z) = 2> = € [, 1] we want to find the Fourier expansion of
this function.
Since x2 is even, thanks to the previous theorem we know that the coefficients b, = 0 in all the set of

definition, therefore
T kmx
X v 5 -‘rZCLkCOS (l)
k=1
We firstly calculate the coefficient ag of the expansion

1 /! 212
ao:i/,ldex:?

The coefficients a), can be calculated using the fact that 22 is even, and therefore we have

1/l 2 cos ko d _ 1 2sin ko Ll 4 ! sin ki dz =
AN L) T I ) kn) , ka )y A
7741 T COS @ l 7741 /lsin b dz
= )2 r) T ke ), z

Since the last integral is 0 we have

e (7)] -

The searched Fourier expansion is therefore

2 42 x -1 k
5 l ( )Cos<k‘7rx>

S 2
k=1

l

Example 10.2.2 (Parseval’s Equality). Having now found the Fourier expansion for 22, we can use
Parseval’s equality in order to calculate the sum

1
>
k=1
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Thanks to Parseval, we therefore have

1 21612 &
=1 [ star =24 20 =W

The integral on the left is obvious, and moving the terms around we finally have
0 1 ) 4 4 2 2
Z — / didr - =T (2.2
— k4 16l° 36 16 \5 9

4

°°1

Therefore

§§ 10.2.4 Complex Fourier Series

Theorem 10.7 (Complex Exponential Basis). Taken the space L*[—, x|, and defining a system
(er)rez = €'**, this system is an orthogonal basis for the space.

Proof. Using Euler’s formula for complex exponentials we have
(ex)nez = €™ = cos(kx) + isin(kz) = up(z) + ivy(x)

Therefore, due to the linearity of the scalar product, these functions are orthogonal to each other, and
due to linearity we also have

span{e**} = span{cos(kz), sin(kz)}

Which, implies
span{eike) = L2[—7, 7]
Note that

|1y =

O

Definition 10.2.6 (Complex Fourier Series). Given f € L?[—n, 7] we can now define a Fourier expansion
in complex exponentials as follows

() ~ i Lm = cpeihe (10.9)

P S ” kEZ

Where, the coefficients will be

ok = (@), ™) — /Tr f(z)e™ ™ dz (10.10)

etk=]); 27

J—m
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Note that if f(z) : R — R we have

1 [T X ) Y 1 [T .
=g | t@etdo— o [ F@emdn = o [ faetrde—c,
27T - 2’]T - 271' -
Therefore, for a real valued function
f(I) ~ co+ Z Ckeikw + kae_ikm =co+2 Z%e {Ckeilm} (10.11)
k=1 k=1

Example 10.2.3. Taken the function f(z) = e*, z € [—m, x|, we want to find the Fourier series in
terms of complex exponentials. Since f(z) is a real valued function, we have

e’ ~ o+ 229“12 {ckeik’m}

k=1
The coefficients will be
1 [ . 1, . . sinh(m)
=5 _ﬂe dxz—w(e —e ) = -
1 T ) 1 1 . )
o= /(1—1,k:):1: de = — ( w(1—ik) /—71'(1—’1,](7))
T ‘ 27r[1ik' ‘ ‘

The second expression can be seen as follows

1
27(1 —ik) (

. . _)E
L = ekmem — e T = _EDt sinh(m)
T

(1 ik)

The final expansion will then be given from finding the real part of this coefficient times the basis vector,
ie.

— 1Dk sinh(x) 1V sinh(or |
e {W} = LS ate (14 ik cos(he) + sin(ko))

The last calculation is obvious, and we therefore have

—1D)*sinh(x) . —1)*sinh(w .
Re {mezkr} — % (cos(kz) — ksin(kx))

And the final solution will be

e ~ Sin:(”) + 25"‘:(”) > fjrl;;; (cos(kz) — ksin(k))
k=1
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§§ 10.2.5 Piecewise Derivability, Pointwise and Uniform Convergence of Fourier Series

Definition 10.2.7 (One Sided Derivatives). Let f : [a,b] — C be a piecewise continuous function and
let = € [a,b). f(x) is said to be right (or left) derivable, if the following limits exist

flx+e) = far)

fjr (33) - 6|~I>r£]+ €
T € o Rl A G
f (1‘) eligl B €

Where

Example 10.2.4. Take the following function

fa)=45 =0
l—2z >0
We have +
£.(0) = me(&)—ef(ﬂ ):1_E_1:—1
Ve i J€O) = f(0F) 0
FO) = fim === =0

It's important to see how the right and left derivatives might not coincide with the right and left limits
of the derivative, as explained in the following theorem

Theorem 10.8. Let f(x) : [a,b] — C be a piecewise differentiable function, then given z € [a,b)
we have

Proof. Since f(x) is piecewise differentiable, we have that 3y > 0 such that f(z) is differentiable
Vo € (x,x +v) and we can define f (zT)
Therefore Va > 0, Je; > 0 such that

Vye (ratea) [fy)-fEh)<a

Thanks to the Lagrange theorem, and the definition of one sided limit, we have, given 0 < § < € < ¢;

€e—90
Which implies therefore
im tim [LEFDI@D )
e—0t §—0+ €
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Which also implies, by definition

fi(z) = lim ' =f'(")

e—0t €

O

Definition 10.2.8 (Periodic Extension). Given a function f : [—, 7] — C, non periodic, we define the
periodic extension f : R — C as

f(@)=f(z+2kn) k€Z, x+2kr e (—n,n

Note that it coincides with the same function, given that € (—m, ] and therefore the periodic
extension has discontinuities of the first kind at the points z, = (2k + 1)m, k € Z

Lemma 10.2.1 (Riemann-Lebesgue). Let f € Cla, b] be a function such that f’ is piecewise continuous
(also holds Vf € L![a, b]), then

§—00

lim /b f(z)sin(sx)dz =0

Proof. The proof comes directly from the calculus of the integral

b 1 1P
/ f(z)sin(sz) dz = S [f(x) COS(SQC)]Z; + ;/ f'(z)sin(sx) dz
Since || ||, = M and || f'||, = M’, we have

b
/ F(@)sin(sz) dz| < ﬁ (2M + |b— alM’) = 0

Definition 10.2.9 (Dirichlet Kernel). We define the Dirichlet kernel as the following function
1 (sin (2% 2) 1 1
Dp(z)=— | Z 2| =— 4= k
(2) 2 ( sin (%) 27 + T ;COS( ?)

Lemma 10.2.2. Given f : R — C a piecewise continuous function, and = € R such that exists f/ ()
we have that

n— oo

lim /07r f(x+2)D,(z)dz = %f(gﬁ)
0

im [ f+2)Da(z) 0z = 5 fa)
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Theorem 10.9. Given f : R — C a 2r—periodic piecewise continuous function and letting S,,
be the n-th partial sum of the Fourier series expansion of f and letting x € R such that exist
both the left and right derivative in the point, we have that

f(x) f is continuous in x
lim S,(x)=1¢ 1 . . .
n—sc0 5 (f(@*) + f(=7)) [ is not continuous inx
Or also 1
Jim_Sa(e) = 5 (F) + 6)

Proof. By definition of the Fourier expansion, we have that, in the trigonometric basis
Sp(z) = %0 + ; ay, cos(kx) + by sin(kx)

Inserting the usual definitions of the Fourier coefficients and using the fact that the sum is finite, hence
it converges, we have

Sp(x) = 1 [/W f(s) (; + icos(kx) cos(ks) + sin(k;x)sin(ks)) ds]
k=1

Simplifying
Si(w) = %/ £(s) (; + 3 cos (I(s — x))) ds
- k=1

Rearranging the second term we see that it's the Dirichlet kernel, and using a transformation z = s — z,
we have

Sp(x) = /_7r flx+2)D,(2)dz

Note that the extremes of integration are the same since both these functions are 27 —periodic.
Using the definition of the integral between f and the Dirichlet kernel, we have finally the statement
of the theorem, in the case that the function has a discontinuity at the point x

lim S,(z) = ! (fa™) + f(z7))

n—00 2

O

Theorem 10.10 (Pointwise Convergence of the Fourier Series). Given a piecewise continous 27 —pe-
riodic function f : R — C, we have that the Fourier series converges pointwise to the
following two cases, in case the function is continous or not in the point z € R

Theorem 10.11 (Uniform Convergence of the Fourier Series). Given a 2xr—periodic function f €
C(R), such that its derivative is piecewise continuous, we have that

S'H, j .f
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Proof. Since f(x) € C(R) for the previous theorem we have that S, (z) — f(z) Vx € R, therefore

flz) = % + kf:lak cos(kx) + b sin(kz) = €R
Using the Weierstrass M-test we have that, taken the following sequence
cr = ay, Cos(kx) + by sin(kx)
The sequence is limited as follows

lek] < laxl|cos(kx)| + [bx||sin(kz)[ < |ax| + [bk| = M,

In order to check that the sum of this extremum is convergent we find the Fourier expansion of the
derivative of f

ar = .
f(z) ~ 50 + Z ay, cos(kx) + by, sin(kx)

k=1
[t's not hard to prove that
aj, = b
F k
ar
b, = —
Pk
Therefore
- 1 / / 1 12 72 2
- lanl + 1ol = D7 (il + 1) < 5 D lakl* + [bi* + 5 < o
k=1 k=1 k=1 '

Since ay, aj,, bi, bj, € (2(R) Therefore, the sum converges and for Weierstrass’ M-test it converges
uniformly O

§§ 10.2.6 Solving the Heat Equation with Fourier Series

Definition 10.2.10 (Heat Equation). In physics, the equation governing heat transfer is the heat
equation a partial differential equation of order 2 in space and of order 1 in time.
The equation is the following

o 52
FZ - Aa—; (10.12)

Example 10.2.5 (Heat Equation with Von Neumann Boundary Conditions). We firstly write the heat
equation with Von Neumann boundary conditions

O = \o*u
0,u(0,t) = Oyu(l,t) =0 (10.13)
u(x,0) = f(z)

Where z € [0,], t >0
We suppose that u(z, t) is expressible as a uniformly convergent Fourier series of only sines or cosines.
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Since we want the derivative on the x to vanish in order to satisfy immediately the boundary conditions,
we suppose the following expansion

u(, +Za cos(km>

Deriving, we have

’ 00
Opu = a02(t) + ) aj(t) cos (T)
k=1
T — . krx
Oz u = -7 Z kay(t)sin ()
k=1
2 O©
OPu = 77;—2 > kPax(t) cos (lﬁlu>
k=1

It's immediate to see that the boundary conditions are immediately satisfied, and therefore, reinserting
it back into the differential equation, we get

e kma o) k
7772 ZkQak(t) cos (7?) = a02( ) +Za§c(t) cos <7lm)
k=1 k=1

Therefore, we end up with the following infinite system of ODEs of order 1

With k& > 1, k € N. Therefore, integrating we get
ap = ag ag(t) = ake*’\(%ﬂ)%

Reinserting into the second boundary condition u(z,0) = f(z) we end up determining the coefficients
as the cosine-Fourier coefficients of the function f(z)

/ fla (knm)dm

w=1 [ s

Therefore, the complete solution to the PDE is

u(m,t):;Z/Olf(x)d i - (5)) cos(lmx)/ £(s cos<k7 >ds
k=
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Example 10.2.6 (Dirichlet Boundary Conditions). Let’s now take the heat equation with different
boundary conditions, namely
&,u = /\8?u

U(.%‘,O) = f(.T)
U(O,t) — U(l,t) =0

Where (z,t) € [0,1] x RT \ {0} Since the first derivative doesn’t appear in the boundary conditions
we choose a particular form of u(z, t) in terms of an only sine Fourier expansion (assuming uniform
convergence). We have therefore

Z by (t) sin (IWT>

Deriving, we get therefore

Reinserting into the differential equation, we have

21.2 o
Zb/ sin (kmc) + )\%kbk(t)sin (T) =0

Therefore, equating the coefficients for the infinite ODEs we get

b (1) = (T)Qbm

bk(t) = bkei)\(k%)Qt

And our particular solution will be, therefore

- Z bre” i <]ml$)
k=1

Imposing the last condition we get
Ze 2224 in (kzm;) / f(x)sin (kﬂlrs) ds

§ 10.3 Fourier Transform

§§ 10.3.1 Fourier Integrals, Translations, Dilations

Proposition 16 (Extending the Fourier Series). Let f : R — C be a non periodic function and
fi:[=1,1] € R — C be a function with periodic extension that converges to f(z) for I — oc.
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We have, using the complex exponential basis that

. 1 —ikmx ! . ikms
fl(l)w?lze 1 ‘/7[]([(8)6 i dé

kEZ

Sending I — oo we have that the sum of coefficients behaves like a Riemann sum and converges to the
following integral

[ syt do = (o)
R

Where the last equality is given by the fact that fi(z) — f(=).
We define the integral used for finding these “coefficients” the Fourier Integral Transform of f

g(\) = F[fI\) = }'()\)% /R F(z)e" ™ dz

Definition 10.3.1 (Parity, Translation and Dilation Operators). Let f : R — C be some function. We
define the following operators

'E)
=h

() = f(—x) Parity
W[f](x) = f(x —a)  Translation
&,[f](z) = f(ax)  Dilation

Definition 10.3.2 (Fourier Operator). Given a function f € L'(R) we define the Fourier operator

F[f] as follows
Fifl= [ fwede AeR
R

Which is basically the Fourier transform f of the function f.
Note that F : L*(R) — L(R), since

i = [ 1 da = [ 17@lds

Theorem 10.12 (Properties of the Fourier Transform). Given f,g € L'(R) and a,b € C we hafe that
1. Flaf +bg] = oF[f] + bFlg]
2. FIAI) = FIA(-»)
3. 9m(f) =0 = FIfIN) = FIF-N)

4. Jm(f) =0, f even = Jm (j—'[f]) =0, F[f] even

5 Jm(f) =0, f uneven = Re (j—'[f}) =0, F[f] uneven
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Theorem 10.13 (Action of the Dilation, Parity and Translation Operators on the Fourier Operator).
Given f € L'(R) and a € R\ {0} we have

1. FP=PF

2. Pl = eihaF

3. T,F = Fle'™ f(z)]

4. Fo, = |a| &, 1 F

5 Fo,T, = |a|7le*i’\b<i>a_1j:
6. FT,d, = |a|7le*i/\b/“<i>a_1./%

7. FD =i\F
Example 10.3.1 (Fourier Transform of the Set Index Function). Let f(x) = 1|_, 4 (z) be the index
function of [—a, a], we have

R , . ) , 2 .
]:[]1[*& a]]()‘) = / Li—aq (‘/L))eil/\w dz = / e du = i[eizAw]ia = < sin(Aa)
' R 1 —a A A

Fora = 1/2 we have 1_, 5 1/5(x) = rect(z) and therefore

Flrect(z)](\) = Si”;% 2 _ sinc (;ﬂ)

Example 10.3.2 (Fourier Transform of the Triangle Function). We define the triangle function tri(x) =
max {1 — |z|,0} = rect(z/2)(1 — |z|). We then have

. 1
Flmax {1 —|z|,0}] = / max {1 — |z|,0} e~ dz = / (1—|z))e”* dz
R

J—1

Using the properties of the absolute value and using a change in coordinayes we have
. 1 ) ‘ 1
Flmax{1 — |z|,0}] = / (1—z) (€™ +e7™) do = 2/ (1 — z)cos(A\x) dx
J0 0

By direct integration, we therefore get

Flmax {1 — |z],0}] = i/l sin(\z) da: = % (1 - cos(\)) = %SmQ(A/z) = sinc? (;)

Example 10.3.3 (A Couple Fourier Transforms More). 1) f(z) = H(z)e™** where a € R, a > 0 This
one is quite straightforward. We have

. —(
67(a+1)\)x — |:6

a+iX)z +oo 1
a+ 1A ] 0

FIH (£)e 9] — e~ (@+iNz . — =
FlH (x)e "] /RH(uL)e dx /R T

+
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2) f(z) = 1/(1 + z?) For this we immediately choose to use the residue theorem, so, we firstly suppose
that A < 0 and we choose a path enclosing the region Jm(z) < 0, for which the only singularity is

given by z = —i
. 1 . efi)\z efi)\z
F = lim dz = —27i Res | ——
|:1+12:| R*}OO/Y'H1+Z2 & 7T7/Z7;(1+22>

Analogously, for A > 0 we choose a curve enclosing the region Jm(z) > 0, and therefore, noting that
the only encompassed singularity is z = ¢

~ 1 e*i/\z efi)\z
F = lim dz = 2miRes [ ——
1+ 22 R—o00 ,‘/K 14 22 2=i \ 1+ 22

jr{ ! }m lim [(zi)(ei)\z}ﬁe’\

1+ 2?2 z—i z+1i)(z—1)

Therefore

Therefore

Uniting both cases, i.e. for A € R, we have finally

7 — oAl
I[1+x2] e

3) f(z) = e~l*l Last but not least, we can calculate this Fourier transform using the properties of the
Fourier operator. Firstly
el = H(x)e " + H(—x)e™

We can also write this as follows
el = H(x)e™" + P[H(x)e™ ]

Therefore, using the linearity of the Fourier transform and the behavior of it under parity transformations,
we have

Fleal#l] =

S R U I S S
a+ i\ a+iN|  a+iN  a—i\ a2+ )2

Example 10.3.4 (A Particular Way of Solving a Fourier Integral). Take now the function f(z) = e,
using the properties of this function under derivation we can build easily a differential equation

;
Y = f()

Applying the Fourier operator on both sides we get

ﬁuﬂ:_ﬁhﬂm
d

INF[f (0)] = =2 3 FIf ()]
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Therefore, we've built a differential equation in the Fourier domain, where the searched function is
actually the Fourier transform of the initial equation. Solving, we get

dlog - A
o @] =5

Therefore, imposing the condition of integration on all R and remembering that [, e~ dr = VT, we

have
S _Aa?
4

Flf(@)] = Ve

§§ 10.3.2 Behavior of Fourier Transforms
Theorem 10.14. Let f € L'(R) be some function. Taken f(\) = F[f](\), we have that f € Co(R)

Proof. Firstly, we need to demonstrate that f € C(R). Therefore, by definition of continuity we have

71/\35 7261 o 1) dax

j‘)\—f—e ‘—

Using the properties of the modulus operator, we have that

FO+9 = 70| < [ 1@ = 1]da
For some a € R, we also have that
/ @i — 1] dz < / @l 1|dx+2/|$|>a @)l — 1| de
And for 2 < a we can also say
|7 — 1] = (1 - cos(ex))? — sin*(ex) = 4sin® (%) < (ex)? < (ea)?

Letting || f||, be the usual p integral norm on L!(R), we have therefore

[ @l —tdere [ (p@llee -1 <dalisl 42 [ f@)le 1] do
lz|<a |z|>a lz[>a
The last integral goes to 0 for @ = e~1/2, therefore

FO+ = F| < dallfll,

Proving that f € C(R).
Instead, for proving that f(A) — 0 for A — oo, we have

/ f(x)e” ™ dz| + 2
|z|<a

/ f(z)e” ™ dz
|z|>a




10.3. FOURIER TRANSFORM 195

We have then
+ €

| < /I;<(Lf(x)e‘ik”;dw

For the Riemann-Lebesgue lemma we therefore have

/ f(z)e” dx
|2/ <a

lim ‘}’()\) — lim —0

A—00 A—00

O

Theorem 10.15. Given f € C?~!(R) a function, such that o7 f(z) is piecewise continuous, and
ok f(z) € L\(R) for k = 1,--- ,p. If this holds, we have that

1. FIoFfI(N) = GN)EF[f], fork=1,---,p
2. limy a0 AP FfI(N) =0
Proof. Through integration by parts of the definition of the Fourier transform we have
FIFIN) = [f(@)e” e +iAF[f](A)

If the evaluation of f(x)e=* on all R gives back 0 we have that the first part of the theorem is
demonstrated through iteration.
Using that f’ € L'(R) tho, we can define using the fundamental theorem of calculus

f(x) = F(0) + / " (s ds

Also, since f’ € L'(R) we must have that the limits at +00 of f(z) must be finite, therefore

lim  f(x)e™™" =0

r—+oo

And R R
FIIN) = iAF[f1(N)

Through this, we therefore have by iteration that
NFIfI(N) = =FIFP)()

Which, thanks to Riemann-Lebesgue, gives

lim APF[f](\) = %/\ILm FIAR) =0

A—00 2

O

Theorem 10.16. Given f € L*(R) such that 2*f € L'(R) for k = 1,--- ,p, we have that F[f] €
C?(R), and R

01»}—[]0}(/\) = F[(—iz)* f(x)](\)
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Proof. In order to see if it's true, we start for the first derivative and apply the definition. Therefore,

given f(A) = FIfI(A)

| =

(O~ FO) - / (i) f(2)e=* da

Using the triangle inequality and the definition of f(\) we have

L do = [ laf(@)

Dividing the improper integral around a point a € R we have that everything is lesser or equal to the
following quantity

AﬁaMﬂm|

We also have that

—IGI'

—75.’1)

—l—m + 4| dx

€T

—IFI

—lexr __

—i—z + 4| dx

dot2 [ fof(@)]|

e—ter _ 1

€T

cos(ex) — 1 sin
(ex) 4 (ex)
€x €T

il < < |cos(ex) — 1] |ex — sin(ex)]

lex| |ex|
Using the Taylor expansions for the cosine and the sine we get, approximating, that
1 2
|cosd — 1] < =6
2
. 1, 3
sin(8) — 6] = 5]

Therefore ,
e~ter _ 1

1 1 :
+il < §|6x\2+ 6|E;L-|5

€T

Putting that back into the integral, we have that it must be smaller or equal to the following quantity

. lex|  |ex] e
/wqpﬁwﬂ<iz+6 >d +2/¢m7f()( + 5 )dm

Using in the first integral that |ex| < e|a| we get, that all the quantity will be surely less than the
supremum of such, and therefore

<|€2a |€a|> laf ()], +2/w|>a |z f(z)| da

Therefore, imposing as before a = ¢1/2, we get

JA+9—FN

€

lim =0
e—0

—/R(—z’x)f(x)e_""”\“’ dx

Proving the thesis of the theorem O
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Theorem 10.17 (Invariance of the Schwartz Space under Fourier Transforms). Given f € S(R) C L'(R),
then F[f] € S(R).

Proof. We will prove a weaker assumption. Since S(R) = (OOO(R), ||-|\j),€) where the seminorm
[[[1; 5 is defined as follows
I7llj0 = e’ "]l <00 jkeN

We have, Vf € S(R) that for a given constant C, , € R

C{I,?
(@ +1)8
Therefore, taken a = j + 2
/|:cj8kf(x)}dr<0x gk/de<C,» Qk/#dT<OO
R L= Yi+2, R(x2+1)%+1 = Y542, Rl‘2+1 H

Therefore, we have that 279% f € L*(R) Vj, k € N. But we can also write the following result using
Leibniz's rule

P ()= (fn) o f(x) € L' (R)
m=0

Therefore, applying the Fourier transform and using the previous property, we have

(A (8 F(N)) = (A (—)* Fla" I(A) = (=)  FI’ (2" f))(A) € Co(R)

Which finally gives

|’

= Hj—"[@j(xkf)}(/\) <00 VikeN

Js J.k

Which finally gives
feSR) = Flfl€ SR)

§§ 10.3.3 Inverse Fourier Transform

Definition 10.3.3 (Fourier Antitransform). Let f € L'(R), we define the Fourier Antitransform as
F[f](z) the following computation

Folf)(x) = %/ﬂ%f(A)eM””dA (10.14)

Note that, taken the transformation A = —u we get
Ff)x) = - / f(—u)e™"™" du = iffof?[f]

This brings to the definition of the following theorem
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Theorem 10.18 (Inversion Formula). Given f € S(R), we have that F*F[f] = FFo[f] = 1[f] = f,
therefore F* = F~! and the Fourier transform is a bijective map in S(R)

F:S(R) = S(R)

Proof. Weakening the statement, we can say that taken f € K such that f(z) = 0for |z| > a € R,
and taken € € (0,1/a), we have that, Fourier expanding the function in [—e~1, ¢], we get

f@) = S e, =2 [ j@)e de s CFI (ke
keZ €J-1 2

Therefore, we can immediately write

Z‘F k’]Té ikmex

kEZ

Letting Ay, = ke we have
. Ak, e z)\x _ Ta
@) = %Ejf AOwe)e A)\h%—/}“ dz = FoFS]

Where we let ¢ — 07 in the Fourier series, which written in that way gives a Riemann-Lebesgue sum
converging to the integral of the antitransform, therefore proving that in S(R) ¢ = F—1 O

Theorem 10.19 (Plancherel). Given f,g € S(R), and let (-, ) be the usual scalar product defined
as follows

- / f(2)g(r) da
Then, we have
|F171], = v2=isi, (10.15)

(FIf), Flgl) = 2n(f.g)
Proof. For Parseval we have

JLCICES PO SIS

Taking the limit e — 0% the sum on the right converges to the following value

| ir@rde =5 [ 71 ax = 171, = varisi,

A)\k ,€

Then for the polarization identity, and this result, we get the final proof of the theorem O
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Theorem 10.20 (Continuity Expansion). Let p,q € C(R), then if p(z) = q(z) Vz € Q we have that
p(z) = q(x) VreR
This holds for any dense subset of R

Proof. Since Q is dense in R we can take a sequence (x,)nen € Q such that z,, — x € R. Therefore,
using the continuity of p, ¢ we have

p(x)=p< lim T) = lim p(za) = lim q(z, )_q( lim T) — ¢(2)

n—oo n—r oo n—oo

O

Theorem 10.21 (Extension of the Inversion Formula). Let f,g € S(R). Taken a metric ds(-,-) :
S(R) x S(R) — R defined as follows

oo o0

1 If =gl .
9)2222j+k1+||f, JkeN

=0 k=0 g”j,k

Where |||, ,, is the Schwartz seminorm.
Since K C S(R) is dense with this norm, we have that we can extend continuously the Fourier
inversion formula Vf € S(R), we have

FoF_FFe—i = Fo—F' WfeSR)

Theorem 10.22. Given f € L'(R), then, since we might have that F[f] ¢ L'(R), using the
Cauchy principal value

3PV [ FANN @ = S (167 + ) oeR (10.16)
And, if f is continuous in x, we have that
PV / FIAN e dX = FUFf) = [f(2)] = f()

Theorem 10.23 (New Calculation Rules). With what we added so far, in operatorial form, we can
write down two new calculation rules. Supposing the inversion formula holds, and therefore
Fo=F1
. 1 /a
—1 _ L
7= 2w (]:P)

FlF=2rl

(10.17)
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Example 10.3.5. Let's calculate the Fourier transform of the following function f : R — C

1

Acting symbolically on this we know already that F [H (z)e=%] = (1 +4\)~!, therefore

-~ 1 ] B
F {Hm_ (\) = 2nH(-)\)e

Applying the parity operator and multiplying the inverse-transformed function by —i we obtain

N 1
f—l{ i = —2imtH(\)e
T 1

Lastly, we can derive it twice and divide the result by two, obtaining

F-1 [(7“—!—12)3} — A2 H(A)e

§§ 10.3.4 Convolution Product

Definition 10.3.4 (Convolution Product). Given f,g € L' two bounded functions, we define the
convolution of these two functions as follows

(f*g)(z /f (10.18)

Theorem 10.24. Defined the convolution product of two bounded functions, we have that
x: LY(R) x LY(R) — L*(R)
And
1 *gll, < 1Al
1 *glly <[ £l llglly

Proof. The proof of the first result is direct

g(x —y)da

<l /ng— )l dy = [l £1l. N9y

For the second proof, we begin taking a compact set [a, b] C R and we move forward sending a — —oo
and b — oco. Therefore

/If*q e < [ 17w) |/M |du<// 9)llg(w)] dy du = |1 gl

Therefore we have that
x: LY(R) x LY(R) — L*(R)

And that the convolution product is bounded O
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Theorem 10.25 (Properties of the Convolution Product). Given f,g,h € L*(R) three bounded
functions, then

frg=gxf
(fxg)xh=fx(gxh)=fxgxh

These properties are easily demonstrable using the properties of the integral

(10.19)

Theorem 10.26 (Derivation of a Convolution). Given f € L'(R) a bounded function, and g €
L'(R) N C'(R) a bounded function, we have that

df xg

Yy (10.20)
dz

dx

Proof. Written A(z,t) = f(t)g(x — t) we have that

x) = /RA(:):,t) dt

df*g
dx Ox/AIt

Since we also have that, due to the boundedness of ¢/, that

And therefore

] oz — 1) < MIS()

Due to the fact that f(¢) € L'(R) the integral is well defined, and using Leibniz's derivation rule, we
have

df
St [ Grdt= [ Hd@ == (7 rg)@)
O

Theorem 10.27 (Fourier Transform of a Convolution). Given f,g € L'(R) two bounded functions,
we have that

FIf # g = FIf)Flg] (10.21)

Proof. The proof of this is quite direct, we have that

Fi s = [ (ra)@e e de= [ [ fy)ga =) dyda -

- / Fly)e / gz — y)e~ ) de dy = FIf]Fg]
R R

Where on the last equality we used the Fubini-Tonelli theorem O
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Example 10.3.6 (Convolution of Two Set Functions). Given a set A = [—a,a] and a set B = [—b, ],

we know that
]lA(x)]lB(x) = ]lAmB(ac)

:ﬂ-[—u,,u] (‘/L + y) - :U-[—(I,+y,(1,+y] (:L)

Suppose we need to calculate the convolution product 14 * 1 4. The calculation is quite easy with
those properties

(Lo 14)(x) = / La(y)a(z — y) dy

Taken C = [—-a + z,a + z], we have
(L4 14)@) = [ Lancly)dy = (AN C)

R
Where, we know already that

0 T < 2a, r>2a

p(ANC)=<2a—x x€l0,2d

20+ x € [2a,0]

Summarized
w(ANC)=max{2a — |x|,0} = (14 x14)(x)

Remembering the definition of the rect(z), tri(z) functions, we get that

(rectxrect)(x) = max{l — |z|,0} = tri(x)

Example 10.3.7 (Two Gaussians). Taken a, 8 € R we might want to calculate the following convolution
product

2 2 2 2
e ow *6751 :/6*06?/ 6*5(1*7/) dx
R

The direct calculation of the integral is immediate, but we might want to test here the power of the
last theorem that was stated. Hence we have

FoFlemor s et = FoY | Flemo' | Fle ]

Using that

Which gives
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With some rearrangement of the constant terms, we get finally the expected result

2 a2 T 7( a;’j)IQ
e Y xe Bz — e a+p

a+

§§ 10.3.5 Solving the Heat Equation with Fourier Transforms

The power of Fourier Calculus, as we seen in the Fourier series section, also comes when dealing with
differential equations. In this section, we will consider once again the heat equation, but instead of
considering a finite rod, we will suppose that the rod is actually infinite. We therefore get the following
partial differential equation

ot~ " ox?

2
O _ 0 L eR teRT\ {0}
u(z,0) =up(z) zeR

We begin by applying the Fourier transform on the solution as follows. The transformed variable will
be indicated as an index

v(\ 1) = Felu(z, t)](N) = /Ru(a:,t)e_”“'” dz (10.22)

Using the properties of the Fourier transform, we have
Folozu)(N) = (0> Folu(z, 1)](A) = =A0(X, 1)
Supposing also that v(z, t) is derivable with respect to ¢ (i.e. Leibniz's rule holds), we have

81) . . @ —iAx
5 = Flowu(z,t)](N) = & ot o

And the heat equation, becomes after the Fourier transformation

ot ) (10.23)

{8” = —kX0(\ 1) AER, te R\ {0}
v(A0) = Flug()](A) A€R
The solution is almost immediate, and we therefore get

v(\ 1) = (A, 0)e ™M = Flug(a)](A)e m

Note that

e~k 2\/%]1—1 [e’ith] (N

Therefore, remembering that the product of transforms gives the transform of the convolution

{uo * 67%’1} (N

v E) = Falu(e, )] = 2\/%}"

And, the searched solution will therefore be the following

— =z
ug k e 4kt

1
u@t) = 2vmkt
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Appendices
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A Useful Concepts

§ A.1 Multi-Index Notation

In order to ease various calculations one can utilize more abstract index constructions. One of these is
the multi-index notation, where instead of having an index i € N or j € Z, one constructs a “vector”
of indices, like a = (a1,-+- ,a,) e N* or = (by, - ,b,) € Z™.

This notation includes a set of operations on such multi-indexes, defined as follows

Theorem A.1 (Operations on Multi-indexes). Given a multi-index o € N, one can define the
following operations on them

=1 (A,I>

Given x € R" and the del operator O one can also write

n
a a;
I
i=1

n gladl glel

o = H i _ _
g Ozt -+ Oz Ox®

i=1

207
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§ A.2 Properties of the Fourier Transform

Here's a list of the properties of the Fourier transform, useful for dealing with calculations in operatorial
form

FP=PF
FI, =P
TF=F[cf()] acR, feL'(R)

A A 1 -~ =

f@azij acR\{0}
o e—iAb
-/T"@(LT}) T@;F GGR\{O}7b€R

jAQ (A.3)

]TT},&G,:GM“@JT acR\ {0}, beR

FO =i F

OF = Fl—iaf(z)]  feLY(R)

N 1 ~ - 1 ~ 4

—1 7 _
Fl= g FP=_PF

FF = FF =i



B Common Fourier Transforms

§ B.1 Common Fourier Transforms

In this appendix, you'll find a table of some particular Fourier transforms that might pop up in Fourier
calculus, and might also be helpful for calculating more complex transforms.

Note that
7 — T e—'i)\:l: x .
FINW = [ s@yed -
f(z) Conditions FIAN)
I g () 2 sin/\()\a)
rect(z) sinc(\/2m)
tri(z) sinc2(\/2)
sinc(x) rect(\/2m)
0S()L{_q.q Si“[(A/\lel)a] N sin[(/\)\:11)a}
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f(x) Conditions FIFIN)
z 2a
o1l .
H( ) —ax > 0 1
re “ a+ A
- sgn(a)
H axr
(ax)e o i
1 T _a|A
ot A
R S N el T BAlFiZ
a?x? +bx + ¢ 2|al Ba
1 us
- Ze RN +1
e eI+ 1)
1 RN
Tt me” Vzsin (3 + %)
—az? T A2
e \/76 da
a
e’ \/Z(l + i)edf
e—ie’ \/Z(l — i)e712
cos(z?) /T COS Pl—"’}
sin(z?) —V/7sin {VZﬂ}
A
sech(x) msech <7T2 >
_ a2 ( ) 5 A2
e 2 —1)"\/2me’ ™
——H,(z —H,
VA/m2mn! (@) VA/m2mn! ?)
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Remember that:

rect(z) = 1;_1 1y(2)
tri(z) = max{1 — |z|, 0}

sech(z) = cosflm(x)

sinc(‘r>— 25in<x)
o)z 2
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